• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mathematical Study of A Memory Induced Biochemical System

    2018-12-24 01:09:52MithunKumarGhoshTridipSardarXianbingCaoandPritiKumarRoy
    IEEE/CAA Journal of Automatica Sinica 2018年6期

    Mithun Kumar Ghosh,Tridip Sardar,Xianbing Cao,and Priti Kumar Roy

    Abstract—In this work,to study the effect of memory on a bi-substrate enzyme kinetic reaction,we have introduced an approach to fractionalize the system,considering it as a threecompartmental model.Solutions of the fractionalized system are compared with the corresponding integer-order model.The equilibrium points of the fractionalized system are derived analytically.Their stability properties are discussed from numerical aspect.We determine the changes of the substances due to the changes of “memory effect”.The effect is discussed critically from the perspective of product formation.We have also analyzed the memory induced system with a control measure in view of optimizing the product.Our numerical result reveals that the solutions of the fractionalized system,when it is free from memory,are in good agreement with the integer-order system.It is noticed that the effect of memory influences the reaction in the forward direction and assists in yielding the product more quickly.However,an extensive use of memory makes the system slower,but introduction of a control input makes the reaction faster.It is possible to overcome the slowness of the reaction due to the undue effect of memory by appropriate use of a control measure.

    I.INTRODUCTION

    ENZYMES are biological catalysts that are necessary in almost every biochemical reaction[1].These enzymes are proteins synthesized by genes[2].The main function of an enzyme is to catalyze the making and breaking of chemical bonds depending on an accurate sequence of amino acids and its complicated tertiary structure.The catalytic ability of enzymes increases the rate of a reaction.The enzyme is not used up in the reactions and,it does not change the equilibria of the processes[3].This raises a new dimension of thinking towards various fields viz.physics[4],chemistry[5],biology[6],ecology[7],epidemiology[8],pharmacokinetics[9]etc.A lot of research has been done about enzymatic processes of different chemical and biochemical transformations.Enzyme kinetics is the study of rates of these reactions to optimize the velocity of reactions,rate of intermediate complexes and products.

    For a better understanding of the reaction kinetics,many authors have implemented different techniques to obtain approximate analytical solutions of the enzymatic systems[10]-[13].Modern day literature related to enzyme activity in enzymatic processes consist of mathematical approaches to study system dynamics for optimization and quantification of product[14].Single substrate or double substrate biochemical reactions make the approaches more interesting,of which the latter is more reasonable and important[15]-[17].

    Westerlund stated in[18]that every matter has memory.Although it is debatable,a large number of theoretical physicists considered the memory function as an embedded characteristic of molecular properties,which is discussed in various domains of science and engineering branches[19]-[21].Toledo-Hernandez et al.mentioned in[22]that biochemical reactions involve the participation of living organisms viz.enzymes.The dynamic behavior of living microorganisms not only depends on their current state conditions(e.g.,substrate concentration,medium condition,etc.),but also on their previous states.They have explained this phenomena as the dynamics of the reactions that involve memory effects.Now,it is to be noted that integer-order(IO)derivatives consider only local properties(at time t)while fractional derivatives take into account the history of a process i.e.,their previous states[21].An enzymatic reaction system with IO derivatives is in general memory-less[20],[23]and hence it is unable to reflect the effect of memory.The memory effect can be incorporated in a system by introducing fractional-order(α∈(0,1])derivatives as an index of memory[24]i.e.,α→0 indicates that the system has an ideal memory and α → 1 represents that the system is free from memory.

    The conception of fractional calculus is first projected by Leibniz[25]in 1695.A fractional-order differential equation is considered as an alternative model to special nonlinear differential equations[26],[27].In enzyme kinetics,Abdullah[28]employed FDEs in 2011 for modeling the Michaelis-Menten reaction in a 2-d region containing obstacles.In 2013,Alawneh[29]used the multistep generalized differential transform method to solve a time-fractional enzyme kinetics.They investigated dynamical behavior of various complex materials and systems for the benefits of more degrees of freedom and introduction of memory in the model.The drawback of both the studies was the way of introduction of memory.Both of them fractionalized the systems only by changing the orderof the ordinary derivatives on the left-hand side of the ODEs.However,fractionalization of a system of two or more ODEs is not possible without violating mass balance and the system may suffer from unit inconsistencies[21],[30].The problem is not limited to the units.The above difficulty can be removed by considering a common order of all the FDEs of the system,but it is a very particular case and makes its application restricted.Here,we present a more accurate model of a bisubstrate enzymatic reaction,where dynamics are influenced by memory.

