• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation?

    2018-12-13 06:33:28ChaoGao高超andPengZhang張芃
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:高超

    Chao Gao(高超) and Peng Zhang(張芃)

    1Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    2Department of Physics,Renmin University of China,Beijing 100872,China

    3Beijing Computational Science Research Center,Beijing 10084,China

    4Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    AbstractThe Skorniakov-Ter-Martirosian(STM)integral equation is widely used for the quantum three-body problems of low-energy particles(e.g.,ultracold atom gases).With this equation these three-body problems can be efficiently solved in the momentum space.In this approach the boundary condition for the case that all the three particles are gathered together is described by the upper limit of the momentum integral,i.e.,the momentum cuto ff.On the other hand,in realistic systems,the three-body recombination(TBR)process can occur when all these three particles are close to each other.In this process two particles form a deep dimer and the other particle can gain high kinetic energy and then escape from the low-energy system.In the presence of the TBR process,the momentum-cuto ffin the STM equation would include a non-zero imaginary part.As a result,the momentum integral in the STM equation should be done in the complex-momentum plane.In this case the result of the integral depends on the choice of the integral path.Obviously,only one integral path can lead to the correct result.In this paper we consider how to correctly choose the integral path for the STM equation.We take the atom-dimer scattering problem in a specific ultracold atom gas as an example,and show the results given by different integral paths.Based on the result for this case we explore the reasonable integral paths for general case.

    Key words:STM equation,integral path,atom-dimer scattering

    1 Introduction

    The three-body problems are important for various directions of quantum physics,e.g.,nuclear physics,[1?3]quantum chemistry,[4?5]condensed matter physics[6]and ultracold gases.[3,7]By solving these problems one can not only calculate the important parameters for the quantum systems,e.g.,the atom-dimer interaction intensity[8]and chemical reaction rate,[4]but also explore many interesting physical effects,e.g.,the E fimov effect,[9?11]which is induced by the scaling symmetry of three particles with resonant s-wave interactions.

    In the previous research of quantum three-body problems,many attentions are paid to the low-energy systems where the de Broglie wavelength of the three particles are much larger than the characteristic length of the interparticle interaction potentials.Two examples are the ultracold atom gases and some low-energy nuclear systems.For these systems the physical properties are determined by a few parameters of the inter-particle interactions,such as the two-body scattering lengths,and are independent of the details of these interactions.[12]In another word,the physical properties of these systems are very universal.

    Technically speaking,in the low-energy three-body problems the two-body interaction can be described by simple zero-range potentials or finite-range separable potentials.As a result,the three-body Schr?dinger equation can be re-expressed as an integral equation in the momentum space,i.e.,the Skorniakov-Ter-Martirosian(STM)equation,[13]which is easy to be solved numerically.The STM equation was initially developed by Skorniakov and Ter-Martirosian in 1957,and has been widely used for the three-body problems in various systems,e.g.,the ultracold gases or nuclear systems.

    On the other hand,in the three-body problem with zero-range inter-particle potentials,there are two types of important boundary conditions.They are

    (i)The “two-body short-range boundary conditions”for the cases that two of the three particles are close to each other,while the third one is far away from them.

    (ii)The“three-body short-range boundary condition”for the case that all the three particles are gathered together.

    In the STM equation,the two-body short-range boundary conditions are described by the parameters of two-body low-energy scattering,e.g.,the scattering length,while the three-body short-range boundary condition is described by the upper limit of the integrals over the three-body momentum,[14?17]i.e.the three-body momentum cuto ff.

    Furthermore,in many realistic cases,e.g.,the ultracold atom gases,when the three particles come together,there occurs an inelastic scattering process,which is called as the three-body recombination(TBR).[18?19]Through this process,two particles can form a deep dimer while the third particle obtains high kinetic energy.As a result,the de Broglie wavelengths of all the three particles becomes pretty small,i.e.,the particles “escape” from the low-energy region.In the ultracold gases,with the help of the kinetic energy obtained from the TBR processes,the ultracold atoms can really loss from the trap.Accordingly,in the presence of TBR the momentum cuto ffin the STM equation becomes a complex number with nonzero imaginary part.As a result,the momentum integral in the STM equation must be done in the complex momentum plane,rather than just along the real axis.In this case,the result of the integral depends on the choice of the integral path.[16]Thus,there is a crucial question:which integration path is correct for the calculation of three-body problem via STM equation?

