• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Speed-assigned Position Tracking Control of SRM With Adaptive Backstepping Control

    2018-12-24 01:09:48JiajunWang
    IEEE/CAA Journal of Automatica Sinica 2018年6期

    Jiajun Wang

    Abstract—A novel speed-assigned method is applied to the position tracking control of switched reluctance motor(SRM).A speed control freedom can be drawn into the position control through speed assignment.Adaptive backstepping control is used to design the position controller for the SRM.The accuracy of position tracking of the SRM can be enhanced with speed assignment.A disturbance observer is further designed to enhance the estimation accuracy of the unknown load torque.Simulation results certify that the design scheme is right and effective.

    I.INTRODUCTION

    SWITCHED reluctance motors(SRMs)have the simplest and most robust construction among electric motors.Although SRMs have many good characteristics,the doublesalient and high saturated features result in strong nonlinearities.SRMs have never been a popular choice in highaccuracy position control due to the drawback of higher torque ripple compared with conventional motors.The torque ripple can cause large vibrations and acoustic noise[1].At present,almost all research on SRMs focus on speed or torque control[2].As an important application aspect,position control of the SRMs still has several problems which must be solved.This paper mainly focuses on solving three problems related to the position control of the SRM:how to enhance the accuracy of position tracking,how to depress torque ripple,and how to reduce the effect of unknown load torque.

    Generally speaking,the position control of motors is composed of three control loops:position loop,speed loop,and current loop[3].As we know,in position control of SRMs,the motor speed is solely controlled by the output of the position loop.That is to say,the speed,which is the differentiation of the rotor position,can not be controlled independently.If one control freedom of motor speed can be added in the position control of the SRM,the position-control flexibility and accuracy of the SRM can be enhanced greatly.Adding this control freedom of speed in the position tracking control of the SRM is a key research problem that is discussed in this paper.

    Tracking control is a widely researched problem in modern control theory,which can be divided into trajectory-tracking and path-following[4],[5].Trajectory-tracking is concerned with the design of control laws that force the states to reach and follow a time parameterized reference signal.Pathfollowing forces states to follow a specified path without any specific dynamic requirements along the path(such as the constraint of the time or speed).At present,all the position tracking control of the SRMs can be considered trajectory tracking control problems.In position tracking control of the SRMs,if the tracking speed can be controlled deliberately,then the performance of the tracking can be enhanced.The idea in this paper is to add a speed control freedom in the position tracking which originates from the path-following method in[5].

    In position tracking control of the SRM,besides the speed control,the torque control performance also need to be considered.At low speed,the torque ripple has strong influence on the position tracking performance.To reduce the torque ripple of the SRM,different torque control techniques have been developed[6]-[8].In[6],the direct torque control(DTC)for the SRM was first proposed as the DTC in AC motor.In[7],direct instantaneous torque control(DITC)is used to realize the high-dynamic four-quadrant operation of the SRM.In[8],torque-sharing function(TSF)is adopted to reduce the torque ripple with torque sharing between different phases.The DTC and DITC can be considered as torque direct control.While the TSF can be considered as indirect torque control.It is of great convenience to use DTC to realize torque control.

    There are many elements which affect the position tracking performance of the SRM.Unknown load torque is yet another element which should be considered.If the unknown load torque can be estimated,the position tracking performance can be enhanced further.Backstepping control technique is a systematic and recursive design methodology for nonlinear feedback control[9]-[11].The most appealing point of it is to use the virtual control variable to make the original highorder system simple,and the controller can be derived step by step.In this paper,the function of backstepping control is twofold.One is to realize the controller design of speedassigned position tracking,and the other is to estimate the unknown load torque of the SRM.

    The disturbance attenuation problem of a nonlinear system has been investigated via a nonlinear model predictive control(MPC)method augmented with a disturbance observer[12].Disturbance observer has been popularly applied in the design of tracking controllers for motion control systems[13].Most of the work in the design of disturbance observer is engineering-oriented and lacks sound theoretical justification.In this paper,a disturbance observer is designed based on state equations,which can realize estimation of the unknown load torque.The designed disturbance observer can enhance the estimation accuracy of the load torque further compared with the adaptive estimation in the adaptive backstepping design.

    The novelty of the paper can be mainly summarized as following four aspects.

    1)The speed-assigned method is firstly used in the position tracking control of the SRM to enhance the accuracy of position tracking.