    In this article,we have introduced fractionalization of a twosubstrate enzymatic reaction to study the effect of memory on it.Nonlinear FDEs cannot,in general,be solved analytically[27],but can be solved by numerical techniques[31].The numerical solutions of the system have been studied here and compared with the integer-order system.We have also observed the dynamics of the different substances of the system by varying the order of the fractional derivatives(which signifies a measure of memory effect in a system[24]).We formulate a control based mathematical model involving the memory effect to conquer the negative effect of the extensive use of memory.

    We have organized the rest of the paper as follows.In Section II,we formulate the model of a bi-substrate enzymatic reaction involving the memory effect.Some basic theoretical properties,and the existence and stability of equilibrium points are studied in Section III.In Section IV,a control theoretic approach is introduced towards the fractional-order model.The numerical results are illustrated in Section V.Finally,we have completed our article with a discussion and conclusion of the study in Section VI.

    II.THEFRACTIONAL-ORDERMODEL

    The schematic diagram of a two-substrate enzyme kinetic reaction,as described by Roy et al.[15],is given by

    where S1,S2are substrates,E is the enzyme,C1i.e.,ES1and C2i.e.,ES1S2are intermediate complexes and P is the product.k1,k2are the rate constants of formation of the complexes C1and C2respectively,and k3is the rate of product formation.The rates of dissociation of C1and C2are k-1and k-2respectively.

    Let us denote the concentrations[S1],[S2],[E],[C1],[C2]and[P]by s1,s2,e,c1,c2and p respectively.From the law of mass action[10],the above enzymatic reaction(1)can be described by the following set of differential equations:

    with the initial conditions

    From system(2),we have the following relations:

    Using the initial conditions(3),from(4),we have

    With the help of the relations(5),system(2)can be reduced to the following three dimensional model consisting of substrates s1,s2and complex c2as

    with initial conditions,

    A.Fractionalization of the System(6)

    The schematic diagram(1)can be considered as a threecompartmental model(as shown in Fig.1)[30].The initial stage of the reaction,where substrate S1is reacting with enzyme E to form the complex ES1,is termed as Compartment 1.Compartment 2 describes the intermediate stage where substrate S2is combining with ES1to form ES1S2complex.Compartment 3 consists of the yielding of ES1S2,which may either convert to the product or decompose back to the previous stage of reaction.Here,the mass flux k-2c2is transferred from Compartment 3 to 2(Fig.1)and is common between the second and third equations of(6).We can fractionalize the system(6)as given below[30],[31]:

    Fig.1.Three-compartment model corresponding to the schematic diagram(1)of a bi-substrate enzymatic reaction.Rectangular boxes containing E+S1,ES1+S2and ES1S2represent Compartments 1,2 and 3 respectively.E(0),S1(0)and S2(0)are the respective initial values of E,S1and S2.k1,k-1,k2and k-2are the rate at which the mass fluxes are transferred from the source compartment to the targeted one as directed,where k3is the rate of elimination of product P and enzyme E from Compartment 3.

    The unit on left-hand side of all the sub-equations of system(8)is Hour-1.Mol/l,the unit of the substances,is nothing but a number.The unit on right-hand side of the first sub-equation of(8)is also Hour-1.Now,the unit ofis Hour-αand that ofi.e.,ofis Hourα-1.Thus,the unit of the termand consequently,the righthand side of both the second and third sub-equations of(8)is Hour-1.Hence,units of all of the sub-equations of(8)remain consistent under the fractionalization process we have considered.

    In order to use standard initial conditions,the Riemann-Lioville derivatives must be re-defined as Caputo fractional derivatives[22].The relation between RL and Caputo’s derivatives is given by the following equation:

    The system(8)using Caputo derivative can be expressed as follows:

    where

    Therefore,system(10)becomes

    III.THEORETICALSTUDY

    In this section,we have determined the equilibrium points of model(11)and discussed their stability from numerical point of view.

    A.Existence of Equilibria and Stability

    It is not possible to understand the stability of the equilibrium points of the system(11)directly because the fractional derivative does not satisfy Leibniz rule[35].We apply the following transformation:

    Using the above transformation(12),system(11)is thus equivalent to the following system:

    It is sufficient to study the stability properties of system(13).

    System(13)has the equilibrium points(0,0,0,0,s20-s10,0)for δ=s20-s10>0 and(0,0,0,s?1,0,0)for δ≤0 whereis given by the following equation:

    where δ=s20-s10.

    Since α is real,it can also be an irrational number.However,there is no existing method for studying such a system with an irrational order of fractional derivatives.Therefore,we assume that α=is rational,where N>M>0 and gcd(M,N)=1.

    Therefore,the characteristic equation of the matrixis given by,

    where “△”and “diag”represent the determinant and the diagonal matrix respectively[36].

    Expanding the characteristic equation(16),we have

    where

    For α=1,from(17),we have

    where

    Equation(18)is same as the characteristic equation of the integer-order system(6)for the equilibrium point(0,δ,0).