    In this paper we try to investigate this problem by taking a typical atom-dimer scattering problem as an example.Explicitly,we consider the scattering between an ultracold bosonic atom and a shallow dimer,which is formed by one identical bosonic atom and another distinguishable atom(Fig.1),and compare the results given by different momentum integral paths.With the help of our result,we find the integral path,which may be always reasonable for various cases,i.e.,the path shown in Fig.5 and described in Sec.4 in detail.

    The remainder of this paper is organized as follows.In Sec.2,we describe the physical system we study and show the STM equation.In Sec.3,we compare the results given by different integral paths.In Sec.4,we generalize them to the STM equations for more general cases.There are some summary in Sec.5.

    2 System and STM Equation

    As shown in Fig.1,we consider a three-body system consisted by two ultracold identical bosonic atoms(denoted by B),and another ultracold distinguishable atom(denoted by X),with intra-and inter-species scattering length aBBand aBX,respectively.Here we assume that the scattering length aBXbetween each bosonic atom and the atom X is positive and much larger than the range of the inter-species interaction potential,i.e.,the van der Waals length rvdW.For realistic ultracold atom gases this can be realized via the technique of Feshbach resonance.[20]In this case one bosonic atom and the atom X can form a shallow dimer with energy

    whereμBX=mBmX/(mB+mX)is the reduced mass of one bosonic atom and atom X,with mBand mXbeing their respective masses.In addition,for the convenience of our discussion,we further assume the absolute value of the scattering length between the two bosonic atoms,i.e.,|aBB|,is small enough so that the condition

    is satisfied.

    Fig.1 (Color online)Schematic of the three-body system studied in this work.We consider two bosonic atoms(denoted as B)and one extra atom(denoted as X),and assume the two-body scattering length aBXbetween B and X is positive and much larger than the van der Waals length,so that one bosonic atom and the atom X can form a shallow dimer.We calculate the scattering length between this shallow dimer and the other bosonic atom.

    In this work we study how to calculate the scattering length aadbetween the shallow BX-dimer and the other bosonic atom.As shown above,for this system the inter-atomic interactions can be described by zero-range pseudo-potentials,and aadcan be calculated via the STM-equation approach.In Ref.[21]we derive the following STM equation for this problem from the corresponding Lippmann-Schwinger equation.We show that the STM equation can be expressed as the following equations for the functions{A(K,ε),η(K,ε)}(=mB=1):

    with mad=(mX/mB+1)/(mX/mB+2)being the value of the atom–dimer reduced mass in our natural unit,and the function I(K′,ε)in Eq.(3)being defined as

    Here we take the complex angle Arg[z]of a complex number z to be in the region Arg[z]∈ (?π,+π].As we show in Ref.[21],the atom-dimer scattering length aadis given by

    with A(K,ε)being the solution of Eqs.(3)and(4).

    In the STM equation(3)and(4), Λeiζis the upper limit of the momentum integral,or the momentum cuto ff.Here the norm Λ is real and positive,and the real number ζ is the phase angle. ζ is non-zero in the presence of the TBR process.As shown in Sec.1,this upper limit describes the boundary condition for the case that all the three atoms are gathered together.For a realistic ultra-cold atom system,the exact values of Λ and ζ are determined by the short-range detail of the atom-atom interaction.Usually Λ is of the order of 1/rvdW,with rvdWbeing the van der Waals length,and ζ is small and positive.For instance,for41K-87Rb-87Rb system,ζ is suggested to be about 0.19.[22]

    3 Results Given by Di ff erent Integral Paths

    It is clear that the integraldK′plays a central role for the STM equation(3)and(4).Now we compare the results given by different paths of this integral.To be clear,we separately discuss the following three cases:Case 1 aBB<0,Case 2 0a?,with the parameter a?being defined as

    In the following we will show the reason why we define the three cases as above.

    Here we also emphasis that,as a result of the TBR process,the scattering length aadhas a non-zero imaginary part.Furthermore,using the optical theorem one can prove that the imaginary part of aadmust be negative,i.e.,

    This is essentially due to the unitarity of the S-matrix of the atom-dimer scattering process.Physically speaking,the absolute value of Im(aad)is directly related to the TBR rate or the three-body loss rate K3via the relation

    Equation(8)is the necessary condition for the physicallycorrect solution of the STM equation.