    2)The adaptive backstepping control is successfully applied to the speed-assignment design of the SRM.The speed control freedom can be easily added in the position tracking control through the backstepping design.

    3)The disturbance observer is utilized to realize the load torque estimation of the SRM,which can enhance the estimation accuracy of the load torque compared with the estimation strategy using the adaptive backstepping design.

    4)The DTC is used to reduce the torque ripple of the SRM in the position tracking control.

    The remainder of this paper is organized as follows.In Section II,the model of the SRM is given.In Section III,speed-assigned position tracking control is designed.In Section IV,the design of disturbance observer is given.In Section V,the simulation procedure is shown,and lots of simulation results are given to certify the rightness and effectiveness of the design.And finally,some conclusions are presented in Section VI.

    II.MODEL OF THESRM

    The model of the SRM can be referenced to[14]and given by the following state equations:

    where θ is the rotor position,ω is the rotor speed,ikis the kth phase current,ukis the applied kth phase voltage,Tkis the kth phase torque,ψkis the kth phase flux-linkage,R is the phase resistance,B is the damping coefficient,Nphis the total phases of the SRM,J is the moment of inertia of the rotor,and TLis the load torque.The kth phase torque can be derived from the flux-linkage expression,and the total torque can be computed with.In this paper,Tkis derived from the experimental data and can be acquired through the lookup of a two-dimensional table.

    To simplify the position tracking control of the SRM,the mechanical part is selected as the controlled part.The electromagnetic part is enclosed in the inner loop,which will be given in Section V.The simplified mechanical part are given as the following state equations:

    where a=-B/J,b=1/J,d=-TLJ,u=Te.And d represents the uncertain part of the model.

    Before the design of the position tracking control,we first give three assumptions.

    Assumption 1:The load torque TLis assumed to be unknown to the controller.The uncertainty of the rotor inertia J and the viscous constant B are not considered.That is to say,J and B are assumed to be constants.

    Remark 1:The load torque is considered as the only uncertainty to the controller design in this paper.If the uncertainties of J and B are considered,[15]can be referenced,which gave the solution for the uncertainties of J and B with the disturbance observer.

    Assumption 2:Because the mechanical dynamics of the motor is slower than the electrical dynamics,the load torque of the SRM can be assumed to satisfy that=0[16].Then,it is reasonable to assume that=0.

    Assumption 3:d is assumed to be estimable with.And

    III.POSITIONCONTROLDESIGN OFSRM

    A.Definition of Speed-assigned Position Tracking

    Assumption 4:We assume that θdis the reference position signal of the SRM,and θdis two times differentiable.It is reasonable to assume that θd,˙θd,and¨θdexist and are bounded.

    The general position tracking control can be called timeassigned position tracking control.Time-assigned position tracking control means to be at specific position along the reference signal at specific time instances.The time-assigned position tracking can be presented as following equation:

    where η(t)is the tracking error.This means that the rotor position θ(t)of the SRM tracks the desired position θd(t)asymptotically.

    In contrast to time-assigned control,speed-assigned control means to design a desired speed at specific position.If the reference position θd(t)is given as a time related function,it is a function of γ(t).That is to say the reference position signal is given as θd(γ(t)),where γ(t)is the function of time.One control freedom can be added to the position tracking control of SRM through this processing.The speed-assigned method can be realized if the following condition can be achieved[5].

    where vd(θd(t),t)is the assigned speed at different position.Then it is reasonable to have the following condition:

    To simplify the function presentation,we will use γ,vd,η,,to present γ(t),vd(θd(t),t),η(t),

    B.The Design of Adaptive Backstepping Control

    The design of the adaptive backstepping controller for speed-assigned position tracking of the SRM can be achieved through two steps.

    Step 1:The position tracking error x1can be described as the following equation:

    The time derivative of x1can be given as

    According(10),the virtual variable x2is selected as

    where k1is a positive constant,then the time derivative of x1can be written as

    The first Lyapunov function V1is selected as the traditional form

    The time derivative of Lyapunov function V1can be computed as

    Step 2:The second Lyapunov function V2is designed as

    The time derivative of the second Lyapunov function can be written as

    where the time derivative of x2can be derived from(11).The time derivative of virtual variable x2can be computed as

    Until now,the control u can be designed as following equation:

    where k2is a positive constant.The control rules for the load torque estimation errorand speed-assigned tracking error η should be designed as

    where k3and k4are positive constants.With the control u,the errorand error η,the time derivative of the second Lyapunov function can be written as

    According to Barbalat’s Lemma[17],we can obtain<0 when x1/=0,x2/=0,/=0 or η/=0.And then when<0,V2→ 0 as t→ +∞.At last θ-θd→ 0 can be realized,and speed-assigned position tracking control of the SRM with an unknown load torque is achieved.