    Proceeding as above,we have the characteristic equation ofas follows:

    where

    Arguments of the roots of the first factor of(19)are of the form,k=0,1,2,...,N-1 and hencefor k=0,1,2,...,N-1.

    For α=1,we have,from(19)

    which is same as the characteristic equation of the integerorder system(6)for the equilibrium point(,0,0).Hereis defined exactly as in(14).

    IV.A CONTROLINDUCEDMODEL

    To determine the effect of memory towards the system,we introduce control parameter u(t)into the model(11).Our aim is to get an optimum amount of the product as quick as possible.The control input u(t)is used to reduce the rate of reverse reaction at the second stage satisfying 0≤u(t)≤1.u(t)=1 and 0 represent maximum and minimum use of the control measure respectively.With these assumptions,model(11)becomes:

    where s1(0)=s10,s2(0)=s20and c2(0)=0.

    Here the control measure basically stands for temperature,pressure,concentrations of the substances[7],[14]etc..We study the effect of the control input on the system(22)from numerical point of view.

    V.NUMERICALSIMULATION

    In this section,dynamics of reaction kinetics have been analyzed with the help of numerical methods.There are various methods to solve a system of fractional-order differential equations.We have used the numerical scheme given in[31]and solved our system of equations using the Matlab subroutine“l(fā)sqnonlin”and called this method as NS-lsq.Here,we have observed the solutions of the fractional-order system for α =1 i.e.,when the system is free from the “memory effect”and compared them with the integer-order system.The stability region of equilibrium points of the system have also been studied numerically.We have compared the concentration of the substances,particularly the product,for various values of α.Consequently,we determine how the rate of formation of the substances is influenced by the “memory effect”of the system.Here the parameter values are taken from[37]-[39].The units and recommended values of the kinetic parameters used for numerical simulation are as given in Table I.

    TABLE I VALUES OFPARAMETERSUSED INNUMERICALCALCULATION

    Fig.2.Concentration profiles of the substances for integer-order system(6)(dashed line)and the fractional-order system(13)for α=1(circle).The parameter values are k1=5 M-1h-1,k-1=1 h-1,k2=5 M-1h-1,k-2=1 h-1,k3=5 h-1and the initial values are s10=5 M,s20=5 M,e0=4.5 M where M stands for mol/l.

    A.Comparison of the Substance Profiles Obtained From the Fractional System for α=1 and From the Integer-order System

    Fig.2 represents the behavioral pattern of the substances for the integer-order(IO)model(6)and the fractional-order(FO)model(13)for α=1 simultaneously.The solutions obtained from both the systems are in good agreement with each other.Concentration of the two substrates(s1and s2)decreases with the progression of the reaction.Consumption of s1is relatively quicker than s2due to faster reaction between enzyme and the primary substrate.Initially,the concentration of the enzyme decreases due to the formation of enzyme-substrate complexes c1and c2.It is recovered as the reaction progresses.Concentration of c1increases gradually from its initial value and it decreases with time,as it binds with s2while forming the second complex.Moreover,the concentration of c2increases as soon as the first complex is formed,and then is decreased as time progresses due to its transformation to the product.Fig.2 displays continuous formation of the product with time until it becomes steady.

    B.Stability Region of the Equilibrium Points

    The stability regions of the equilibrium points of model system(13)are studied numerically with the help of Theorem 1 of Sardar et al.[31]for reasonable values of the model parameters,where α∈(0,1).We have observed that both equilibrium points are stable for such parameter values,and differentiating only in the time allows it to reach the steady state.Fig.3 represents two stability regions corresponding to the equilibrium pointsandof the system(13).

    Fig.3.Stability regions of the equilibrium points(left panel)and (right panel)with respect to α and k-2.Other parameter values corresponding to E?1are taken as k1=5 M-1h-1,k-1=1 h-1,k2=4 M-1h-1,k3=5 h-1,e0=2 M,s10=5 M,s20=6 M and for E?2as k1=5 M-1h-1,k-1=1 h-1,k2=4 M-1h-1,k3=5 h-1,e0=1 M,s10=6 M,s20=5 M.

    C.Comparison Among the Concentration Profiles for Different Values of α

    We have compared the dynamic profiles of the substances obtained by decreasing α values gradually to 1 and 0.7.It is to be noted that the solutions of(13)for α=1 correspond to the ODE system(6).Fig.4 displays the dynamic profiles of the substances obtained from the IO system(α=1)and the FO system(α=0.7).