    3.1 Case 1

    For case 1 with aBB<0,there are the following two typical integral paths,as shown in Fig.2(a).Path-I is the straight line from K′=0 to K′= Λeiζ,while path-II consists of two straight lines(in blue color with arrow):from K′=0 to K′=Re[Λeiζ](denoted as path-IIa),and then from K′=Re[Λ eiζ]to K′= Λ eiζ(path-IIb).It is clear that for the integraldK′in the STM equation(3)and(4),the integrands have no pole in the region between these two paths in the limit ε→ 0+.As a result,the solutions of the STM equation with the two integration paths are the same.

    Fig.2 (Color online)(a)Typical integration paths for case 1;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 1.Here we take mB=mX,aBXΛ =100,and ζ=0.1,and show the results given by path-I(red dashed-dotted line)and path-II(blue open circles).The black dashed line in(c)indicates the positions with Im[aad]=0.

    In Figs.2(b)and 2(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with the two integral paths,for the cases with three equal-mass atoms with ζ=0.1.It is clearly illustrated that,as analyzed above,the two results are same with each other.In addition,as shown in Fig.2(c),the condition(8)is well satisfied by the results given by the integral path-I and path-II.

    3.2 Case 2

    Now we consider case 2 with 00,in this case the two bosonic atoms can also form a dimer(BB-dimer),whose energycan be expressed as

    in our natural unit. According to our assumption in Eq.(2),we have>|Eb|,i.e.,the BB-dimer is a“deep dimer”whose binding energy is larger than the one of the shallow dimer formed by one bosonic atom and the atom X.

    In this case,the equation I(K′,ε)=0 with the function I(K′,ε)being defined in Eq.(5),has one solution near the positive half of the real axis of the complex K′plane in the limit ε → 0+.Explicitly,we have

    with

    It is clear that K0+iη is a pole of the integrand of the integral∫Λeiζ0dK′in the STM equation(3).In addition,since in this case we have 0

    Therefore,in this case there are three typical integral paths for the momentum integral in the STM equations,as shown in Fig.3(a).Path-I and path-II are defined as in the above case 1.In addition,path-III consists of four straight lines:the line from K′=0 to K′=Re[Λeiζ](path-IIIa,same to path-IIa),then from Re[Λeiζ]to K′=K1(path-IIIb),then from K′=K1to K′=K1+iIm[Λeiζ](path-IIIc),and finally from K′=K1+iIm[Λ eiζ]to K′= Λeiζ(path-IIId).Here K1can be an arbitrary real number larger than K0.

    Since no pole of the integrand of the STM equation appears in the area surrounded by path-I and path-II,and one pole(i.e.,K0+iη)appears in the area surrounded by path-II and path-III,the direct analysis yields that the the solution of the STM equation with momentum integral path-I and path-II would be same with each other,while the path-III would lead to a different solution.So,the question is:which path is reasonable?

    To answer this question,we calculate the atom-dimer scattering length aadwith the STM equation with these three integral paths,and show Re[aad]and Im[aad]in Figs.3(b)and 3(c),respectively.It is clearly shown that the necessary condition in Eq.(8)is well-satisfied by all the results from path-III,but violated by some results from path-I and path-II.Therefore,in this case the path-III is the reasonable integral path for the STM equation.

    Fig.3 (Color online)(a)Typical integration paths for case 2;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 2.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue open circles),and path-III(magenta solid line).

    3.3 Case 3

    Now we consider case 3 with aBB>a?.Similar as in case 2,in this case the two bosonic atoms can also form a deep dimer with energygiven by Eq.(10).As a result,the pole K0+iη of the integrand of the integraldK′in the STM equation(3)can also appear near the positive half of the real axis of the complex K′plane.

    The only difference between the current case and case 2 is that,since aBB>a?,in the current we have

    Thus,as shown in Fig.4(a),now there are two typical momentum integral paths,i.e.,path-I and path-II,which have the same definitions as in the above cases 1 and 2.Nevertheless,the fact(15)yields that in the current case the pole K0+iη appears in the area surrounded by the two paths.Thus,the results given by these two integral paths would be different,and we should judge,which path is reasonable.