    IV.THEDESIGN OFDISTURBANCEOBSERVER

    The proposed control structure of SRM with the disturbance observer is given in Fig.1.As seen from the figure,the composite controller consists of two parts:a controller and a disturbance observer.In the position tracking control of SRM,the unknown load torque TLcan be estimated with the disturbance observer.

    Fig.1.The control structure with the disturbance observer.

    From Assumption 2,we can know=0.The disturbance observer can be designed as following state equation:

    From the disturbance observer,we can obtain the estimated load torque,and=-

    Theorem 1:Consider the model(4)and(5)of SRM with unknown load disturbance d.The disturbance observer(22)and(23)can converge to the disturbance d exponentially.

    Proof:Combining the model(4)and(5)of SRM and the disturbance observer(22)and(23),the differentiation of?d can be computed as following:

    Equation(24)can be simplified as

    The above disturbance observer has the following three advantages.

    1)The design of the disturbance observer is very simple.It can enhance the disturbance attenuation ability of any control system with the same structure.

    2)The disturbance observer is exponentially stable,and its stability is regardless of the design of the controller.This can enhance the flexibility of the controller design.

    3)The disturbance observer can be designed before or after the controller design.It is very meaningful to simplify the control system design.This can be used for other control systems with the form described as(4)and(5).

    Fig.2.The control structure of the SRM system.

    Fig.3.The measured electromagnetic torque and flux linkage.

    V.SIMULATIONPROCEDURE ANDANALYSIS

    The structure of speed-assigned position tracking control of the SRM is given in Fig.2.In Fig.2,the speed-assigned position tracking controller is abbreviated as SAPTC.The output of the SAPTC block u is the desired torque Td,which is compared with the feedback torque Te.Tecan be acquired with the rotor position and phase current through the lookup of the 2-D table of torque,which is obtained through experiment.The flux-linkage ψ can be computed from ψABCD,which is acquired from the experimental torque data.In torque andflux-linkage control loops,the hysteresis controller is used to control the torque and flux-linkage.The traditional asymmetric half-bridge converter is chosen as the voltage-supply unit for the SRM.The normal parameters of the SRM are given in Table I.

    A.Data Acquisition of Electromagnetic Torque T(i,θ)and Flux-linkage ψ(i,θ)

    1)Measurement of T(i,θ):The modeling of the electromagnetic torque and flux-linkage for SRM is still an open problem.There are no analytical models which can describe the performance of SRM completely.In this paper,the torque measurement data are first acquired from a measurement method proposed in[18].Then,the flux-linkage data are computed from the torque measurement data.From the experiment data,the relationship between the electromagnetic torque and the phase current and rotor position is given in Fig.3(a).

    2)Computation of ψ(i,θ):The static flux-linkage profile can be computed from the measured static torque characteristics.The method can avoid errors introduced by the iron losses and copper losses of the SRM.To acquire the data offlux-linkage,the co-energy should be computed firstly.

    TABLE I DATA OF THETESTEDSRM

    The co-energy can be computed from the measured torque data at a constant current(I)and position θ0as in[18]

    where Wc(θ0,I)presents the co-energy and Luis the inductance at the unaligned position(30?).Then the flux-linkage can be computed from the co-energy as

    where i is the phase current of the SRM.

    To acquire the flux-linkage characteristics of the SRM,two steps of computation are needed.

    1)The data of co-energy Wc(θ0,I)are first computed with(26)from the measured torque data.

    2)The data of flux-linkage is acquired from the data of the co-energy Wc(θ0,I)with(27).The figure of flux-linkage ψ(θ,I)is given in Fig.3(b).

    B.Realization of Direct Torque Control

    Similar to induction motors,equivalent space voltage vectors may be defined for the SRM.The voltage space vectors for each phase are defined as lying on the center axis of the stator pole.The definition of the voltage space vectors for a four phase 8/6 SRM are shown in Fig.4(a).The voltage state definition of one phase of SRM are given in Fig.5.

    Fig.4.The definition of the voltage and flux-linkage vector.

    Fig.5.The voltage state definition of one phase.