    As the value of α reduces to 0.7,the concentrations of both the substrates(s1and s2)decrease gradually.It is observed that with and without memory operator has no significant changes in the first substrate.This may be due to the fact that we do not consider memory in the first backward reaction step(see Fig.1).The consumption of the second substrate is faster in comparison to the integer-order system.The profiles of the enzyme concentration show a faster recovery for the lower value of α.Variations in concentration of the first complex(c1)is observed under varying α values.It is found that,the complex concentration c1is lower for α =0.7 than for α =1.It implies that for the lesser value of α,there exists a lower accumulation of c1due to its quicker conversion to the second complex by binding with the second substrate.A relatively faster accumulation of the concentration of second complex(c2)is observed for the smaller value of α.This indicates the possibility of higher conversion of it to the product.Yielding of product is relatively faster for a lower value of α and consequently,its concentration reaches the steady state more quickly.The effect of memory assists in comparatively quickeraccumulation of c2and consequently,a rapid formation of the product.

    Fig.4.Concentration profiles of the substances for the fractional-order system(13)for α = 1(solid line)and 0.7(dashed line)where the parameter values are k1=5 M-1h-1,k-1=3 h-1,k2=6 M-1h-1,k-2=3 h-1,k3=5 h-1and the initial values are s10=5 M,s20=5 M,e0=4.5 M.

    To study the effect of changes of the time taken for formation of the product due to the changes in α values,we decrease gradually the values of α as 1,0.7 and 0.25.Fig.5 represents the dynamic profiles of the product(p)for the aforesaid α values.Concentrations of the product are observed as 4.771mol/l,4.948mol/l and 4.927mol/l for α=1,0.7 and 0.25 respectively.It is to be noted that as the α values decrease from 1 to 0.7,the formation of product becomes relatively faster than the classic case.However,it is also to be noted that,if the values of α decreased again,the time taken for the formation of product is relatively greater(Fig.5)and consequently,the system slows down.

    D.Comparison Among the Concentration Profiles for Different Values of u(t)

    Here,we investigate the effect due to the changes of control parameter u(t)to the control induced FO model(22).Fig.6 represents the variation in the substances for u(t)=0,0.4 and 0.9.It is observed that the concentrations of both the substrates(s1and s2)are decreasing more quickly for higher values of the control parameter.Accumulation of the first complex concentration(c1)is lower for upper values of u(t)due to its fast conversion into the second complex.Higher values of the control input corresponds to a more accumulation of c2which ultimately leads to fast formation of the product(p).

    We vary the values of the control parameter as 0 and 0.6 to rise above the negative effect of extensive use of memory.Fig.7 represents the concentration profiles of the product for the above values of u(t).The rest of the parameter values are taken exactly as in Fig.5 with α=0.25.Concentration of the product(p)for u(t)=0 is observed as 4.927mol/l,which is decreasing from the value 4.948mol/l for α=0.7(see Fig.5).While,in Fig.7,concentration of the product for u(t)=0.6 is noted as 4.973mol/l.Thus,with proper control measures,it is possible to overcome the above mentioned negative effect.

    Fig.5.Concentration profiles of the product p of system(13)for α=1,0.7 and 0.25.Other parameter values are taken as k1=7 M-1h-1,k-1=0.1 h-1,k2=13 M-1h-1,k-2=3 h-1,k3=12 h-1,e0=4.5 M,s10=5 M,s20=5 M.

    Fig.6.Concentration profiles of the substances of(22)for u(t)=0,0.4 and 0.9.Other parameter values are taken as k1=5 M-1h-1,k-1=2 h-1,k2=5 M-1h-1,k-2=2 h-1,k3=5 h-1,e0=4.5 M,s10=5 M,s20=5 M and α=0.7.

    VI.DISCUSSION ANDCONCLUSION

    In this study,we have presented an approach of fractionalizing a bi-substrate enzyme kinetic reaction.The fractionalorder system is solved numerically,as the system is unlikely to have analytical solutions.Our numerical results reveal that the solutions of the fractional-order system for α=1,and the solutions of the corresponding integer-order system are overlapping.Benefits of the fractional-order model are observed from the solutions,mainly in the formation of the product.

    Fig.7.Concentration profiles of the product p of system(22)for u(t)=0 and 0.6.Other parameter values are taken as k1=7 M-1h-1,k-1=0.1 h-1,k2=13 M-1h-1,k-2=3 h-1,k3=12 h-1,e0=4.5 M,s10=5 M,s20=5 M and α=0.25.

    In Section II,we have calculated the equilibrium points of the FO system and discussed their stability regions.Our study shows that,similar to the integer-order system,equilibrium points remain stable for a fractional-order system with a realistic range of parameters.

    We have studied the changes of the concentration profiles of the substances due to the changes in α values(α =1 and 0.7).Lower values of α signifies a faster reaction up to certain threshold values.

