• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation?

    2018-12-13 06:33:28ChaoGao高超andPengZhang張芃
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:高超

    Chao Gao(高超) and Peng Zhang(張芃)

    1Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    2Department of Physics,Renmin University of China,Beijing 100872,China

    3Beijing Computational Science Research Center,Beijing 10084,China

    4Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    AbstractThe Skorniakov-Ter-Martirosian(STM)integral equation is widely used for the quantum three-body problems of low-energy particles(e.g.,ultracold atom gases).With this equation these three-body problems can be efficiently solved in the momentum space.In this approach the boundary condition for the case that all the three particles are gathered together is described by the upper limit of the momentum integral,i.e.,the momentum cuto ff.On the other hand,in realistic systems,the three-body recombination(TBR)process can occur when all these three particles are close to each other.In this process two particles form a deep dimer and the other particle can gain high kinetic energy and then escape from the low-energy system.In the presence of the TBR process,the momentum-cuto ffin the STM equation would include a non-zero imaginary part.As a result,the momentum integral in the STM equation should be done in the complex-momentum plane.In this case the result of the integral depends on the choice of the integral path.Obviously,only one integral path can lead to the correct result.In this paper we consider how to correctly choose the integral path for the STM equation.We take the atom-dimer scattering problem in a specific ultracold atom gas as an example,and show the results given by different integral paths.Based on the result for this case we explore the reasonable integral paths for general case.

    Key words:STM equation,integral path,atom-dimer scattering

    1 Introduction

    The three-body problems are important for various directions of quantum physics,e.g.,nuclear physics,[1?3]quantum chemistry,[4?5]condensed matter physics[6]and ultracold gases.[3,7]By solving these problems one can not only calculate the important parameters for the quantum systems,e.g.,the atom-dimer interaction intensity[8]and chemical reaction rate,[4]but also explore many interesting physical effects,e.g.,the E fimov effect,[9?11]which is induced by the scaling symmetry of three particles with resonant s-wave interactions.

    In the previous research of quantum three-body problems,many attentions are paid to the low-energy systems where the de Broglie wavelength of the three particles are much larger than the characteristic length of the interparticle interaction potentials.Two examples are the ultracold atom gases and some low-energy nuclear systems.For these systems the physical properties are determined by a few parameters of the inter-particle interactions,such as the two-body scattering lengths,and are independent of the details of these interactions.[12]In another word,the physical properties of these systems are very universal.

    Technically speaking,in the low-energy three-body problems the two-body interaction can be described by simple zero-range potentials or finite-range separable potentials.As a result,the three-body Schr?dinger equation can be re-expressed as an integral equation in the momentum space,i.e.,the Skorniakov-Ter-Martirosian(STM)equation,[13]which is easy to be solved numerically.The STM equation was initially developed by Skorniakov and Ter-Martirosian in 1957,and has been widely used for the three-body problems in various systems,e.g.,the ultracold gases or nuclear systems.

    On the other hand,in the three-body problem with zero-range inter-particle potentials,there are two types of important boundary conditions.They are

    (i)The “two-body short-range boundary conditions”for the cases that two of the three particles are close to each other,while the third one is far away from them.

    (ii)The“three-body short-range boundary condition”for the case that all the three particles are gathered together.

    In the STM equation,the two-body short-range boundary conditions are described by the parameters of two-body low-energy scattering,e.g.,the scattering length,while the three-body short-range boundary condition is described by the upper limit of the integrals over the three-body momentum,[14?17]i.e.the three-body momentum cuto ff.

    Furthermore,in many realistic cases,e.g.,the ultracold atom gases,when the three particles come together,there occurs an inelastic scattering process,which is called as the three-body recombination(TBR).[18?19]Through this process,two particles can form a deep dimer while the third particle obtains high kinetic energy.As a result,the de Broglie wavelengths of all the three particles becomes pretty small,i.e.,the particles “escape” from the low-energy region.In the ultracold gases,with the help of the kinetic energy obtained from the TBR processes,the ultracold atoms can really loss from the trap.Accordingly,in the presence of TBR the momentum cuto ffin the STM equation becomes a complex number with nonzero imaginary part.As a result,the momentum integral in the STM equation must be done in the complex momentum plane,rather than just along the real axis.In this case,the result of the integral depends on the choice of the integral path.[16]Thus,there is a crucial question:which integration path is correct for the calculation of three-body problem via STM equation?