    According to the eight effective voltage space vectors in Fig.4(a),the formation of flux-linkage directions are given in Fig.4(b).As in Fig.4(c),the relation between composite vector of flux-linkage and the phase flux-linkage vector are given as following equations:

    One of the eight possible states is chosen at a time in order to keep the stator flux linkage and the motor torque within hysteresis bands.The space distribution of eight effective voltage space vectors are given in Fig.6(a),where Sk,Uk(k=1,2,...,8)represent sectors and voltage space vectors,respectively.Whenever the stator flux linkage reaches its upper limit in the hysteresis band,it is reduced by applying voltage vectors which are forced toward the center of the flux vector space and vice-versa.This procedure is illustrated in Fig.6(b).

    Fig.6.Effective voltage phase vectors.

    C.Simulation Results and Analysis

    In the simulation of the speed-assigned position tracking control of the SRM,there are five control variables that need to be regulated.The control variables are given as k=1200,k1=480,k2=7200,k3=1200,and k4=4500.

    To test the effectiveness of the speed-assigned position tracking control of the SRM,four cases of simulation are given.The desired position reference signal is set as θd=sin(γ(t))rad.

    In the first case of simulation,the assigned-speed of the SRM is set to be vd=8π rad/s.The load torque is given as a constant value TL=1Nm.The simulation results are shown in Fig.7.In Fig.7, “adaptive estimation”and “disturbance observer”present the control scheme with adaptive backstepping estimation and disturbance observer for the unknown load torque respectively.Fig.7(a)shows the reference position,actual position,and position tracking errors.Fig.7(b)demonstrates the assigned speed,actual speed,and the speed errors.And Fig.7(c)gives the actual load torque,estimated load torque,and estimated errors.

    In the second case of simulation,the assigned-speed of the SRM is reduced to be vd=4π rad/s.The unknown load torque is given the same as the first case TL=1Nm.The simulation results are shown in Fig.8.

    In the third case of simulation,the assigned speed of the SRM is set to be vd=8π rad/s.The unknown load torque is given as TL=1+0.5sin(10πt)Nm.The simulation results are shown in Fig.9.

    In the fourth case of simulation,the assigned speed of the SRM is reduced to be vd=4π rad/s.The unknown load torque is given the same as the third case TL=1+0.5sin(10πt)Nm.The simulation results are shown in Fig.10.

    The comparison between adaptive estimation and disturbance observer of the speed-assigned position tracking under different conditions are given in Table II and Table III,where the position error,speed error,and torque estimated error represent steady errors.And AE and DO present adaptive estimation and disturbance observer respectively.

    Fig.7.The simulation results of the first case.

    TABLE II COMPARISONBETWEENADAPTIVEESTIMATION AND DISTURBANCEOBSERVERWHENTL=1Nm

    TABLE III COMPARISONBETWEENADAPTIVEESTIMATION AND DISTURBANCEOBSERVERWHENTL=1+0.5sin(10πt)Nm

    Fig.8.The simulation results of the second case.

    To demonstrate the superiority of the proposed method,the speed-assigned position tracking control is compared with the traditional PID controller.The structure of the PID control for the SRM is given in Fig.11.Because the PID control does not need the load torque estimation and cannot realize the speed assignment,the load torque estimation and adaptive estimation units are omitted.

    The parameters of the PID controller for the position control of the SRM are given as following:

    In the simulation,the speed-assigned position tracking control of the SRM with disturbance observer is compared with the PID controllers.Two cases of the simulation results are given.The reference position and load torque are the same as the conditions in above two cases.The comparisons of the PID control and the speed-assigned position tracking control of the SRM with disturbance observer are given in Fig.12.Fig.12 shows the reference position,actual position,the tracking error with PID control,and speed-assigned strategy based on disturbance observer under different assigned speed.From the comparison,we can conclude that the speed-assigned position tracking with disturbance observer has higher tracking accuracy and better tracking dynamics than the traditional PID controller.

    Fig.9.The simulation results of the third case.

    From Figs.7-10,Fig.12 and Tables II and III given above for the speed-assigned position tracking,we can reach the following six conclusions.

    1)The speed-assigned method can add a speed control freedom to the position tracking of the SRM.When a low speed is assigned to the position tracking,the position tracking error can be reduced.This is very meaningful for position control of SRM.

    2)The disturbance observer can estimate the unknown load torque of the SRM.The convergent speed of the disturbance observer can be designed fast enough to suit the controller design.

