• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Decoupling Control Method and Its Application to a Ball Mill Coal-pulverizing System

    2018-12-24 01:33:48YueFuChengwenHongandJingyiLi
    IEEE/CAA Journal of Automatica Sinica 2018年6期

    Yue Fu,Chengwen Hong,and Jingyi Li

    Abstract—The conventional optimal tracking control method cannot realize decoupling control of linear systems with a strong coupling property.To solve this problem,in this paper,an optimal decoupling control method is proposed,which can simultaneously provide optimal performance.The optimal decoupling controller is composed of an inner-loop decoupling controller and an outer-loop optimal tracking controller.First,by introducing one virtual control variable,the original differential equation on state is converted to a generalized system on output.Then,by introducing the other virtual control variable,and viewing the coupling terms as the measurable disturbances,the generalized system is open-loop decoupled.Finally,for the decoupled system,the optimal tracking control method is used.It is proved that the decoupling control is optimal for a certain performance index.Simulations on a ball mill coal-pulverizing system are conducted.The results show the effectiveness and superiority of the proposed method as compared with the conventional optimal quadratic tracking(LQT)control method.

    I.INTRODUCTION

    THE controlled objects of actual industrial processes are mostly multivariable.One of their important characteristics is the existence of couplings among the variables.That is to say,when one of the input variables of the object changes,many output variables or even all the output variables may change.Due to the existence of couplings among the variables,when the output variable of one control loop is changed by adjusting the controller parameters in the control loop,the output variables of the other control loops are also changed.This results in a degraded control effect,or even invalidity of the whole control system.Decoupling control system is one of the five advanced control systems in multivariable process control[1],whose research is very important.

    Decoupling control methods are divided into open-loop decoupling control and closed-loop decoupling control.The open-loop decoupling control is realized in two steps.First,a decoupling compensator is designed,which transforms a multivariable system to multiple single-variable systems.Then,a controller is designed,which makes these single-variable control systems achieve the desired performance.By combining a decoupling compensator with a controller,the closedloop decoupling control is realized in one step.The coupling effect among the loops is reduced,and simultaneously the performance requirements are also achieved.

    The earliest decoupling control method can be traced back to 1950s,where it was proposed for multivariable linear systems described by an input-output model.The decoupling control problem of multivariable linear systems described by a state space model was first proposed by Morgan in 1964.The sufficient and necessary conditions that a square system described by a state space model could be decoupled were given in[2].The decoupling control problem of nonsquare systems was solved in[3].For multivariable linear systems with unmeasurable states,the output feedback based decoupling control method was proposed in[4].There also exist other classical linear decoupling control methods,such as the inverse Nyquist matrix method[5],the Bristol-Shinskey method[6]and the related analysis method[7].

    By the 1980s,linear multivariable adaptive decoupling control had become an important research field.Linear multivariable adaptive decoupling control methods are divided into open-loop adaptive decoupling control and closed-loop adaptive decoupling control.On the basis of identification,both of them use the conventional decoupling control method to decouple the system[8]-[10].

    Since the 1990s,with the introduction of intelligent methods,nonlinear multivariable adaptive decoupling control has attracted the attention of control scholars and engineers.For a class of discrete-time multivariable systems with strong coupling,strong nonlinearity and uncertainty,the sufficient and necessary conditions that a system could be decoupled in a compact set were given in[11].In[12],the controlled system was linearized at an equilibrium point by using Taylor expansion,and then it was equivalently expressed as a combination of a linear model and a nonlinear higher order term.Based on the equivalent model,an adaptive decoupling control method was proposed by combining one step-ahead optimal weighting decoupling control with neural network feedforward compensation.In[13]and[14],the controlled system was transformed into a linear model with diagonal parameter matrices and a nonlinear term.By combining neural network feedforward compensation respectively with one stepahead optimal weighting adaptive control and generalized predictive adaptive control,two adaptive decoupling control methods were proposed.In the above literatures,the effectiveness of the proposed decoupling control methods are demonstrated only by numerical simulations.The stability and convergence of the closed-loop systems are not provided.To solve this problem,in[15]-[18],four adaptive decoupling control methods based on multiple models and neural networks were proposed by combining multiple model switching respectively with one step-ahead adaptive decoupling control,one step-ahead weighting adaptive decoupling control,adaptive generalized predictive decoupling control,and adaptive proportion integration differentiation(PID)decoupling control.The stability and convergence of the closed-loop systems were proved.In[19],the adaptive decoupling control method combining an open-loop decoupling compensator with neural network approximate compensation was proposed,which can also ensure the stability and convergence of the closed-loop system.For complex industrial processes with multivariable,strong coupling,strong nonlinearity and especially variable dynamic characteristics,two intelligent decoupling control methods were proposed by combining multiple model switching respectively with one step-ahead optimal weighting decoupling control based on neural network feedforward compensation and approximate dynamic decoupling control based on neural network feedforward compensation[20],[21].For nonlinear multivariable systems with unknown structures,an adaptive switching control method driven by virtual unmolded dynamics was proposed in[22].With the development of intelligent control methods,in recent years,by combining intelligent control with inverse systems,the inverse decoupling control methods were proposed in[23]-[27].