    In this paper we try to investigate this problem by taking a typical atom-dimer scattering problem as an example.Explicitly,we consider the scattering between an ultracold bosonic atom and a shallow dimer,which is formed by one identical bosonic atom and another distinguishable atom(Fig.1),and compare the results given by different momentum integral paths.With the help of our result,we find the integral path,which may be always reasonable for various cases,i.e.,the path shown in Fig.5 and described in Sec.4 in detail.

    The remainder of this paper is organized as follows.In Sec.2,we describe the physical system we study and show the STM equation.In Sec.3,we compare the results given by different integral paths.In Sec.4,we generalize them to the STM equations for more general cases.There are some summary in Sec.5.

    2 System and STM Equation

    As shown in Fig.1,we consider a three-body system consisted by two ultracold identical bosonic atoms(denoted by B),and another ultracold distinguishable atom(denoted by X),with intra-and inter-species scattering length aBBand aBX,respectively.Here we assume that the scattering length aBXbetween each bosonic atom and the atom X is positive and much larger than the range of the inter-species interaction potential,i.e.,the van der Waals length rvdW.For realistic ultracold atom gases this can be realized via the technique of Feshbach resonance.[20]In this case one bosonic atom and the atom X can form a shallow dimer with energy

    whereμBX=mBmX/(mB+mX)is the reduced mass of one bosonic atom and atom X,with mBand mXbeing their respective masses.In addition,for the convenience of our discussion,we further assume the absolute value of the scattering length between the two bosonic atoms,i.e.,|aBB|,is small enough so that the condition

    is satisfied.

    Fig.1 (Color online)Schematic of the three-body system studied in this work.We consider two bosonic atoms(denoted as B)and one extra atom(denoted as X),and assume the two-body scattering length aBXbetween B and X is positive and much larger than the van der Waals length,so that one bosonic atom and the atom X can form a shallow dimer.We calculate the scattering length between this shallow dimer and the other bosonic atom.

    In this work we study how to calculate the scattering length aadbetween the shallow BX-dimer and the other bosonic atom.As shown above,for this system the inter-atomic interactions can be described by zero-range pseudo-potentials,and aadcan be calculated via the STM-equation approach.In Ref.[21]we derive the following STM equation for this problem from the corresponding Lippmann-Schwinger equation.We show that the STM equation can be expressed as the following equations for the functions{A(K,ε),η(K,ε)}(=mB=1):

    with mad=(mX/mB+1)/(mX/mB+2)being the value of the atom–dimer reduced mass in our natural unit,and the function I(K′,ε)in Eq.(3)being defined as

    Here we take the complex angle Arg[z]of a complex number z to be in the region Arg[z]∈ (?π,+π].As we show in Ref.[21],the atom-dimer scattering length aadis given by

    with A(K,ε)being the solution of Eqs.(3)and(4).

    In the STM equation(3)and(4), Λeiζis the upper limit of the momentum integral,or the momentum cuto ff.Here the norm Λ is real and positive,and the real number ζ is the phase angle. ζ is non-zero in the presence of the TBR process.As shown in Sec.1,this upper limit describes the boundary condition for the case that all the three atoms are gathered together.For a realistic ultra-cold atom system,the exact values of Λ and ζ are determined by the short-range detail of the atom-atom interaction.Usually Λ is of the order of 1/rvdW,with rvdWbeing the van der Waals length,and ζ is small and positive.For instance,for41K-87Rb-87Rb system,ζ is suggested to be about 0.19.[22]

    3 Results Given by Di ff erent Integral Paths

    It is clear that the integraldK′plays a central role for the STM equation(3)and(4).Now we compare the results given by different paths of this integral.To be clear,we separately discuss the following three cases:Case 1 aBB<0,Case 2 0a?,with the parameter a?being defined as

    In the following we will show the reason why we define the three cases as above.