    3)The backstepping controller is effective for the speedassigned position tracking control of the SRM,and the controller has robustness for varying load torque.

    4)The DTC has very good direct torque and flux-linkage control performance for the SRM.There is no need for the control of turn-on and turn-off angles.This is the virtue of the DTC to realize the four-quadrant operation of SRM.The transition procedure of SRM in four operating quadrants is very fluent.

    5)The torque ripple of the SRM is reduced with combination of the DTC and disturbance observer.In the position tracking procedure,we can see that the torque ripple is small enough to realize the high accuracy of position tracking.

    Fig.10.The simulation results of the fourth case.

    6)The speed-assigned strategy is superior to the traditional PID control for the SRM.The speed-assigned position tracking control method has large potential for the position control of the SRM in the future.

    VI.CONCLUSION

    In this paper,a novel speed-assigned position tracking control of the SRM is designed which achieves excellent position control performance.The main contribution of this paper can be summarized as following three aspects.

    1)A speed control freedom is successfully added to the position tracking control of the SRM.This can enhance theflexibility of position tracking control of the SRM.

    2)The speed-assigned position tracking control of the SRM is realized with adaptive backstepping design.This design makes the speed-assigned error and load torque estimation an easy job.

    3)The disturbance observer can enhance the accuracy of the load torque estimation.It is very meaningful for the position control of SRM.

    The speed-assignment method proposed in this paper has a general applicability.The design method can be easily extended to the position control of other motors.

    Fig.11.The structure of position control with PID control.

    Fig.12.The comparison between PID controller and speed-assigned control with disturbance observer.