    The above methods are designed without considering the performance requirements on the systems.Although they can realize decoupling control of complex industrial processes,they cannot meet the rising performance index.Therefore,if the above decoupling control methods are used,the integrated optimization control of complex industrial processes aimed at saving energy and reducing consumption will be influenced.With the rapid development of science and technology,the performance requirements on many control systems(such as spacecraft,modern industrial equipment,and production process,etc.)become higher and higher.For a control system,it is always hoped that a certain performance index is optimal in some sense.Optimal control is a subject that studies and solves the optimal solution among all possible control schemes,which provides a feasible scheme to realize the optimal performance of a control system.

    This paper proposes an optimal decoupling control method for a class of continuous time linear multivariable systems,by combining open-loop feedforward decoupling control with optimal tracking control.First,by introducing one virtual input vector,the differential equation on state is converted into the differential equation on output,and then the system matrix and input matrix are decomposed into a diagonal matrix and the matrix with zero diagonal elements,such that the coupling terms are separated.Second,by introducing the other virtual input vector,the system is open-loop decoupled by using feedforward and output feedback method.Finally,for the decoupled system,the conventional optimal tracking control method is adopted to realize the tracking of the system to any reference input.By choosing appropriate weighting matrices,the optimal decoupling control method is equivalent to the closed-loop optimal decoupling control method.Simulation results show the effectiveness of the proposed method and the superiority as compared with conventional optimal quadratic tracking(LQT)control method.

    II.PROBLEMDESCRIPTIONS

    Consider a continuous-time linear multivariable timeinvariant system

    where x(t)∈Rnis the system state,u(t)∈Rmis the control input,y(t)∈ Rmis the system output;A ∈ Rn×n,B ∈Rn×m,C ∈Rm×nare constant matrices with CB invertable,{A,B}controllable,{A,C}andobservable,where Q is defined in the sequel.

    The conventional optimal tracking control problem is tofind the optimal control policy u?(t)so as to make the system(1)track a desired reference trajectory yr(t)∈Rnin an optimal manner by minimizing a predefined performance index,especially,

    where e(t)=yr(t)-y(t)is the tracking error,Q=QT≥0 is a nonnegative matrix,and R=RT≥0 is a positive matrix.The standard optimal tracking controller is given as[28]

    where P is obtained by solving the Riccati equation

    and the limiting function gssis given by gss=limT→∞g,with the auxiliary time signal g satisfying

    The optimal output trajectories can be then obtained by computing

    From(5)and(6),the transfer function matrix from yr(t)to y(t)may be non-diagonal,and the change of one reference input yr,i(t),i=1,...,m must lead to the changes of other outputs yj(t),i/=j.In fact,many industrial processes have the coupling characteristics.For industrial processes with weak coupling,distributed control and model predictive control are generally used.However,if an industrial process is strongly coupled,an effective decoupling control method is necessary.

    The purpose of this paper is to derive an optimal decoupling control law,so that the system output y(t)of the closedloop system can track the reference input yr(t)as much as possible,and the influence of the couples among control loops is suppressed to be as small as possible,while the closed-loop system achieves a certain optimal performance.

    III.OPTIMALDECOUPLINGCONTROL

    A.Differential Equation on Output

    To realize input-output decoupling control,we should first convert the differential equation on state into the equation on output.

    From(1),we know

    Define

    where K0∈ Rm×m,G0∈ Rm×n,L0∈ Rm×mare constant matrices,and w(t)∈Rmis the first virtual input vector.By substituting(8)into(7),we have

    Select

    (9)can then be converted into the following equation:

    Equation(11)can be viewed as a generalized system.In the sequel,it will be considered directly,and an optimal decoupling control w?(t)will be designed.