    Here we also emphasis that,as a result of the TBR process,the scattering length aadhas a non-zero imaginary part.Furthermore,using the optical theorem one can prove that the imaginary part of aadmust be negative,i.e.,

    This is essentially due to the unitarity of the S-matrix of the atom-dimer scattering process.Physically speaking,the absolute value of Im(aad)is directly related to the TBR rate or the three-body loss rate K3via the relation

    Equation(8)is the necessary condition for the physicallycorrect solution of the STM equation.

    3.1 Case 1

    For case 1 with aBB<0,there are the following two typical integral paths,as shown in Fig.2(a).Path-I is the straight line from K′=0 to K′= Λeiζ,while path-II consists of two straight lines(in blue color with arrow):from K′=0 to K′=Re[Λeiζ](denoted as path-IIa),and then from K′=Re[Λ eiζ]to K′= Λ eiζ(path-IIb).It is clear that for the integraldK′in the STM equation(3)and(4),the integrands have no pole in the region between these two paths in the limit ε→ 0+.As a result,the solutions of the STM equation with the two integration paths are the same.

    Fig.2 (Color online)(a)Typical integration paths for case 1;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 1.Here we take mB=mX,aBXΛ =100,and ζ=0.1,and show the results given by path-I(red dashed-dotted line)and path-II(blue open circles).The black dashed line in(c)indicates the positions with Im[aad]=0.

    In Figs.2(b)and 2(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with the two integral paths,for the cases with three equal-mass atoms with ζ=0.1.It is clearly illustrated that,as analyzed above,the two results are same with each other.In addition,as shown in Fig.2(c),the condition(8)is well satisfied by the results given by the integral path-I and path-II.

    3.2 Case 2

    Now we consider case 2 with 00,in this case the two bosonic atoms can also form a dimer(BB-dimer),whose energycan be expressed as

    in our natural unit. According to our assumption in Eq.(2),we have>|Eb|,i.e.,the BB-dimer is a“deep dimer”whose binding energy is larger than the one of the shallow dimer formed by one bosonic atom and the atom X.

    In this case,the equation I(K′,ε)=0 with the function I(K′,ε)being defined in Eq.(5),has one solution near the positive half of the real axis of the complex K′plane in the limit ε → 0+.Explicitly,we have

    with

    It is clear that K0+iη is a pole of the integrand of the integral∫Λeiζ0dK′in the STM equation(3).In addition,since in this case we have 0

    Therefore,in this case there are three typical integral paths for the momentum integral in the STM equations,as shown in Fig.3(a).Path-I and path-II are defined as in the above case 1.In addition,path-III consists of four straight lines:the line from K′=0 to K′=Re[Λeiζ](path-IIIa,same to path-IIa),then from Re[Λeiζ]to K′=K1(path-IIIb),then from K′=K1to K′=K1+iIm[Λeiζ](path-IIIc),and finally from K′=K1+iIm[Λ eiζ]to K′= Λeiζ(path-IIId).Here K1can be an arbitrary real number larger than K0.

    Since no pole of the integrand of the STM equation appears in the area surrounded by path-I and path-II,and one pole(i.e.,K0+iη)appears in the area surrounded by path-II and path-III,the direct analysis yields that the the solution of the STM equation with momentum integral path-I and path-II would be same with each other,while the path-III would lead to a different solution.So,the question is:which path is reasonable?

    To answer this question,we calculate the atom-dimer scattering length aadwith the STM equation with these three integral paths,and show Re[aad]and Im[aad]in Figs.3(b)and 3(c),respectively.It is clearly shown that the necessary condition in Eq.(8)is well-satisfied by all the results from path-III,but violated by some results from path-I and path-II.Therefore,in this case the path-III is the reasonable integral path for the STM equation.