    一级爰片在线观看| 亚洲精品久久久久久婷婷小说| 亚洲自拍偷在线| 国产国拍精品亚洲av在线观看| 少妇裸体淫交视频免费看高清| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 欧美人与善性xxx| 国产女主播在线喷水免费视频网站| 视频区图区小说| 国产精品女同一区二区软件| 精品一区二区三区视频在线| 久久精品国产a三级三级三级| 特级一级黄色大片| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 嫩草影院新地址| 久久人人爽人人片av| 国产免费又黄又爽又色| 国产探花极品一区二区| av网站免费在线观看视频| 美女国产视频在线观看| 国产高清有码在线观看视频| 三级国产精品片| 一级毛片aaaaaa免费看小| 99精国产麻豆久久婷婷| 男女下面进入的视频免费午夜| 美女xxoo啪啪120秒动态图| 久久国内精品自在自线图片| 欧美极品一区二区三区四区| 日日摸夜夜添夜夜添av毛片| 男女边摸边吃奶| 少妇的逼好多水| 亚洲熟女精品中文字幕| 91久久精品国产一区二区三区| 在现免费观看毛片| 涩涩av久久男人的天堂| 白带黄色成豆腐渣| 久久精品国产自在天天线| 国产男女内射视频| 九色成人免费人妻av| 五月玫瑰六月丁香| 日韩欧美 国产精品| 91精品一卡2卡3卡4卡| 国产精品麻豆人妻色哟哟久久| 亚洲va在线va天堂va国产| 18禁在线播放成人免费| 成人黄色视频免费在线看| 99久久精品热视频| 中文精品一卡2卡3卡4更新| 一级毛片电影观看| 久久久久久久精品精品| 国产成人a∨麻豆精品| 午夜福利视频精品| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 国产av码专区亚洲av| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 亚洲人成网站在线播| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲| 午夜亚洲福利在线播放| 三级国产精品片| 熟女av电影| 亚洲真实伦在线观看| 嫩草影院精品99| 免费在线观看成人毛片| 国产又色又爽无遮挡免| 亚洲一区二区三区欧美精品 | 中国美白少妇内射xxxbb| 2022亚洲国产成人精品| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩另类电影网站 | 欧美人与善性xxx| 国产一区二区三区av在线| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 久久久久久久久久成人| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 女的被弄到高潮叫床怎么办| 国产一区二区三区综合在线观看 | videos熟女内射| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 国产男女内射视频| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 国产高潮美女av| 国产成人福利小说| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 日韩在线高清观看一区二区三区| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 国产亚洲精品久久久com| 国产乱人偷精品视频| 美女脱内裤让男人舔精品视频| 免费电影在线观看免费观看| 久久ye,这里只有精品| 久久99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 精品一区二区免费观看| 久久影院123| 国产人妻一区二区三区在| 久久久a久久爽久久v久久| 国内精品美女久久久久久| 国产伦精品一区二区三区视频9| 亚洲av一区综合| 免费看av在线观看网站| 欧美日本视频| 精品熟女少妇av免费看| 国产亚洲91精品色在线| 精品久久久精品久久久| 在线观看人妻少妇| 精品国产露脸久久av麻豆| 日本wwww免费看| 男男h啪啪无遮挡| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 久久99蜜桃精品久久| 国产av国产精品国产| 国产精品久久久久久精品古装| 日韩视频在线欧美| 国产乱人视频| 啦啦啦在线观看免费高清www| 男插女下体视频免费在线播放| 国产免费又黄又爽又色| 大话2 男鬼变身卡| 亚洲综合色惰| 亚洲av免费高清在线观看| 天堂俺去俺来也www色官网| 欧美97在线视频| 亚洲欧美一区二区三区黑人 | 欧美+日韩+精品| 日韩人妻高清精品专区| 精品一区在线观看国产| 精品一区二区三区视频在线| 日韩成人av中文字幕在线观看| 好男人在线观看高清免费视频| 丝瓜视频免费看黄片| 亚洲成色77777| 男女下面进入的视频免费午夜| 啦啦啦中文免费视频观看日本| 日本三级黄在线观看| www.av在线官网国产| 一级毛片 在线播放| 亚洲婷婷狠狠爱综合网| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 国产精品成人在线| 亚洲国产精品成人综合色| 如何舔出高潮| 熟女电影av网| 婷婷色综合大香蕉| 免费观看性生交大片5| 97在线人人人人妻| 三级男女做爰猛烈吃奶摸视频| 亚洲av福利一区| 亚洲国产精品成人久久小说| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 嫩草影院精品99| 中文乱码字字幕精品一区二区三区| 精品视频人人做人人爽| 久久久久久九九精品二区国产| 午夜免费鲁丝| 女的被弄到高潮叫床怎么办| 国产午夜福利久久久久久| 777米奇影视久久| 精品久久久精品久久久| 少妇的逼水好多| 永久免费av网站大全| av在线天堂中文字幕| 性色av一级| 天天一区二区日本电影三级| 精华霜和精华液先用哪个| 久久久久九九精品影院| 最近最新中文字幕大全电影3| av网站免费在线观看视频| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 伦理电影大哥的女人| 搡女人真爽免费视频火全软件| 国产精品嫩草影院av在线观看| 久久久a久久爽久久v久久| 亚洲精品亚洲一区二区| 嫩草影院精品99| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 