    We have focused on the changes of concentration of the product due to the change in α values(1,0.7 and 0.25).The system is highly sensitive to the α values.Formation of the product is perceived relatively faster due to “memory effect.”However,extensive effect of memory makes the system slower.The results of our study can predict system dynamics with respect to optimization and quantification of the product.

    The dynamical behavior of the substances is observed by varying the control input.Presence of the control parameter corresponds to a quicker reaction.The negative effect of the extensive use of memory can be recovered by proper use of a control measure.

    The model can be extended by considering memory in both the backward reaction steps.One can consider the mass k-1c1,which is transferred from Compartment 2 to 1 similar to the way mass k-2c2is transferred from Compartment 3 to 2(see Fig.1).In this context,with the help of relations(5),system(2)can be transformed to a three dimensional model consisting of the substrate s1and the complexes c1,c2.Proceeding as in Section II,one can fractionalize the model.The fractionalized model would consist of termsandof different orders without violating mass balance.Hence in this study,we may summarily conclude that the presence of the mixing parameter may show complex dynamics.

    亚洲黑人精品在线| 欧美一区二区国产精品久久精品| 日韩欧美免费精品| 日韩高清综合在线| 欧美极品一区二区三区四区| 高潮久久久久久久久久久不卡| 久久久久免费精品人妻一区二区| 亚洲 国产 在线| 日韩欧美三级三区| 午夜福利视频1000在线观看| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区三区| 老熟妇仑乱视频hdxx| 草草在线视频免费看| 亚洲性夜色夜夜综合| 毛片女人毛片| 久久人妻av系列| 欧美精品啪啪一区二区三区| 美女大奶头视频| 精品久久久久久久毛片微露脸| 亚洲精品久久国产高清桃花| 级片在线观看| 在线观看免费视频日本深夜| 一进一出好大好爽视频| 欧美xxxx黑人xx丫x性爽| 久久草成人影院| 少妇的逼水好多| 亚洲电影在线观看av| 少妇丰满av| 国产一区二区三区在线臀色熟女| 免费在线观看亚洲国产| 午夜日韩欧美国产| 又粗又爽又猛毛片免费看| 岛国视频午夜一区免费看| 性色av乱码一区二区三区2| 一进一出抽搐动态| 波多野结衣巨乳人妻| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 成人国产一区最新在线观看| 亚洲av日韩精品久久久久久密| 毛片女人毛片| 欧美最黄视频在线播放免费| ponron亚洲| 99热只有精品国产| 国产欧美日韩一区二区精品| 亚洲 欧美一区二区三区| 女同久久另类99精品国产91| 免费电影在线观看免费观看| 一级毛片高清免费大全| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 精品欧美国产一区二区三| 老司机福利观看| 国产精品野战在线观看| 在线a可以看的网站| 欧美不卡视频在线免费观看| 2021天堂中文幕一二区在线观| 午夜福利免费观看在线| 欧美黑人欧美精品刺激| 国产精品 国内视频| 一级作爱视频免费观看| 欧美一级毛片孕妇| 久久国产精品影院| 少妇丰满av| 欧美激情在线99| 99久久国产精品久久久| 天堂网av新在线| 制服人妻中文乱码| 亚洲精品在线美女| 他把我摸到了高潮在线观看| 91在线精品国自产拍蜜月 | 欧美色视频一区免费| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式 | 免费在线观看日本一区| 嫩草影视91久久| 亚洲真实伦在线观看| 国产不卡一卡二| 两个人视频免费观看高清| 禁无遮挡网站| 