    Fig.3 (Color online)(a)Typical integration paths for case 2;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 2.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue open circles),and path-III(magenta solid line).

    3.3 Case 3

    Now we consider case 3 with aBB>a?.Similar as in case 2,in this case the two bosonic atoms can also form a deep dimer with energygiven by Eq.(10).As a result,the pole K0+iη of the integrand of the integraldK′in the STM equation(3)can also appear near the positive half of the real axis of the complex K′plane.

    The only difference between the current case and case 2 is that,since aBB>a?,in the current we have

    Thus,as shown in Fig.4(a),now there are two typical momentum integral paths,i.e.,path-I and path-II,which have the same definitions as in the above cases 1 and 2.Nevertheless,the fact(15)yields that in the current case the pole K0+iη appears in the area surrounded by the two paths.Thus,the results given by these two integral paths would be different,and we should judge,which path is reasonable.

    In Figs.4(b)and 4(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with these two integral paths.It is shown that the results given by the path-II can satisfy the necessary condition in Eq.(8),while the ones from path-I can violate this condition.Thus,in the current case path-II is reasonable.

    Fig.4 (Color online)(a)Typical integration paths for case 3;(b)and(c)Re[aad]and Im[aad]as functions of aBB,for the systems of case 3.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue dotted line).

    4 Generalization to Other Cases

    In the above section we study how to choose the reasonable momentum integral paths for the STM equation for the atom-dimer scattering problem introduced in Sec.2.Now we summarize the results obtained above to some principle,which can be generalized to other threebody problems.

    Our above analysis for the three cases 1,2,and 3 show that,the positions of some poles of the integrands of the integralin the STM equation is very important for the selection of the momentum integral path.Explicitly,the poles localized at the point K′=K?+iη?with K?>0 and η?→ 0+in the limit ε → 0+,with ε being the small positive imaginary part of the energy in the Green’s function,are very important.The reasonable integral path from K′=0 to K′= Λeiζshould go across below all of these poles.The reasonable paths for the above cases 1,2,and 3 all satisfy this condition.

    Thus,there is a special path,which would be always reasonable,i.e.,the path from K′=0 to K′=+∞,and then to K′=+∞ +iIm[Λeiζ]and then to K′= Λeiζ(the path shown in Fig.5(a)).Obviously,all the paths,which can be continuously deformed from this path without crossing any pole are also reasonable.

    In addition,there is an interesting particular case,i.e.,the case with ζ=0 and some poles with K?> Λ.This can be understood as the limit ζ→ 0 of the above cases.Thus,according to our above principle,as shown in Fig.5(b),for this case the reasonable integral path is not the path directly from K′=0 to K′=Λ.It would be the path from K′=0 to K′=+∞,and then to K′=+∞+iΓ,with Γ being any finite positive value,and then to K′= Λ +iΓ,and then to K′=Λ.

    It is clear that,the above principle for the choosing of the momentum integral path can be straightforwardly applied to the STM equations for other three-body problems.

    Fig.5 (Color online)Reasonable integration paths for general cases with ζ>0(a)and ζ=0(b).

    5 Summary and Discussion

    In this work we study how to choose the momentum integral path for the STM equation.By studying a typical atom-dimer scattering problem,we show that different integral path can lead to quite different solutions of the STM equation,especially for the imaginary part of the atom-dimer scattering length or the TBR rate K3.

    More importantly,we find that the necessary condition(8)can always be satisfied by the integral path,which the paths,which can be continuously deformed from the special path shown in Fig.5 without crossing any pole.This principle can be generalized to other three-body problems.Thus,our result is very helpful for the study of low-energy three-body problems in the presence of TBR.

    To our knowledge,so far the quantitative expression for the three-body short-range boundary condition in real space,which is mathematically equivalent to the momentum cuto ff Λeiζand the reasonable integral path shown above,has not been derived.In future we will try to explore this expression,so that the short-range physics can be described more clearly.

    Acknowledgments

    We thank Pascal Naidon,Hui Zhai,and Ren Zhang for helpful discussions and important suggestions.