97超视频在线观看视频| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 99热网站在线观看| 成人无遮挡网站| 久久精品国产鲁丝片午夜精品| 在线观看av片永久免费下载| 成人特级av手机在线观看| 内地一区二区视频在线| 国产精品久久久久久久电影| 久久久国产一区二区| 国产美女午夜福利| 国产伦理片在线播放av一区| 美女国产视频在线观看| 久久久久精品性色| 五月开心婷婷网| 少妇人妻 视频| 乱系列少妇在线播放| 色5月婷婷丁香| 国产精品偷伦视频观看了| av国产久精品久网站免费入址| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 国产精品女同一区二区软件| 免费黄频网站在线观看国产| 寂寞人妻少妇视频99o| 麻豆国产97在线/欧美| 在线亚洲精品国产二区图片欧美 | 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 国产欧美日韩精品一区二区| 91午夜精品亚洲一区二区三区| 一级a做视频免费观看| 超碰97精品在线观看| 一个人看的www免费观看视频| 久久久精品94久久精品| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 亚洲不卡免费看| 成年女人看的毛片在线观看| 国产综合精华液| 97精品久久久久久久久久精品| 乱系列少妇在线播放| 超碰97精品在线观看| 久热久热在线精品观看| 新久久久久国产一级毛片| 18+在线观看网站| 亚洲人成网站在线观看播放| h日本视频在线播放| av在线蜜桃| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影| 五月玫瑰六月丁香| 春色校园在线视频观看| 性色av一级| 男人添女人高潮全过程视频| 在线播放无遮挡| 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 亚洲精品第二区| 老司机影院毛片| 欧美精品国产亚洲| 国产一级毛片在线| 极品教师在线视频| 亚洲精品视频女| 日韩大片免费观看网站| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频 | 久久国内精品自在自线图片| 99热这里只有是精品50| 欧美日韩在线观看h| 久久午夜福利片| 91狼人影院| 久久99蜜桃精品久久| 国产av国产精品国产| 秋霞伦理黄片| 99热国产这里只有精品6| 国产亚洲精品久久久com| 波多野结衣巨乳人妻| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| 日本猛色少妇xxxxx猛交久久| 久久99热6这里只有精品| 1000部很黄的大片| 超碰av人人做人人爽久久| 欧美97在线视频| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 精品久久久久久久人妻蜜臀av| 久久精品国产自在天天线| 人妻系列 视频| 国产老妇女一区| 国产黄片视频在线免费观看| 欧美一级a爱片免费观看看| 亚洲av成人精品一二三区| 久久久久网色| 国产精品99久久久久久久久| 久久精品综合一区二区三区| 高清毛片免费看| 国产精品福利在线免费观看| 欧美成人a在线观看| 国产爽快片一区二区三区| 男人舔奶头视频| 天美传媒精品一区二区| 国产大屁股一区二区在线视频| 少妇丰满av| 午夜爱爱视频在线播放| 肉色欧美久久久久久久蜜桃 | 波多野结衣巨乳人妻| 国产 一区精品| 国产av国产精品国产| 看黄色毛片网站| 亚洲欧洲国产日韩| 美女视频免费永久观看网站| 一个人看的www免费观看视频| 久久久久久久精品精品| 午夜精品一区二区三区免费看| 少妇人妻 视频| 韩国av在线不卡| 欧美精品一区二区大全| 国产av国产精品国产| 人人妻人人爽人人添夜夜欢视频 | 国产爽快片一区二区三区| 精品国产一区二区三区久久久樱花 | 久久精品国产亚洲av天美| 国产乱人视频| 国语对白做爰xxxⅹ性视频网站| 99久久九九国产精品国产免费| 精品久久国产蜜桃| 亚洲在线观看片| 少妇被粗大猛烈的视频| 老司机影院成人| 99精国产麻豆久久婷婷| 男女边吃奶边做爰视频| 一级av片app| 成人一区二区视频在线观看| 色婷婷久久久亚洲欧美| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| av在线播放精品| 伊人久久国产一区二区| 黄色配什么色好看| 3wmmmm亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 美女高潮的动态| 赤兔流量卡办理| 男人舔奶头视频| 又粗又硬又长又爽又黄的视频| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 成年av动漫网址| 久久久欧美国产精品| av网站免费在线观看视频| 久久精品综合一区二区三区| 色婷婷久久久亚洲欧美| 精品一区二区三卡| av网站免费在线观看视频| 在线观看三级黄色| 大片免费播放器 马上看| 韩国av在线不卡| 亚洲成色77777| 久久综合国产亚洲精品| 18+在线观看网站| 久久久国产一区二区| 男女无遮挡免费网站观看| 亚洲综合色惰| 涩涩av久久男人的天堂| 国产极品天堂在线| 韩国av在线不卡| 高清午夜精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 亚洲内射少妇av| 国产成人a区在线观看| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 99热这里只有是精品在线观看| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 国产免费福利视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产熟女欧美一区二区| 好男人视频免费观看在线| 最近中文字幕2019免费版| 丝袜美腿在线中文| 色综合色国产| 一级毛片 在线播放| 久久久a久久爽久久v久久| 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 国产视频内射| 成人毛片a级毛片在线播放| 一本一本综合久久| 精品国产一区二区三区久久久樱花 | 色视频www国产| 熟女电影av网| 热99国产精品久久久久久7| 欧美高清成人免费视频www| 激情 狠狠 欧美| 黄色欧美视频在线观看| 久久精品综合一区二区三区| 国产淫语在线视频| 