    In Figs.4(b)and 4(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with these two integral paths.It is shown that the results given by the path-II can satisfy the necessary condition in Eq.(8),while the ones from path-I can violate this condition.Thus,in the current case path-II is reasonable.

    Fig.4 (Color online)(a)Typical integration paths for case 3;(b)and(c)Re[aad]and Im[aad]as functions of aBB,for the systems of case 3.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue dotted line).

    4 Generalization to Other Cases

    In the above section we study how to choose the reasonable momentum integral paths for the STM equation for the atom-dimer scattering problem introduced in Sec.2.Now we summarize the results obtained above to some principle,which can be generalized to other threebody problems.

    Our above analysis for the three cases 1,2,and 3 show that,the positions of some poles of the integrands of the integralin the STM equation is very important for the selection of the momentum integral path.Explicitly,the poles localized at the point K′=K?+iη?with K?>0 and η?→ 0+in the limit ε → 0+,with ε being the small positive imaginary part of the energy in the Green’s function,are very important.The reasonable integral path from K′=0 to K′= Λeiζshould go across below all of these poles.The reasonable paths for the above cases 1,2,and 3 all satisfy this condition.

    Thus,there is a special path,which would be always reasonable,i.e.,the path from K′=0 to K′=+∞,and then to K′=+∞ +iIm[Λeiζ]and then to K′= Λeiζ(the path shown in Fig.5(a)).Obviously,all the paths,which can be continuously deformed from this path without crossing any pole are also reasonable.

    In addition,there is an interesting particular case,i.e.,the case with ζ=0 and some poles with K?> Λ.This can be understood as the limit ζ→ 0 of the above cases.Thus,according to our above principle,as shown in Fig.5(b),for this case the reasonable integral path is not the path directly from K′=0 to K′=Λ.It would be the path from K′=0 to K′=+∞,and then to K′=+∞+iΓ,with Γ being any finite positive value,and then to K′= Λ +iΓ,and then to K′=Λ.

    It is clear that,the above principle for the choosing of the momentum integral path can be straightforwardly applied to the STM equations for other three-body problems.

    Fig.5 (Color online)Reasonable integration paths for general cases with ζ>0(a)and ζ=0(b).

    5 Summary and Discussion

    In this work we study how to choose the momentum integral path for the STM equation.By studying a typical atom-dimer scattering problem,we show that different integral path can lead to quite different solutions of the STM equation,especially for the imaginary part of the atom-dimer scattering length or the TBR rate K3.

    More importantly,we find that the necessary condition(8)can always be satisfied by the integral path,which the paths,which can be continuously deformed from the special path shown in Fig.5 without crossing any pole.This principle can be generalized to other three-body problems.Thus,our result is very helpful for the study of low-energy three-body problems in the presence of TBR.

    To our knowledge,so far the quantitative expression for the three-body short-range boundary condition in real space,which is mathematically equivalent to the momentum cuto ff Λeiζand the reasonable integral path shown above,has not been derived.In future we will try to explore this expression,so that the short-range physics can be described more clearly.

    Acknowledgments

    We thank Pascal Naidon,Hui Zhai,and Ren Zhang for helpful discussions and important suggestions.