    猜你喜歡
    高超
    Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose–Einstein condensate
    內(nèi)外兼修
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    我們愛勞動(dòng)
    哲理漫畫
    寶塔山詠懷
    中華魂(2021年10期)2021-10-15 21:42:51
    Single pixel imaging based on semi-continuous wavelet transform*
    Turbulent boundary layer control with a spanwise array of DBD plasma actuators
    巧奪天工
    美蓓亞展示提高汽車性能的高超技術(shù)
    汽車零部件(2015年4期)2015-12-22 05:45:22
    久久精品熟女亚洲av麻豆精品| 国产一区二区亚洲精品在线观看| 99久久九九国产精品国产免费| 在线观看一区二区三区激情| 亚洲欧美一区二区三区国产| 美女内射精品一级片tv| 噜噜噜噜噜久久久久久91| 亚洲av福利一区| 菩萨蛮人人尽说江南好唐韦庄| 五月伊人婷婷丁香| 国产午夜精品久久久久久一区二区三区| 午夜福利在线观看免费完整高清在| 五月开心婷婷网| 黄色欧美视频在线观看| 欧美潮喷喷水| 最近最新中文字幕大全电影3| 新久久久久国产一级毛片| 高清在线视频一区二区三区| 晚上一个人看的免费电影| 91精品国产九色| 91精品国产九色| 亚洲欧美一区二区三区国产| 亚洲,一卡二卡三卡| 免费看a级黄色片| 久久久久久久久久人人人人人人| 天天一区二区日本电影三级| 国产伦理片在线播放av一区| 久久亚洲国产成人精品v| 日韩欧美一区视频在线观看 | 内射极品少妇av片p| 乱码一卡2卡4卡精品| av在线app专区| 高清毛片免费看| 亚洲国产精品国产精品| 国产精品国产三级国产专区5o| 久久久久精品性色| 国产精品熟女久久久久浪| 免费观看性生交大片5| 亚洲国产欧美人成| 国产精品爽爽va在线观看网站| 搡老乐熟女国产| 18禁在线播放成人免费| 精品久久久久久久久av| 九色成人免费人妻av| 97在线视频观看| 久久久久久国产a免费观看| 18禁裸乳无遮挡动漫免费视频 | 亚洲成人一二三区av| 国产中年淑女户外野战色| 国产亚洲精品久久久com| 午夜福利视频1000在线观看| 亚洲最大成人手机在线| 乱系列少妇在线播放| 久久人人爽人人片av| 黄色视频在线播放观看不卡| 水蜜桃什么品种好| 久久精品久久久久久久性| 天堂俺去俺来也www色官网| 热re99久久精品国产66热6| 日韩 亚洲 欧美在线| 高清欧美精品videossex| 午夜老司机福利剧场| 婷婷色综合www| 禁无遮挡网站| 日韩免费高清中文字幕av| 亚洲最大成人手机在线| 成年人午夜在线观看视频| 精品人妻熟女av久视频| 下体分泌物呈黄色| 久久久久国产精品人妻一区二区| 丝袜美腿在线中文| 97在线视频观看| 激情五月婷婷亚洲| 国产一区亚洲一区在线观看| 国产成人91sexporn| 视频区图区小说| 一区二区av电影网| 成人国产av品久久久| 色网站视频免费| 丝袜脚勾引网站| 秋霞在线观看毛片| 欧美极品一区二区三区四区| 国产色婷婷99| 青春草视频在线免费观看| 免费黄网站久久成人精品| 亚洲不卡免费看| 亚洲天堂国产精品一区在线| 中国三级夫妇交换| 女人十人毛片免费观看3o分钟| 干丝袜人妻中文字幕| 性色avwww在线观看| 99热国产这里只有精品6| 国产又色又爽无遮挡免| 国产av不卡久久| 青春草视频在线免费观看| 