日韩强制内射视频| 国产午夜精品一二区理论片| 国产亚洲最大av| av在线老鸭窝| 高清av免费在线| 别揉我奶头 嗯啊视频| 国产成人91sexporn| 热re99久久精品国产66热6| 欧美日韩精品成人综合77777| 久久精品国产亚洲网站| 免费观看a级毛片全部| 国产视频内射| 欧美bdsm另类| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站 | 十八禁网站网址无遮挡 | 国产老妇女一区| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 成人亚洲精品一区在线观看 | 国产白丝娇喘喷水9色精品| 国产亚洲最大av| 免费黄网站久久成人精品| 成年女人看的毛片在线观看| 久久韩国三级中文字幕| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 亚洲在久久综合| 高清日韩中文字幕在线| 中文字幕制服av| 亚洲av日韩在线播放| 国模一区二区三区四区视频| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 超碰97精品在线观看| 亚洲精品乱码久久久久久按摩| 六月丁香七月| 内射极品少妇av片p| 五月玫瑰六月丁香| 国产日韩欧美亚洲二区| 亚洲欧美精品专区久久| 简卡轻食公司| 色网站视频免费| 国精品久久久久久国模美| 成人综合一区亚洲| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 久久99精品国语久久久| 免费观看的影片在线观看| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱| 六月丁香七月| 身体一侧抽搐| 亚洲av免费高清在线观看| 亚洲精品视频女| av女优亚洲男人天堂| freevideosex欧美| 国产美女午夜福利| 亚洲精品成人久久久久久| 男插女下体视频免费在线播放| 午夜福利高清视频| 亚洲国产精品成人综合色| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 成人二区视频| 久久精品久久久久久噜噜老黄| 国产高清三级在线| 黑人高潮一二区| 国产又色又爽无遮挡免| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 在现免费观看毛片| 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 少妇被粗大猛烈的视频| 日日啪夜夜爽| 精品一区在线观看国产| 国产又色又爽无遮挡免| 嫩草影院入口| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 在线看a的网站| 国产免费一区二区三区四区乱码| 99久久九九国产精品国产免费| 五月玫瑰六月丁香| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 久久99精品国语久久久| 国产精品嫩草影院av在线观看| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 舔av片在线| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 六月丁香七月| 岛国毛片在线播放| 深爱激情五月婷婷| 亚洲av中文字字幕乱码综合| 国产亚洲91精品色在线| 国产一区有黄有色的免费视频| 亚洲美女视频黄频| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 国产成人一区二区在线| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 搡老乐熟女国产| 波多野结衣巨乳人妻| 久久韩国三级中文字幕| 久久热精品热| 免费在线观看成人毛片| 亚洲怡红院男人天堂| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 国产老妇女一区| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 伊人久久国产一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久久久久久久| 观看美女的网站| 看免费成人av毛片| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 亚洲国产成人一精品久久久| 亚洲最大成人av| 亚洲美女搞黄在线观看| 99热网站在线观看| 国产伦理片在线播放av一区| 国产成人免费无遮挡视频| 欧美精品人与动牲交sv欧美| 九九爱精品视频在线观看| 一个人看的www免费观看视频| 日本av手机在线免费观看| 亚洲成色77777| 国产中年淑女户外野战色| 成人亚洲欧美一区二区av| 国产乱来视频区| 免费电影在线观看免费观看| 国产探花在线观看一区二区| 国精品久久久久久国模美| 国产精品久久久久久久电影| 亚洲精品中文字幕在线视频 | 亚洲图色成人| 日韩强制内射视频| 搞女人的毛片| 精品一区二区三区视频在线| 中文字幕av成人在线电影| 久久久久久久久久久丰满| 国产精品爽爽va在线观看网站| 麻豆成人av视频| 好男人在线观看高清免费视频| 国产午夜福利久久久久久| 久久久久性生活片| 成人国产麻豆网| 高清毛片免费看| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 天天一区二区日本电影三级| 亚洲天堂av无毛| 在线观看一区二区三区| 国产黄频视频在线观看| 久久韩国三级中文字幕| 国产乱来视频区| 亚洲欧美精品自产自拍| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 亚洲,欧美,日韩| 人妻 亚洲 视频| 视频区图区小说| 又爽又黄无遮挡网站| 国产精品99久久久久久久久| 男女国产视频网站| 真实男女啪啪啪动态图| 国产成人免费观看mmmm| av黄色大香蕉| 国产成人福利小说| 在线播放无遮挡| 色播亚洲综合网| 国产黄片美女视频| 国产av国产精品国产| 国产精品久久久久久久电影| 亚洲欧美清纯卡通| 午夜福利高清视频| 日韩 亚洲 欧美在线| 日韩中字成人| 亚洲美女搞黄在线观看| 国产成年人精品一区二区| 在线观看一区二区三区激情| 亚洲av免费在线观看| 国产在线一区二区三区精| 成人国产麻豆网| 国产日韩欧美在线精品| 午夜激情久久久久久久| 18+在线观看网站| 激情五月婷婷亚洲|