    猜你喜歡
    高超
    Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose–Einstein condensate
    內(nèi)外兼修
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    我們愛勞動(dòng)
    哲理漫畫
    寶塔山詠懷
    中華魂(2021年10期)2021-10-15 21:42:51
    Single pixel imaging based on semi-continuous wavelet transform*
    Turbulent boundary layer control with a spanwise array of DBD plasma actuators
    巧奪天工
    美蓓亞展示提高汽車性能的高超技術(shù)
    汽車零部件(2015年4期)2015-12-22 05:45:22
    夫妻性生交免费视频一级片| 亚洲国产精品国产精品| 久久精品国产亚洲av涩爱| 国产免费福利视频在线观看| 一边亲一边摸免费视频| 最近手机中文字幕大全| 伊人久久国产一区二区| 亚洲欧美清纯卡通| 18禁动态无遮挡网站| 国产午夜精品一二区理论片| 中文字幕av成人在线电影| 亚洲综合色惰| 美女cb高潮喷水在线观看| 亚洲美女搞黄在线观看| 国产又色又爽无遮挡免| 久久久午夜欧美精品| 国产亚洲91精品色在线| 久久精品夜色国产| 精品人妻一区二区三区麻豆| 亚洲在线观看片| 在线播放无遮挡| 国产熟女欧美一区二区| 亚洲自偷自拍三级| 久久久久网色| 久久精品熟女亚洲av麻豆精品 | 精品久久久久久久久av| 春色校园在线视频观看| 天堂网av新在线| 99久久九九国产精品国产免费| 亚洲精品,欧美精品| 精品久久国产蜜桃| 一级黄片播放器| 国产精品麻豆人妻色哟哟久久 | 麻豆成人午夜福利视频| 成年女人在线观看亚洲视频 | 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 亚洲av不卡在线观看| 尾随美女入室| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 国产一级毛片在线| 国产白丝娇喘喷水9色精品| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 禁无遮挡网站| 黄色欧美视频在线观看| 91久久精品电影网| 舔av片在线| 最近的中文字幕免费完整| 国产探花在线观看一区二区| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 亚洲国产日韩欧美精品在线观看| 男的添女的下面高潮视频| 午夜激情久久久久久久| 亚洲成人久久爱视频| 成人欧美大片| 午夜福利高清视频| 亚洲国产欧美人成| 非洲黑人性xxxx精品又粗又长| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 麻豆av噜噜一区二区三区| 亚洲人成网站在线观看播放| 亚洲欧美精品专区久久| 亚洲精品影视一区二区三区av| 欧美高清性xxxxhd video| 少妇高潮的动态图| 最近最新中文字幕免费大全7| 一区二区三区免费毛片| 观看免费一级毛片| 国产永久视频网站| 欧美性感艳星| 亚洲av不卡在线观看| 伦理电影大哥的女人| 久久这里只有精品中国| 久久韩国三级中文字幕| 极品少妇高潮喷水抽搐| 国产av码专区亚洲av| 亚洲av.av天堂| 国产在视频线精品| 免费黄频网站在线观看国产| 在线观看av片永久免费下载| 亚洲av电影在线观看一区二区三区 | 亚洲国产av新网站| 在线 av 中文字幕| 亚洲性久久影院| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| kizo精华| 精品久久久久久久久亚洲| 两个人视频免费观看高清| 亚洲精品456在线播放app| 搞女人的毛片| 五月伊人婷婷丁香| 婷婷色综合www| 国产亚洲av片在线观看秒播厂 | 国产精品精品国产色婷婷| 99热全是精品| 熟妇人妻久久中文字幕3abv| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品| 最近最新中文字幕大全电影3| 一级毛片黄色毛片免费观看视频| 亚洲精品色激情综合| 美女cb高潮喷水在线观看| 国产片特级美女逼逼视频| 国产精品av视频在线免费观看| 大香蕉久久网| 天堂中文最新版在线下载 | 一区二区三区高清视频在线| 国产视频首页在线观看| 美女高潮的动态| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看| 婷婷六月久久综合丁香| 成人国产麻豆网| 久久综合国产亚洲精品| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 伊人久久国产一区二区| 精品一区二区三区人妻视频| 国产综合精华液| 