两个人看的免费小视频| 老汉色∧v一级毛片| 97碰自拍视频| 1024香蕉在线观看| 毛片女人毛片| 久久伊人香网站| 欧美日韩精品网址| 一a级毛片在线观看| 国产一区二区在线av高清观看| 国模一区二区三区四区视频 | 一级a爱片免费观看的视频| 岛国视频午夜一区免费看| 岛国在线免费视频观看| 99精品久久久久人妻精品| 国产精品 欧美亚洲| 在线观看舔阴道视频| 国产99白浆流出| 五月玫瑰六月丁香| 国模一区二区三区四区视频 | 亚洲精品色激情综合| 国产一区二区三区在线臀色熟女| 99久久综合精品五月天人人| 啦啦啦韩国在线观看视频| 黑人操中国人逼视频| 成年女人看的毛片在线观看| 香蕉av资源在线| 国产精品久久久久久精品电影| 亚洲av熟女| 精品熟女少妇八av免费久了| 久久午夜综合久久蜜桃| 久久久久久九九精品二区国产| 国产不卡一卡二| 午夜福利在线观看吧| 夜夜夜夜夜久久久久| 很黄的视频免费| 男女那种视频在线观看| 日本成人三级电影网站| 亚洲欧美精品综合一区二区三区| 亚洲片人在线观看| 两个人视频免费观看高清| 久久草成人影院| 在线国产一区二区在线| 91字幕亚洲| 国产男靠女视频免费网站| 国产精品av久久久久免费| 久99久视频精品免费| 国产综合懂色| 久久精品91蜜桃| www.999成人在线观看| av片东京热男人的天堂| 99久久99久久久精品蜜桃| 小说图片视频综合网站| av国产免费在线观看| 女生性感内裤真人,穿戴方法视频| 日本一二三区视频观看| 中文在线观看免费www的网站| 免费看光身美女| 好男人电影高清在线观看| 美女高潮喷水抽搐中文字幕| 露出奶头的视频| 两人在一起打扑克的视频| 99久久精品一区二区三区| 亚洲中文字幕日韩| 黄频高清免费视频| 波多野结衣高清作品| 美女黄网站色视频| 男人舔女人下体高潮全视频| 国产欧美日韩一区二区三| 精品国产美女av久久久久小说| 国产高清视频在线观看网站| 欧美zozozo另类| 又大又爽又粗| 操出白浆在线播放| 国内久久婷婷六月综合欲色啪| 白带黄色成豆腐渣| 国产一区二区三区视频了| 国产私拍福利视频在线观看| 国产精品,欧美在线| 久久精品国产清高在天天线| 久久这里只有精品中国| 国产真人三级小视频在线观看| 无遮挡黄片免费观看| 无遮挡黄片免费观看| 久久人人精品亚洲av| 中文字幕人成人乱码亚洲影| 亚洲国产精品999在线| 国产成人系列免费观看| 国产不卡一卡二| 黄片小视频在线播放| 九色成人免费人妻av| x7x7x7水蜜桃| 亚洲欧美日韩东京热| 免费看a级黄色片| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 黑人欧美特级aaaaaa片| 18禁观看日本| 变态另类丝袜制服| 99riav亚洲国产免费| 国产精品野战在线观看| 不卡av一区二区三区| 日本与韩国留学比较| av在线天堂中文字幕| 国产麻豆成人av免费视频| 免费观看精品视频网站| av天堂中文字幕网| 此物有八面人人有两片| 亚洲片人在线观看| 哪里可以看免费的av片| 极品教师在线免费播放| 日韩av在线大香蕉| 亚洲国产欧美人成| 日韩免费av在线播放| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 国产午夜精品久久久久久| 国产高清视频在线观看网站| 色噜噜av男人的天堂激情| 亚洲欧美日韩无卡精品| 欧美又色又爽又黄视频| 亚洲成人免费电影在线观看| 又黄又粗又硬又大视频| 精品久久久久久久人妻蜜臀av| 狂野欧美白嫩少妇大欣赏| 亚洲七黄色美女视频| 国产精品影院久久| 国产亚洲av高清不卡| 欧美一级a爱片免费观看看| 美女高潮的动态| 久久久久国内视频| 久久久成人免费电影| 88av欧美| 97碰自拍视频| 不卡一级毛片| 亚洲欧美日韩东京热| 国产亚洲精品一区二区www| 夜夜躁狠狠躁天天躁| 亚洲男人的天堂狠狠| 一级毛片精品| 成人国产综合亚洲| 成人特级黄色片久久久久久久| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av第一区精品v没综合| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| 午夜福利成人在线免费观看| www.熟女人妻精品国产| 特大巨黑吊av在线直播| 午夜福利成人在线免费观看| 亚洲 欧美一区二区三区| 中文字幕av在线有码专区| 日韩国内少妇激情av| 网址你懂的国产日韩在线| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看| 精品国产乱码久久久久久男人| 亚洲五月天丁香| 1024手机看黄色片| 中文字幕久久专区| 两性午夜刺激爽爽歪歪视频在线观看| 网址你懂的国产日韩在线| 日本免费一区二区三区高清不卡| 99久久精品热视频| 精品日产1卡2卡| 色综合欧美亚洲国产小说| 亚洲男人的天堂狠狠| 日本在线视频免费播放| 岛国在线观看网站| 国产爱豆传媒在线观看| 啦啦啦免费观看视频1| 五月玫瑰六月丁香| 露出奶头的视频| 久久性视频一级片| 桃色一区二区三区在线观看| 法律面前人人平等表现在哪些方面| 国产欧美日韩精品一区二区| 中文资源天堂在线| 女同久久另类99精品国产91| 日韩精品青青久久久久久| 99re在线观看精品视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品成人综合色| 后天国语完整版免费观看| 日本三级黄在线观看| 免费一级毛片在线播放高清视频| 