    B.Decoupling Control Scheme

    Since the coupling effect of the ith channel’s input wi(t)on the jth channel’s output yj(t),i/=j can be regarded as measurable disturbance,in the design,it will be eliminated by a feedforward method.The effect of the ith output variable on the jth output variable in the autonomous system w(t)=0 will be eliminated by applying a feedback method.Therefore,we rewrite(11)as

    By introducing the second virtual input vector v(t)∈Rm,we design the following decoupling controller:

    where S1,L are diagonal matrices with corresponding dimensions where S1is invertible,and S2,K are matrices whose diagonal elements are zeros.By left-multiplying(12)using S1and left-multiplying(13)usingwe have

    From(14),to achieve decoupling,S1,S2,K should be chosen to satisfy the following equations:

    Then,(11)is converted to

    C.Optimal Tracking Control

    In the following,for(17),we will design the virtual input v(t)by using the conventional optimal tracking control method.The performance index is

    where e(t)=yr(t)-y(t)is the tracking error,Q=QT≥0 is a nonnegative matrix,and R=RT≥0 is a positive matrix.

    where P is the symmetric positive definite constant matrix which satisfies the following Riccati algebraic equation:

    and gssis given by gss=limT→∞g with the auxiliary time signal g satisfying

    Then,from(13)and(19),the optimal decoupling control law is finally obtained as follows:

    The structure of the optimal decoupling control system is shown in Fig.1.

    where the symmetric positive definite constant matrix P satisfies the following Riccati algebraic equation:

    and gssis given by gss=limT→∞g with the auxiliary time signal g satisfying

    Fig.1.Structure of the optimal decoupling control system.

    D.Performance of the Optimal Decoupling Controller

    The optimal decoupling controller(23)is realized by first decoupling the generalized system(11)and then designing the optimal tracking controller.Therefore,it is actually an openloop decoupling controller.In the following,we will show that the open-loop decoupling controller equals a closed-loop optimal decoupling controller in a sense.

    Theorem 1:For the generalized system(11),the optimal decoupling controller(23),with P satisfying(24)and g(t)satisfying(25),makes the following performance index minimized.

    Proof:The optimal control minimizing the performance index(26)must satisfy the minimum principle;thus,the Hamiltonian function is introduced.

    From the extreme value condition

    the optimal control is obtained as

    Let

    then,we have

    From(31),we know

    By comparing(34)and(35),and making them to hold for any y(t)and yr(t),the matrix P and g(t)must satisfy the following equations:

    Substituting(32)into(29),the optimal control can be obtained as

    Remark 1:Since the optimal decoupling controller(23)minimizing the performance index(26)is derived by using one step,it is also a closed-loop decoupling scheme.

    IV.SIMULATIONS

    To illustrate the effectiveness of the proposed method,in this section,we will apply it to a ball mill coal-pulverizing system.

    As described in[21],ball mill coal-pulverizing systems are important heat-power equipment in power plants.They are used to pulverize raw coal into fine powder of desired temperature and fineness.There are plenty of coal mines in China,but the quality of raw coals varies greatly.Therefore,ball mill coal-pulverizing systems are widely used to grind various raw coal.The flowchart of ball mill coal-pulverizing system is shown in Fig.2,which consists of a hopper,a feeder,a strap transmission system,a ball mill,a coarse powder separator,a fine powder separator and a blast system[21].The raw coal is leaked from the hopper to the feeder,sent into the dryness pipeline by the strap transmission system,and then blended with dryer air.The quantity of dryer air and heat can be regulated by the flow rates of hot air and warm air in the blast system.The mixture of raw coal and dryer air are sent into the ball mill through the dryness pipeline,where it is pulverized to fine powder by knocking and grinding of iron balls when the ball mill rotates.At the same time,the coal powder is dried and brought out of the ball mill by dryer air.Then,it is transferred into the coarse separator,where the coarse powder and fine powder are separated.The unqualified coarse powder is returned into the ball mill for re-grinding,while qualified fine powder is sent into the bunker and then to boiler for burning.

    Fig.2.Flowchart of the ball mill coal-pulverizing system.

    According to the energy and mass equilibriums of ball mill entrances and the mass equilibrium of liquid in the blast pipes,a dynamic model of the ball mill coal-pulverizing system is established as follows[21]:

    where x1=y1is the outlet temperature of the ball mill,which is related to the grinding quality of the coal-pulverizing system;x2=y2is the inlet pressure of the ball mill,which is related to system security;x3=y3is the import and export differential pressure of ball mill,which is connected with the production of ball mill;u1,u2,and u3are respectively the coal feeding rate,the hot air flow and the warm air flow.The meanings and values of other variables and parameters can be found in[29],and they are respectively listed in Table I and Table II.

    From(42),the ball mill coal-pulverizing system is a nonlinear process with strong couplings between each loop.Variations of each control input will cause the changes of all the system outputs.According to the observation on site,the strong coupling property is mainly reflected in following cases:

    1)When the coal feeding rate,u1,increases,more heat of the desiccant will be absorbed into the ball mill.Therefore the outlet temperature of the ball mill,y1,will decrease.Simultaneously,the increase of the coal feeding rate,u1,can also increase the ventilation friction inside of the ball mill,resulting in a decrease in ventilation volume.Consequently,the inlet pressure of the ball mill,y2,decreases.The increase of the coal feeding rate,u1,also makes the mill load inside the ball mill increase,and then leads to the increasing of the differential pressure of the ball mill,y3.