亚洲精品影视一区二区三区av| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区黑人 | 精品国产露脸久久av麻豆| 国产爽快片一区二区三区| 91在线精品国自产拍蜜月| 精品午夜福利在线看| 欧美日韩在线观看h| 欧美亚洲 丝袜 人妻 在线| 日韩欧美一区视频在线观看 | 久久久久久久国产电影| 国产精品女同一区二区软件| 最后的刺客免费高清国语| 亚洲av一区综合| av播播在线观看一区| 久久亚洲国产成人精品v| 中文字幕免费在线视频6| 深爱激情五月婷婷| av播播在线观看一区| 尾随美女入室| 国产精品国产三级国产专区5o| 亚洲av免费在线观看| 大香蕉久久网| 久久久久久久久久久丰满| 男男h啪啪无遮挡| 欧美bdsm另类| 欧美激情国产日韩精品一区| 久久人人爽人人片av| 久久ye,这里只有精品| 国产乱人视频| 可以在线观看毛片的网站| 国语对白做爰xxxⅹ性视频网站| 亚洲一级一片aⅴ在线观看| 两个人的视频大全免费| 久久久欧美国产精品| 久久99热6这里只有精品| 一级毛片电影观看| 2021少妇久久久久久久久久久| 精品国产露脸久久av麻豆| av在线app专区| 2021少妇久久久久久久久久久| 久久久久久国产a免费观看| 男女啪啪激烈高潮av片| 久久精品国产亚洲av涩爱| 一级av片app| 卡戴珊不雅视频在线播放| 久久精品国产自在天天线| 久久久久久久久久久免费av| 伦精品一区二区三区| 麻豆精品久久久久久蜜桃| 精品一区在线观看国产| 2021天堂中文幕一二区在线观| 高清视频免费观看一区二区| 日本一二三区视频观看| 国内揄拍国产精品人妻在线| 国产精品.久久久| 国产色爽女视频免费观看| 免费黄色在线免费观看| 国产免费一区二区三区四区乱码| a级毛色黄片| 精品99又大又爽又粗少妇毛片| 麻豆精品久久久久久蜜桃| 下体分泌物呈黄色| 狂野欧美激情性bbbbbb| 亚洲精品第二区| 少妇人妻精品综合一区二区| 午夜爱爱视频在线播放| 国产 精品1| 丝袜美腿在线中文| 深爱激情五月婷婷| 日韩三级伦理在线观看| 国产 一区精品| 永久免费av网站大全| 白带黄色成豆腐渣| 麻豆成人av视频| 成人午夜精彩视频在线观看| 极品少妇高潮喷水抽搐| 亚洲精品国产av蜜桃| 亚洲成人一二三区av| 久久久久网色| 午夜精品国产一区二区电影 | 国产老妇伦熟女老妇高清| 午夜福利视频精品| 综合色丁香网| 欧美激情在线99| 少妇的逼好多水| tube8黄色片| 色播亚洲综合网| 在线观看三级黄色| 男女啪啪激烈高潮av片| 午夜精品一区二区三区免费看| 在现免费观看毛片| 美女主播在线视频| 国产黄片美女视频| 伊人久久国产一区二区| 国语对白做爰xxxⅹ性视频网站| 最近2019中文字幕mv第一页| 国产探花在线观看一区二区| 亚洲欧美一区二区三区黑人 | 夜夜看夜夜爽夜夜摸| 一级毛片黄色毛片免费观看视频| 在线观看av片永久免费下载| 一区二区三区精品91| 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 国产精品熟女久久久久浪| 国产91av在线免费观看| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 2018国产大陆天天弄谢| 久久国内精品自在自线图片| 午夜激情福利司机影院| 直男gayav资源| 精品视频人人做人人爽| 丝瓜视频免费看黄片| 亚洲久久久久久中文字幕| 狠狠精品人妻久久久久久综合| 晚上一个人看的免费电影| 91精品国产九色| 亚洲久久久久久中文字幕| 日韩欧美一区视频在线观看 | 亚洲自拍偷在线| 天天躁夜夜躁狠狠久久av| 欧美xxⅹ黑人| 日本-黄色视频高清免费观看| 