成人亚洲精品av一区二区| 色综合色国产| 亚洲自偷自拍三级| 三级国产精品片| 内射极品少妇av片p| 免费高清在线观看视频在线观看| 免费看美女性在线毛片视频| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 国产精品三级大全| 成人亚洲精品av一区二区| 插逼视频在线观看| 中国国产av一级| 亚洲人成网站在线播| av福利片在线观看| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 色网站视频免费| 777米奇影视久久| 麻豆精品久久久久久蜜桃| 搞女人的毛片| 久久久国产一区二区| 日韩一区二区三区影片| 亚洲电影在线观看av| 欧美精品国产亚洲| 国产精品久久久久久久久免| 波野结衣二区三区在线| 国产精品国产三级国产av玫瑰| 久久久久网色| 十八禁网站网址无遮挡 | 午夜精品一区二区三区免费看| 亚洲av国产av综合av卡| 成人无遮挡网站| 欧美潮喷喷水| 国内揄拍国产精品人妻在线| 秋霞在线观看毛片| 最近中文字幕2019免费版| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 三级毛片av免费| 日韩av免费高清视频| 免费看美女性在线毛片视频| 亚洲成人久久爱视频| 日韩 亚洲 欧美在线| 丝袜喷水一区| 国产老妇女一区| 亚洲成人中文字幕在线播放| 国产黄片视频在线免费观看| 亚洲精品成人av观看孕妇| 麻豆成人av视频| 日产精品乱码卡一卡2卡三| 国产成人精品婷婷| 成人av在线播放网站| 看黄色毛片网站| 成人毛片60女人毛片免费| 亚洲综合色惰| 国产精品久久久久久av不卡| 蜜桃久久精品国产亚洲av| 精品国产露脸久久av麻豆 | 日韩不卡一区二区三区视频在线| 有码 亚洲区| 亚洲综合精品二区| 午夜久久久久精精品| 精品熟女少妇av免费看| 亚洲av免费在线观看| 国语对白做爰xxxⅹ性视频网站| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 久久久久精品久久久久真实原创| 一级毛片电影观看| 精品久久久精品久久久| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 91久久精品国产一区二区成人| 麻豆av噜噜一区二区三区| 亚洲国产日韩欧美精品在线观看| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 男人爽女人下面视频在线观看| 亚洲三级黄色毛片| 日本-黄色视频高清免费观看| 亚洲美女视频黄频| 91久久精品国产一区二区成人| 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区| 国产伦在线观看视频一区| 色播亚洲综合网| 午夜免费激情av| 国产综合懂色| 伦理电影大哥的女人| 精品人妻偷拍中文字幕| 丰满乱子伦码专区| 国产美女午夜福利| 欧美97在线视频| 一级毛片黄色毛片免费观看视频| 亚洲18禁久久av| 插阴视频在线观看视频| 国产麻豆成人av免费视频| 男人狂女人下面高潮的视频| 日日啪夜夜爽| 亚洲在久久综合| 日本色播在线视频| 国产av国产精品国产| 内地一区二区视频在线| 熟妇人妻久久中文字幕3abv| 国内揄拍国产精品人妻在线| 久久6这里有精品| 晚上一个人看的免费电影| 日韩,欧美,国产一区二区三区| 在线观看一区二区三区| 嫩草影院入口| 老女人水多毛片| 成年女人看的毛片在线观看| 天堂√8在线中文| 午夜激情欧美在线| 午夜视频国产福利| 人人妻人人澡欧美一区二区| 日韩av不卡免费在线播放| 精品酒店卫生间| 大话2 男鬼变身卡| 成人国产麻豆网| av国产久精品久网站免费入址| 亚洲欧美精品自产自拍| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 99久国产av精品| 久久99热这里只频精品6学生| 麻豆精品久久久久久蜜桃| 国产老妇女一区| 久久热精品热| 亚洲精品国产成人久久av| 建设人人有责人人尽责人人享有的 | 午夜精品国产一区二区电影 | 又大又黄又爽视频免费| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 国产精品嫩草影院av在线观看| 欧美97在线视频| 91午夜精品亚洲一区二区三区| 国产在视频线精品| 欧美日韩综合久久久久久| 国产综合精华液| 成人欧美大片| 国产精品一区二区三区四区久久| 极品少妇高潮喷水抽搐| 最新中文字幕久久久久| 人妻系列 视频| 纵有疾风起免费观看全集完整版 | 搞女人的毛片| 久久综合国产亚洲精品| 亚洲无线观看免费| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 久久久久久久午夜电影| 中文字幕久久专区| 久久久久久久久久黄片| 九九爱精品视频在线观看| 人人妻人人澡欧美一区二区| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| av女优亚洲男人天堂| 欧美人与善性xxx| 日韩人妻高清精品专区| 少妇熟女aⅴ在线视频| 亚洲激情五月婷婷啪啪| a级毛片免费高清观看在线播放| 午夜爱爱视频在线播放| 成人欧美大片| 久久这里只有精品中国| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 草草在线视频免费看| 嫩草影院入口| 欧美97在线视频| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 国产一区亚洲一区在线观看| 国产人妻一区二区三区在| 看黄色毛片网站| 亚洲精品,欧美精品| 综合色丁香网| 亚洲av电影不卡..