    2)When the hot air flow,u2,increases,the corresponding hot air volume will increase.Then,the outlet temperature of the ball mill,y1,will increase and the inlet pressure and the differential pressure of the ball mill,y2and y3,will decrease.

    3)When the warm air flow,u3,increases,the corresponding warm air volume will increase.Then,the outlet temperature and the inlet pressure of the ball mill,y1and y2,decrease,and the differential pressure of the ball mill,y3,increases.

    Therefore,it is very important to decouple the control of the ball mill coal-pulverizing system.

    TABLE I DEFINITIONS OFPARAMETERS ANDVARIABLES IN COAL-PULVERIZINGSYSTEMMODEL

    TABLE II DATA OFPARAMETERS ANDVARIABLES INCOAL-PULVERIZING SYSTEMMODEL

    According to the requirements of the practical process,the outputs y1(t),y2(t)and y3(t)should be controlled respectively between 60?C-85?C,-0.2kpa--0.6kpa and 0.5kpa-2.0kpa[29].In the simulations,we choose(y1,y2,y3)=(78?C,-0.4kpa,1.2kpa)and(82?C,-0.5kpa,1.7kpa),which lie in the ranges of the outputs,as the equilibrium/operational points.First,the initial values,i.e.,the raw coal temperature tc=15,the warm air temperature tlk=30,and the hot air temperature tr=340 are selected.Then,we linearize(42)respectively at the above two equilibrium/operational points.

    For(y1,y2,y3)=(78?C,-0.4kpa,1.2kpa),we have

    The relative gain matrix is as follows:

    From the RGA matrix,we know that it is reasonable to select the coal feeding rate u1(t)to control the outlet temperature of the ball mill,y1(t),the hot air flow u2(t)to control the inlet pressure of the ball mill,y2(t)and the warm air flow u3(t)to control the differential pressure of the ball mill,y3(t).Since the relative gains of the three channels are 0.6417,2.0054 and 2.6433,respectively,according to the Bristol-Shinskey metrics,there exists serious coupling in the loops.Select the weighting matrices as

    and the reference input as

    Fig.3 is the output tracking curves by using the proposed optimal decoupling control method,and Fig.4 is the corresponding control input curves.From Fig.3,the three output variables can all track their reference curves well.In order to compare with the proposed method,the conventional LQT control method is also used.Fig.5 is the corresponding output tracking curves,and Fig.6 is the control input curves.From Fig.5,we can see that due to the existence of the couplings,the output y1cannot track its reference input at all.

    For(y1,y2,y3)=(82?C,-0.5kpa,1.7kpa),we have

    The relative gain matrix is as follows:

    Fig.3.Tracking results by using the proposed controller.

    Fig.4.Input signals by using the proposed controller.

    Fig.5.Tracking results by using the LQT controller.

    Fig.6.Input signals by using the LQT controller.

    From the RGA matrix,we know that there still exists serious coupling in the loops.Select the same weighting matrices as in the above example and the reference input as below

    Fig.7 is the output tracking curves by using the proposed control method,Fig.8 is the corresponding control input curves,Fig.9 is the output tracking curves by using the conventional LQT control method,and Fig.10 is the corresponding control input curves.From Figs.7 and 9,we can see that the tracking effect produced by using the proposed method is better than that produced by the LQT method.

    Fig.7.Tracking results by using the proposed controller.

    Fig.8.Input signals by using the proposed controller.

    To verify the effectiveness of the proposed method for the ball mill coal-pulverizing system,in the following,we will conduct simulations on the ball mill coal-pulverizing system(42)around a small neighbourhood of the point(y1,y2,y3)=(82?C,-0.5kpa,1.7kpa).

    The weighting matrices are selected as in the above two examples,and the reference input is as

    Fig.9.Tracking results by using the LQT controller.

    Fig.10.Input signals by using the LQT controller.

    Since the nonlinearity is weak around the small neighbourhood of the equilibrium/operational point,the linear decoupling control method can be used to control the nonlinear system.Fig.11 shows the output tracking curves by using the proposed optimal decoupling control method,from which we can see the three output variables can all track their reference curves well.In order to compare with the proposed method,the nonlinear decoupling control method[21]is also used.The sampling time T=0.01 is selected.The parameters of the controller are chosen same as that in[21].Fig.12 is the output tracking curves.From Figs.11 and 12,we can see that the effect produced by the proposed method is not worse than that produced by the nonlinear decoupling control method.