韩国av一区二区三区四区| 午夜免费成人在线视频| 黄色女人牲交| 欧美黑人欧美精品刺激| 亚洲七黄色美女视频| 国产成人精品无人区| 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 小蜜桃在线观看免费完整版高清| 九九在线视频观看精品| 草草在线视频免费看| 舔av片在线| 香蕉国产在线看| 亚洲男人的天堂狠狠| 亚洲av片天天在线观看| 国产亚洲精品一区二区www| 老熟妇仑乱视频hdxx| 精品国产三级普通话版| 美女高潮喷水抽搐中文字幕| cao死你这个sao货| 少妇的丰满在线观看| 欧美大码av| 不卡av一区二区三区| 大型黄色视频在线免费观看| 在线免费观看的www视频| 久久精品aⅴ一区二区三区四区| 在线观看美女被高潮喷水网站 | 1000部很黄的大片| 日本 av在线| 岛国视频午夜一区免费看| 一夜夜www| 很黄的视频免费| 中文字幕久久专区| 波多野结衣高清无吗| 国产黄色小视频在线观看| 老司机福利观看| 国产久久久一区二区三区| 亚洲国产欧美网| 日韩中文字幕欧美一区二区| 国产又色又爽无遮挡免费看| 亚洲av日韩精品久久久久久密| www.www免费av| 人妻久久中文字幕网| 看片在线看免费视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月天丁香| 亚洲第一欧美日韩一区二区三区| 韩国av一区二区三区四区| 男人舔女人的私密视频| 国产精品av久久久久免费| a在线观看视频网站| 99久国产av精品| 国产精品野战在线观看| av在线蜜桃| 久久这里只有精品中国| 少妇裸体淫交视频免费看高清| www.精华液| 日韩欧美在线乱码| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 免费观看的影片在线观看| 色av中文字幕| 女同久久另类99精品国产91| 久久婷婷人人爽人人干人人爱| 综合色av麻豆| 美女cb高潮喷水在线观看 | www.精华液| 国产精品电影一区二区三区| 免费看a级黄色片| 九九热线精品视视频播放| 熟女人妻精品中文字幕| 超碰成人久久| 国产av在哪里看| 午夜福利在线在线| 国产私拍福利视频在线观看| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 一二三四在线观看免费中文在| 欧美在线黄色| 久久久久久国产a免费观看| 精品一区二区三区视频在线 | 国产精品九九99| 国产淫片久久久久久久久 | 国产亚洲精品综合一区在线观看| 欧美性猛交黑人性爽| 国产伦人伦偷精品视频| 99久久精品国产亚洲精品| 看片在线看免费视频| 午夜两性在线视频| 久久婷婷人人爽人人干人人爱| 一本一本综合久久| 久久久久久久久免费视频了| 变态另类成人亚洲欧美熟女| 久久香蕉精品热| 久久这里只有精品中国| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| 欧美三级亚洲精品| 最近视频中文字幕2019在线8| 亚洲人成伊人成综合网2020| 丁香六月欧美| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 欧美黄色片欧美黄色片| 免费在线观看成人毛片| 亚洲精品乱码久久久v下载方式 | 欧美激情在线99| 人妻夜夜爽99麻豆av| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 男女床上黄色一级片免费看| 色精品久久人妻99蜜桃| 级片在线观看| 一二三四在线观看免费中文在| 午夜福利在线在线| 亚洲精品美女久久av网站| 制服丝袜大香蕉在线| 久久九九热精品免费| 欧美国产日韩亚洲一区| 欧美日韩精品网址| 亚洲片人在线观看| 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 少妇熟女aⅴ在线视频| 日本与韩国留学比较| 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 国产成人精品久久二区二区免费| 好看av亚洲va欧美ⅴa在| 久久国产乱子伦精品免费另类| 亚洲 欧美 日韩 在线 免费| 村上凉子中文字幕在线| a级毛片a级免费在线| 国产伦人伦偷精品视频| 欧美中文日本在线观看视频| 免费av不卡在线播放| 每晚都被弄得嗷嗷叫到高潮| 免费看a级黄色片| 免费看美女性在线毛片视频| 女警被强在线播放| 成人亚洲精品av一区二区| netflix在线观看网站| 黄片大片在线免费观看| 国产精品 欧美亚洲| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 久久久久九九精品影院| 99久久成人亚洲精品观看| 麻豆成人av在线观看| 久久久成人免费电影| 国产成年人精品一区二区| 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 国产1区2区3区精品| 亚洲成人久久性| 午夜福利成人在线免费观看| 日韩欧美在线二视频| 中文字幕最新亚洲高清| 成人av一区二区三区在线看| 国产亚洲av高清不卡| 精品国产三级普通话版| 欧美黄色片欧美黄色片| 亚洲精华国产精华精| av黄色大香蕉| 国产亚洲精品久久久久久毛片| 成人av一区二区三区在线看| 亚洲精品美女久久久久99蜜臀| 好男人在线观看高清免费视频| 高清在线国产一区| 999久久久精品免费观看国产| 日韩三级视频一区二区三区| 欧美黄色淫秽网站| 国产成人一区二区三区免费视频网站| 