在线观看| 欧美+日韩+精品| 久久国产乱子免费精品| 久久97久久精品| 别揉我奶头 嗯啊视频| 精品一区二区三区人妻视频| av在线天堂中文字幕| 内地一区二区视频在线| 成人毛片60女人毛片免费| 亚洲av一区综合| 亚洲av在线观看美女高潮| ponron亚洲| 国产综合精华液| 成人美女网站在线观看视频| 91av网一区二区| 禁无遮挡网站| 高清视频免费观看一区二区 | 中国国产av一级| 久久久久性生活片| 精品酒店卫生间| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 亚洲内射少妇av| 免费黄网站久久成人精品| 国产一级毛片七仙女欲春2| 观看美女的网站| 极品少妇高潮喷水抽搐| 神马国产精品三级电影在线观看| 美女内射精品一级片tv| 中文字幕av在线有码专区| 国产不卡一卡二| 国产片特级美女逼逼视频| www.av在线官网国产| 又粗又硬又长又爽又黄的视频| 日本黄色片子视频| 午夜福利在线观看免费完整高清在| 国产男人的电影天堂91| 黄色欧美视频在线观看| 精品久久国产蜜桃| 欧美高清成人免费视频www| 亚洲欧洲日产国产| 97超碰精品成人国产| 国产精品爽爽va在线观看网站| 午夜视频国产福利| 一级毛片电影观看| 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 欧美不卡视频在线免费观看| 亚洲自偷自拍三级| 成年免费大片在线观看| 少妇高潮的动态图| 国产成人精品婷婷| 99久国产av精品| av.在线天堂| 日本av手机在线免费观看| 亚洲av在线观看美女高潮| 婷婷色综合大香蕉| 日本三级黄在线观看| 亚洲欧洲国产日韩| 亚洲精品一区蜜桃| 国产 亚洲一区二区三区 | 亚洲欧美一区二区三区国产| 汤姆久久久久久久影院中文字幕 | 亚洲欧美一区二区三区黑人 | 日韩大片免费观看网站| 国产视频首页在线观看| 老师上课跳d突然被开到最大视频| 欧美区成人在线视频| 国产视频首页在线观看| 22中文网久久字幕| 久久综合国产亚洲精品| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 国精品久久久久久国模美| 国产一级毛片在线| 久久热精品热| 在线观看免费高清a一片| 久久这里有精品视频免费| 亚洲精品视频女| 亚洲精品国产av成人精品| 伊人久久精品亚洲午夜| 一级a做视频免费观看| 欧美成人午夜免费资源| 日日啪夜夜撸| 国产在视频线精品| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 真实男女啪啪啪动态图| 3wmmmm亚洲av在线观看| 成年人午夜在线观看视频 | 国内少妇人妻偷人精品xxx网站| 丰满少妇做爰视频| 欧美日本视频| 精品午夜福利在线看| 日本三级黄在线观看| 免费看a级黄色片| 人妻少妇偷人精品九色| 国产男女超爽视频在线观看| 国产av不卡久久| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 水蜜桃什么品种好| 大陆偷拍与自拍| 国产精品女同一区二区软件| 午夜精品一区二区三区免费看| 亚洲内射少妇av| 成年女人在线观看亚洲视频 | 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 又爽又黄无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 一级片'在线观看视频| 18+在线观看网站| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 美女cb高潮喷水在线观看| 午夜福利高清视频| 午夜激情福利司机影院| 国产一区二区在线观看日韩| 在线观看人妻少妇| 婷婷六月久久综合丁香| 欧美成人精品欧美一级黄| 国产精品无大码| 亚洲人与动物交配视频| 边亲边吃奶的免费视频| 性色avwww在线观看| av天堂中文字幕网| 久久精品久久精品一区二区三区| 免费人成在线观看视频色| 亚洲怡红院男人天堂| 国产大屁股一区二区在线视频| 久久久久久久久大av| 青春草视频在线免费观看| 乱人视频在线观看| 成人亚洲精品一区在线观看 | 久久人人爽人人爽人人片va| 国产伦理片在线播放av一区| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 