    V.CONCLUSIONS

    In this paper,for a class of linear multivariable systems with strong couplings,an optimal decoupling control method is proposed by combining an open-loop decoupling compensator and an optimal tracking controller.From the design method point of view,this method belongs to the open-loop decoupling domain.However,it is also proved to be equivalent to the closed-loop decoupling control in a sense.Therefore,the method can not only eliminate the coupling effects in the loops,but also can improve the closed-loop performance index,and can realize the tracking of any reference input of the system.Two linear models are obtained by linearizing a ball mill coal-pulverizing system at two equilibium/operational points.Simulations are conducted respectively for the two models.The results show the effectiveness and superiority of the proposed method as compared with the conventional LQT control method.Simulations are also conducted on the ball mill coal-pulverizing system.The results show that around a small neighbourhood of the equilibium/operational point,the effect produced by the proposed linear decoupling control method is not worse than that produced by the nonlinear decoupling control method[21].

    Fig.11. Tracking results by using the optimal decoupling control in the ball mill.

    Fig.12. Tracking results by using the nonlinear decoupling control[21]in the ball mill.

    The proposed optimal decoupling control method is designed for linear systems with completely known dynamics.Although it is also effective for nonlinear systems with weak nonlinearity,it cannot be directly applied to a nonlinear system with strong nonlinearity.In the future,we will study adaptive optimal decoupling control methods for nonlinear systems with strong nonlinearity and unknown dynamics.