人人妻人人看人人澡| 日本五十路高清| av中文乱码字幕在线| 国产成+人综合+亚洲专区| av中文乱码字幕在线| 男人舔女人下体高潮全视频| 国产免费av片在线观看野外av| 国产又色又爽无遮挡免费看| 国产精品精品国产色婷婷| 精品一区二区三区视频在线 | 天天一区二区日本电影三级| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 最近视频中文字幕2019在线8| 亚洲无线在线观看| 这个男人来自地球电影免费观看| 久久久国产成人免费| 免费一级毛片在线播放高清视频| 国产成人啪精品午夜网站| 日本一本二区三区精品| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 我要搜黄色片| 久久午夜综合久久蜜桃| av在线蜜桃| 日本 av在线| 极品教师在线免费播放| 国产欧美日韩一区二区精品| 两性午夜刺激爽爽歪歪视频在线观看| 日本五十路高清| av视频在线观看入口| 国内精品久久久久久久电影| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 三级毛片av免费| 欧美激情久久久久久爽电影| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 我的老师免费观看完整版| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 在线播放国产精品三级| 欧美三级亚洲精品| 长腿黑丝高跟| 校园春色视频在线观看| 亚洲专区国产一区二区| 国产精品九九99| 99热这里只有精品一区 | 国产综合懂色| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看 | 村上凉子中文字幕在线| 国产97色在线日韩免费| 午夜福利18| 最新在线观看一区二区三区| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 又黄又粗又硬又大视频| 一夜夜www| 脱女人内裤的视频| 成人三级黄色视频| 无人区码免费观看不卡| 最近最新中文字幕大全电影3| 国产精品1区2区在线观看.| www.999成人在线观看| 久久久色成人| 国产成+人综合+亚洲专区| 国产精品一及| 国产成人aa在线观看| 一二三四在线观看免费中文在| www.999成人在线观看| av黄色大香蕉| 亚洲国产精品999在线| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三| 母亲3免费完整高清在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av日韩精品久久久久久密| 中文字幕高清在线视频| 国产三级黄色录像| 一区二区三区国产精品乱码| 亚洲精品国产精品久久久不卡| av黄色大香蕉| 色噜噜av男人的天堂激情| 又爽又黄无遮挡网站| 免费看a级黄色片| 午夜免费激情av| 亚洲欧美日韩东京热| 成在线人永久免费视频| 一级毛片精品| 欧美一区二区国产精品久久精品| 国产高清三级在线| 少妇丰满av| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 国产真实乱freesex| 蜜桃久久精品国产亚洲av| 国产精品久久久久久久电影 | 男人的好看免费观看在线视频| netflix在线观看网站| 天堂动漫精品| 成熟少妇高潮喷水视频| 亚洲精品一区av在线观看| 黄片小视频在线播放| 国产欧美日韩一区二区三| АⅤ资源中文在线天堂| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 91av网站免费观看| 久久人妻av系列| 亚洲真实伦在线观看| 精品欧美国产一区二区三| 99视频精品全部免费 在线 | 国产成人系列免费观看| 热99re8久久精品国产| 看片在线看免费视频| 亚洲美女视频黄频| 麻豆av在线久日| 黑人巨大精品欧美一区二区mp4| 夜夜爽天天搞| 免费在线观看成人毛片| 国产成人av激情在线播放| 久久午夜综合久久蜜桃| 久久久久久九九精品二区国产| 在线观看美女被高潮喷水网站 | 欧美+亚洲+日韩+国产| 在线观看美女被高潮喷水网站 | 男女床上黄色一级片免费看| 欧美乱妇无乱码| 国产精品久久久久久久电影 | 欧美日韩黄片免| 欧美激情在线99| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放| 国产成人欧美在线观看| 亚洲色图av天堂| 香蕉av资源在线| 国产美女午夜福利| 亚洲一区二区三区不卡视频| 国产综合懂色| 无遮挡黄片免费观看| 久久久久九九精品影院| a在线观看视频网站| 99热6这里只有精品| 亚洲成人久久性| 久久久国产精品麻豆| 法律面前人人平等表现在哪些方面| av国产免费在线观看| cao死你这个sao货| 夜夜躁狠狠躁天天躁| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 悠悠久久av| 亚洲国产欧洲综合997久久,| 色av中文字幕| 一级a爱片免费观看的视频| 精品一区二区三区四区五区乱码| 久久久久国产精品人妻aⅴ院| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区| 国产成人精品无人区| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 一个人免费在线观看电影 |