国产人妻一区二区三区在| 亚洲欧美精品专区久久| 久久精品国产亚洲av天美| 黑人高潮一二区| 国产又色又爽无遮挡免| 成人午夜高清在线视频| 欧美xxⅹ黑人| 99热全是精品| 最新中文字幕久久久久| 亚洲人成网站高清观看| 99九九线精品视频在线观看视频| 免费av不卡在线播放| 99久国产av精品国产电影| 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 国产亚洲5aaaaa淫片| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| 91午夜精品亚洲一区二区三区| 一本一本综合久久| 身体一侧抽搐| 精品一区二区三区视频在线| 亚洲精品亚洲一区二区| 青春草国产在线视频| av播播在线观看一区| 91精品国产九色| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| www.色视频.com| 99热这里只有精品一区| 最新中文字幕久久久久| 免费黄网站久久成人精品| 在线观看一区二区三区| 日本黄色片子视频| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看| 日韩欧美三级三区| 成人综合一区亚洲| 亚洲内射少妇av| 老女人水多毛片| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 色综合亚洲欧美另类图片| 99热这里只有是精品50| 天堂√8在线中文| 久久久久久久久中文| 我要看日韩黄色一级片| 青春草视频在线免费观看| 有码 亚洲区| 免费看不卡的av| 少妇裸体淫交视频免费看高清| 伦理电影大哥的女人| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 午夜爱爱视频在线播放| 亚洲av中文av极速乱| 麻豆乱淫一区二区| 免费观看a级毛片全部| 九九爱精品视频在线观看| 七月丁香在线播放| 联通29元200g的流量卡| 亚洲国产欧美人成| 国产伦理片在线播放av一区| 一区二区三区四区激情视频| 老司机影院毛片| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 简卡轻食公司| 汤姆久久久久久久影院中文字幕 | 国产在线一区二区三区精| 日日撸夜夜添| 国产一区有黄有色的免费视频 | 国产美女午夜福利| 亚洲精品日韩在线中文字幕| 又爽又黄无遮挡网站| 日韩精品有码人妻一区| 色尼玛亚洲综合影院| 日韩三级伦理在线观看| 国产伦精品一区二区三区四那| 国产精品女同一区二区软件| 看免费成人av毛片| 大片免费播放器 马上看| 永久网站在线| 亚洲人与动物交配视频| 国产 一区精品| 91精品国产九色| 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| xxx大片免费视频| 亚洲av成人精品一区久久| 2018国产大陆天天弄谢| 午夜免费观看性视频| 乱人视频在线观看| 国产一区二区三区综合在线观看 | 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 国产亚洲5aaaaa淫片| 国产人妻一区二区三区在| 午夜福利高清视频| 韩国高清视频一区二区三区| 男人舔女人下体高潮全视频| 午夜精品国产一区二区电影 | 只有这里有精品99| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 免费少妇av软件| 男女国产视频网站| 尾随美女入室| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 精品人妻熟女av久视频| 美女国产视频在线观看| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 久久久久久伊人网av| 国产精品99久久久久久久久| av女优亚洲男人天堂| 日韩制服骚丝袜av| 高清视频免费观看一区二区 | 深夜a级毛片| 精品国内亚洲2022精品成人| 美女内射精品一级片tv| 久久99蜜桃精品久久| 真实男女啪啪啪动态图| 校园人妻丝袜中文字幕| av网站免费在线观看视频 | 3wmmmm亚洲av在线观看| 波多野结衣巨乳人妻| 婷婷色综合www| 国产一区二区在线观看日韩| 午夜免费男女啪啪视频观看| 国产亚洲精品久久久com| 日韩伦理黄色片| 在线播放无遮挡| 精品欧美国产一区二区三| 亚洲美女视频黄频| 国产伦一二天堂av在线观看| 亚洲欧美中文字幕日韩二区| 免费av毛片视频| 日本熟妇午夜| 免费黄色在线免费观看| 国产 亚洲一区二区三区 | 伦精品一区二区三区| 亚洲国产精品成人久久小说| 国产精品久久久久久精品电影| 内射极品少妇av片p| 国产麻豆成人av免费视频| 97超视频在线观看视频| 伦理电影大哥的女人| 建设人人有责人人尽责人人享有的 | 天堂网av新在线| 亚洲精品影视一区二区三区av| 成人毛片60女人毛片免费| 天堂俺去俺来也www色官网 |