    亚洲乱码一区二区免费版| 中出人妻视频一区二区| 俺也久久电影网| 久久久色成人| 少妇裸体淫交视频免费看高清| 成人午夜高清在线视频| 51午夜福利影视在线观看| 亚洲欧美日韩卡通动漫| 一级作爱视频免费观看| 色综合欧美亚洲国产小说| 亚洲天堂国产精品一区在线| 免费人成在线观看视频色| 国产伦一二天堂av在线观看| 全区人妻精品视频| 亚洲一区二区三区色噜噜| 国产精品人妻久久久久久| 国产精品伦人一区二区| 成人av在线播放网站| 可以在线观看的亚洲视频| 日本 欧美在线| 90打野战视频偷拍视频| 久久亚洲精品不卡| 亚洲 国产 在线| 中文亚洲av片在线观看爽| 日韩欧美 国产精品| 亚洲真实伦在线观看| 最好的美女福利视频网| 精品人妻视频免费看| 国产精品,欧美在线| АⅤ资源中文在线天堂| av国产免费在线观看| 美女大奶头视频| 18禁黄网站禁片免费观看直播| 精品久久久久久久久亚洲 | xxxwww97欧美| 久久九九热精品免费| 日本a在线网址| 狠狠狠狠99中文字幕| 亚洲七黄色美女视频| 日日干狠狠操夜夜爽| 色哟哟·www| 少妇的逼好多水| 18禁在线播放成人免费| 精品免费久久久久久久清纯| 亚洲av第一区精品v没综合| 制服丝袜大香蕉在线| 麻豆国产97在线/欧美| 久久久久久大精品| 亚洲精品亚洲一区二区| 熟女电影av网| 小说图片视频综合网站| av福利片在线观看| 激情在线观看视频在线高清| 亚洲av二区三区四区| 女同久久另类99精品国产91| 神马国产精品三级电影在线观看| 午夜免费成人在线视频| 人人妻人人澡欧美一区二区| 国产真实伦视频高清在线观看 | 日韩欧美精品v在线| 国产成人福利小说| 一边摸一边抽搐一进一小说| 欧美成狂野欧美在线观看| 欧美zozozo另类| 亚洲欧美清纯卡通| 精品欧美国产一区二区三| 能在线免费观看的黄片| 中亚洲国语对白在线视频| 噜噜噜噜噜久久久久久91| 国产精品精品国产色婷婷| 哪里可以看免费的av片| 亚洲国产欧洲综合997久久,| 99在线人妻在线中文字幕| 我要搜黄色片| 欧美在线一区亚洲| 国产精品,欧美在线| 村上凉子中文字幕在线| 国产精品久久久久久亚洲av鲁大| 一进一出抽搐gif免费好疼| 国产乱人视频| 又粗又爽又猛毛片免费看| 不卡一级毛片| 欧美区成人在线视频| 一个人看视频在线观看www免费| 在线播放无遮挡| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩高清在线视频| 淫妇啪啪啪对白视频| 国内久久婷婷六月综合欲色啪| 级片在线观看| 国产色婷婷99| 男女那种视频在线观看| 国产精品亚洲美女久久久| 久久精品国产亚洲av涩爱 | 久99久视频精品免费| 性插视频无遮挡在线免费观看| 国产精品日韩av在线免费观看| 高清日韩中文字幕在线| 国产真实伦视频高清在线观看 | 999久久久精品免费观看国产| 日本成人三级电影网站| 欧美乱色亚洲激情| 婷婷精品国产亚洲av| h日本视频在线播放| 亚洲国产精品合色在线| 精品一区二区三区视频在线观看免费| 看黄色毛片网站| 尤物成人国产欧美一区二区三区| 老司机福利观看| 国产探花在线观看一区二区| 欧美+日韩+精品| 国产精品亚洲一级av第二区| 亚洲精品一卡2卡三卡4卡5卡| 欧美不卡视频在线免费观看| 一级黄色大片毛片| 日韩精品青青久久久久久| 欧美在线黄色| eeuss影院久久| 亚洲国产高清在线一区二区三| 欧美精品啪啪一区二区三区| 在线播放无遮挡| 老熟妇乱子伦视频在线观看| 日韩欧美 国产精品| 国产真实伦视频高清在线观看 | 老熟妇乱子伦视频在线观看| 99久久九九国产精品国产免费| 国产免费男女视频| 欧美乱色亚洲激情| 久久久久国产精品人妻aⅴ院| 九九在线视频观看精品| 久久人人精品亚洲av| 欧美午夜高清在线| 国产精品一区二区三区四区久久| 黄色视频,在线免费观看| 露出奶头的视频| 90打野战视频偷拍视频| 在线观看美女被高潮喷水网站 | 美女cb高潮喷水在线观看| 在线看三级毛片| 欧美极品一区二区三区四区| 淫妇啪啪啪对白视频| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 亚洲人成网站高清观看| 亚洲av成人精品一区久久| 脱女人内裤的视频| 中文字幕av在线有码专区| 国产精品一区二区三区四区免费观看 | 午夜日韩欧美国产| 国产在线精品亚洲第一网站| 亚洲在线观看片| 精品国内亚洲2022精品成人| 99精品在免费线老司机午夜| 看片在线看免费视频| netflix在线观看网站| 日韩国内少妇激情av| 亚洲中文字幕日韩| 国产精品亚洲一级av第二区| 2021天堂中文幕一二区在线观| 国内少妇人妻偷人精品xxx网站| 麻豆久久精品国产亚洲av| 999久久久精品免费观看国产| 国产极品精品免费视频能看的| 欧美三级亚洲精品| 动漫黄色视频在线观看| 永久网站在线| 国产高潮美女av| 欧美+亚洲+日韩+国产| 97碰自拍视频| 日韩中字成人| 他把我摸到了高潮在线观看| 九九热线精品视视频播放| 美女xxoo啪啪120秒动态图 | 亚洲中文日韩欧美视频| 国产伦精品一区二区三区四那| 国产欧美日韩精品一区二区| 91狼人影院| 国内精品美女久久久久久| 一区福利在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区免费毛片| 给我免费播放毛片高清在线观看| 男人和女人高潮做爰伦理| 精品午夜福利视频在线观看一区| 精品国内亚洲2022精品成人| 小说图片视频综合网站| 身体一侧抽搐| 久久久久久九九精品二区国产| 亚洲精品在线观看二区| 在线观看一区二区三区| 99久久精品热视频| 99在线人妻在线中文字幕| 69人妻影院| 国产亚洲欧美98| 成人欧美大片| av天堂中文字幕网| 久久久久久九九精品二区国产| 一级a爱片免费观看的视频| 国产伦精品一区二区三区视频9| 亚洲18禁久久av| 18禁在线播放成人免费| 精品久久久久久久末码| 在线免费观看不下载黄p国产 | 欧美成人免费av一区二区三区| 丁香六月欧美| 人妻制服诱惑在线中文字幕| 亚洲经典国产精华液单 | 亚洲欧美日韩高清专用| 成年免费大片在线观看| www.熟女人妻精品国产| 一个人看视频在线观看www免费| 国产三级中文精品| www.999成人在线观看| 一个人观看的视频www高清免费观看| 国产精华一区二区三区| 久久久色成人| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 亚洲人成网站高清观看| 亚洲色图av天堂| 成人三级黄色视频| 亚洲综合色惰| 成人特级av手机在线观看| 亚洲七黄色美女视频| 亚洲成av人片免费观看| 很黄的视频免费| 丰满人妻熟妇乱又伦精品不卡| 成人一区二区视频在线观看| 黄色一级大片看看| 欧美区成人在线视频| 亚洲专区中文字幕在线| 国产91精品成人一区二区三区| 天堂√8在线中文| 我要看日韩黄色一级片| 欧美黑人巨大hd| 午夜精品久久久久久毛片777| 亚洲人与动物交配视频| 极品教师在线视频| 国产色爽女视频免费观看| 9191精品国产免费久久| .国产精品久久| 免费在线观看影片大全网站| 自拍偷自拍亚洲精品老妇| 免费av毛片视频| 国产一区二区三区在线臀色熟女| 久久亚洲真实| 久久午夜亚洲精品久久| 最新在线观看一区二区三区| 午夜久久久久精精品| 免费av观看视频| h日本视频在线播放| av国产免费在线观看| 久久精品影院6| 嫁个100分男人电影在线观看| 亚洲男人的天堂狠狠| 日韩欧美国产在线观看| 久久久精品大字幕| 黄色配什么色好看| 日本黄色视频三级网站网址| 久久99热这里只有精品18| 69人妻影院| 亚洲第一欧美日韩一区二区三区| 国产 一区 欧美 日韩| 欧美日本视频| 婷婷精品国产亚洲av| av天堂在线播放| 亚洲av电影在线进入| 能在线免费观看的黄片| 精品久久久久久久久久久久久| 99精品在免费线老司机午夜| 亚洲va日本ⅴa欧美va伊人久久| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 欧美激情在线99| 成人鲁丝片一二三区免费| 91九色精品人成在线观看| 在线观看av片永久免费下载| 国产三级在线视频| 欧美精品国产亚洲| 一个人观看的视频www高清免费观看| 国产v大片淫在线免费观看| 国产在线男女| 精品不卡国产一区二区三区| 亚洲激情在线av| 美女cb高潮喷水在线观看| 九色国产91popny在线| 欧美最新免费一区二区三区 | 2021天堂中文幕一二区在线观| 精品久久国产蜜桃| 嫁个100分男人电影在线观看| 特大巨黑吊av在线直播| 欧美绝顶高潮抽搐喷水| 成人三级黄色视频| 亚洲av第一区精品v没综合| 99久国产av精品| 欧美日本视频| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 69人妻影院| 亚洲第一欧美日韩一区二区三区| 窝窝影院91人妻| 一级黄色大片毛片| 精品久久久久久,| 性色av乱码一区二区三区2| 少妇人妻精品综合一区二区 | 综合色av麻豆| 最近在线观看免费完整版| 成熟少妇高潮喷水视频| 欧美日本视频| 又粗又爽又猛毛片免费看| 波多野结衣高清作品| 嫁个100分男人电影在线观看| 99久国产av精品| 99国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 免费观看人在逋| 国产麻豆成人av免费视频| 久久国产精品人妻蜜桃| 黄色配什么色好看| 午夜影院日韩av| 精品久久久久久久久av| 97热精品久久久久久| 亚洲av不卡在线观看| 国产精品不卡视频一区二区 | 丝袜美腿在线中文| 亚洲人成伊人成综合网2020| av黄色大香蕉| 亚洲一区二区三区色噜噜| 国产成人福利小说| 国产日本99.免费观看| 免费人成在线观看视频色| 国内精品一区二区在线观看| av在线观看视频网站免费| 免费电影在线观看免费观看| 禁无遮挡网站| 国产在线男女| 美女大奶头视频| 男女视频在线观看网站免费| 亚洲第一电影网av| 黄色日韩在线| 最新中文字幕久久久久| 欧美zozozo另类| 级片在线观看| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 久久国产精品影院| 色噜噜av男人的天堂激情| 一夜夜www| 国产久久久一区二区三区| 亚洲电影在线观看av| 久久久久久大精品| 99久国产av精品| 亚洲精品在线美女| 亚洲内射少妇av| 熟女人妻精品中文字幕| 高潮久久久久久久久久久不卡| 99久久久亚洲精品蜜臀av| 少妇的逼好多水| xxxwww97欧美| 国产亚洲精品av在线| 国产三级在线视频| 欧美成人a在线观看| 亚洲欧美日韩高清在线视频| 深夜精品福利| 69人妻影院| 极品教师在线视频| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 欧美色视频一区免费| av专区在线播放| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 12—13女人毛片做爰片一| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 成年免费大片在线观看| 在线观看66精品国产| 国产精品女同一区二区软件 | 69av精品久久久久久| 亚洲avbb在线观看| 亚洲国产高清在线一区二区三| 久久精品影院6| 亚洲一区高清亚洲精品| 在线国产一区二区在线| 亚洲美女黄片视频| 99国产精品一区二区蜜桃av| 久久精品国产亚洲av天美| 国产视频一区二区在线看| 亚洲国产欧洲综合997久久,| 能在线免费观看的黄片| 国产午夜精品论理片| 最新中文字幕久久久久| 亚洲五月婷婷丁香| 成人精品一区二区免费| 午夜福利18| 中亚洲国语对白在线视频| 国产欧美日韩精品一区二区| 中文字幕人成人乱码亚洲影| 天天躁日日操中文字幕| 国产精品一区二区免费欧美| 亚洲成人久久性| 舔av片在线| 亚洲一区高清亚洲精品| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 日日夜夜操网爽| av中文乱码字幕在线| 岛国在线免费视频观看| 在线播放国产精品三级| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 久久99热6这里只有精品| 黄色一级大片看看| 美女黄网站色视频| 久99久视频精品免费| 91狼人影院| 久久这里只有精品中国| 亚洲成av人片免费观看| 在线国产一区二区在线| av国产免费在线观看| www.www免费av| 脱女人内裤的视频| 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 身体一侧抽搐| 亚洲狠狠婷婷综合久久图片| 91麻豆av在线| 一区二区三区激情视频| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 九九在线视频观看精品| 国产黄a三级三级三级人| 国产视频内射| 在线天堂最新版资源| 欧美性猛交黑人性爽| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在 | 午夜两性在线视频| 成年女人永久免费观看视频| 又爽又黄无遮挡网站| 九九在线视频观看精品| 亚洲无线在线观看| 人妻久久中文字幕网| 国产免费一级a男人的天堂| 亚洲黑人精品在线| 免费av观看视频| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| ponron亚洲| 女人十人毛片免费观看3o分钟| 国产精品一区二区免费欧美| 成人三级黄色视频| 简卡轻食公司| 在线a可以看的网站| 性色av乱码一区二区三区2| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 日韩有码中文字幕| 又黄又爽又免费观看的视频| 国产真实伦视频高清在线观看 | av视频在线观看入口| 中文字幕高清在线视频| 88av欧美| 欧美国产日韩亚洲一区| 国产av在哪里看| 男人的好看免费观看在线视频| 国产亚洲精品av在线| 深夜精品福利| 丰满人妻熟妇乱又伦精品不卡| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 国产免费男女视频| 麻豆国产97在线/欧美| 精品人妻一区二区三区麻豆 | 中亚洲国语对白在线视频| 天堂av国产一区二区熟女人妻| 色综合亚洲欧美另类图片| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 桃色一区二区三区在线观看| 久久热精品热| 精品熟女少妇八av免费久了| 国产老妇女一区| 淫秽高清视频在线观看| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 免费电影在线观看免费观看| 性欧美人与动物交配| 一进一出抽搐gif免费好疼| 18美女黄网站色大片免费观看| 91狼人影院| 少妇的逼好多水| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 亚洲av一区综合| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 最新在线观看一区二区三区| 亚洲成人久久性| 俺也久久电影网| 欧美精品啪啪一区二区三区| 国产亚洲欧美在线一区二区| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 精品熟女少妇八av免费久了| 亚洲av二区三区四区| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 搡女人真爽免费视频火全软件 | 久久久久久久亚洲中文字幕 | 成年免费大片在线观看| 亚洲成人久久性| 欧美xxxx黑人xx丫x性爽| 内射极品少妇av片p| 久久久久久久午夜电影| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 日本撒尿小便嘘嘘汇集6| 1000部很黄的大片| www.www免费av| 亚洲av五月六月丁香网| 一级毛片久久久久久久久女| 日日夜夜操网爽| 亚洲,欧美精品.| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 国产欧美日韩一区二区精品| 在线观看66精品国产| 欧美激情在线99| 欧美激情久久久久久爽电影| 免费大片18禁| 欧美高清成人免费视频www| 90打野战视频偷拍视频| 看黄色毛片网站| 丰满乱子伦码专区| a级一级毛片免费在线观看| 床上黄色一级片| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3| 欧美bdsm另类| 亚洲精品456在线播放app | 欧美+亚洲+日韩+国产| 国产成人aa在线观看| 亚洲 国产 在线| 国产中年淑女户外野战色| 免费看a级黄色片| 桃色一区二区三区在线观看| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 久久久久久九九精品二区国产| 亚洲最大成人手机在线| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 在线观看免费视频日本深夜| 嫁个100分男人电影在线观看| 悠悠久久av| 一级黄片播放器| 少妇人妻一区二区三区视频| 在线看三级毛片| 日韩成人在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 午夜影院日韩av| 欧美中文日本在线观看视频| 久久国产乱子免费精品| 欧美黄色淫秽网站| 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 欧美色视频一区免费| 欧美日韩黄片免| 毛片女人毛片| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| 亚洲一区高清亚洲精品| 美女大奶头视频| 精品久久久久久成人av| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 我的女老师完整版在线观看| 真实男女啪啪啪动态图| 欧美黄色片欧美黄色片| 真实男女啪啪啪动态图| 长腿黑丝高跟| 成人欧美大片| 久久久精品欧美日韩精品| netflix在线观看网站| 天美传媒精品一区二区| 久久久久国产精品人妻aⅴ院| 久久6这里有精品| 变态另类成人亚洲欧美熟女| 美女cb高潮喷水在线观看| 免费在线观看影片大全网站| 欧美xxxx性猛交bbbb| 国产三级在线视频| 特大巨黑吊av在线直播| 久久婷婷人人爽人人干人人爱| av黄色大香蕉| 天堂动漫精品|