欧美精品人与动牲交sv欧美| 国产白丝娇喘喷水9色精品| 欧美+日韩+精品| 国产成人一区二区在线| 国产午夜精品一二区理论片| 精品视频人人做人人爽| 男人添女人高潮全过程视频| 亚洲av成人精品一区久久| 亚洲久久久久久中文字幕| 特大巨黑吊av在线直播| 性色av一级| 免费看日本二区| 婷婷色av中文字幕| 免费av观看视频| 欧美最新免费一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲欧美成人精品一区二区| 91精品一卡2卡3卡4卡| 99久久精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 免费黄频网站在线观看国产| 精品人妻一区二区三区麻豆| 亚洲精品一区蜜桃| 国产久久久一区二区三区| 女的被弄到高潮叫床怎么办| 蜜桃亚洲精品一区二区三区| 男人狂女人下面高潮的视频| 91精品国产九色| 亚洲精品国产av蜜桃| 国产91av在线免费观看| 男女那种视频在线观看| 午夜免费男女啪啪视频观看| 九草在线视频观看| 波野结衣二区三区在线| 午夜福利网站1000一区二区三区| 精品人妻视频免费看| 国产成人免费观看mmmm| 国国产精品蜜臀av免费| 亚洲精品久久午夜乱码| 一区二区三区乱码不卡18| 亚洲人与动物交配视频| 欧美日韩亚洲高清精品| 成人综合一区亚洲| 亚洲性久久影院| 久久久久久久久久久免费av| 永久免费av网站大全| 久久99蜜桃精品久久| 亚洲美女视频黄频| 国产精品一及| 一级毛片电影观看| 少妇猛男粗大的猛烈进出视频 | 在线观看一区二区三区激情| 看黄色毛片网站| 精品酒店卫生间| 久久久久久九九精品二区国产| 丰满人妻一区二区三区视频av| 18禁在线无遮挡免费观看视频| 国产亚洲精品久久久com| 三级国产精品片| 国产日韩欧美亚洲二区| 97超碰精品成人国产| 精品国产一区二区三区久久久樱花 | 男的添女的下面高潮视频| 深夜a级毛片| 免费不卡的大黄色大毛片视频在线观看| 久久精品综合一区二区三区| 久久99热这里只频精品6学生| 国产亚洲精品久久久com| 又爽又黄无遮挡网站| 国产色爽女视频免费观看| 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| 国产一区二区在线观看日韩| 国产成年人精品一区二区| 我要看日韩黄色一级片| 成人无遮挡网站| 久久精品国产亚洲网站| 亚洲美女搞黄在线观看| 青春草视频在线免费观看| 看免费成人av毛片| 国产免费一级a男人的天堂| 2021天堂中文幕一二区在线观| 一区二区av电影网| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 在线 av 中文字幕| 狠狠精品人妻久久久久久综合| 联通29元200g的流量卡| 国产毛片a区久久久久| 男的添女的下面高潮视频| 成人国产麻豆网| 一级毛片电影观看| 亚洲综合精品二区| 女的被弄到高潮叫床怎么办| 成人一区二区视频在线观看| 大香蕉久久网| 午夜日本视频在线| 亚洲av免费在线观看| 欧美激情在线99| 午夜激情福利司机影院| 真实男女啪啪啪动态图| 成人高潮视频无遮挡免费网站| 久久久久久九九精品二区国产| 亚洲国产精品专区欧美| 少妇裸体淫交视频免费看高清| 美女主播在线视频| 国产黄片美女视频| 男女边摸边吃奶| 最近最新中文字幕免费大全7| 观看美女的网站| 精品人妻熟女av久视频| 国产乱人偷精品视频| 亚洲性久久影院| 亚洲精品自拍成人| 在线观看三级黄色| 美女内射精品一级片tv| 成年免费大片在线观看| 国产探花在线观看一区二区| 欧美最新免费一区二区三区| 日本色播在线视频| 久久久久久久午夜电影| 亚洲欧美清纯卡通| 国产又色又爽无遮挡免| 欧美变态另类bdsm刘玥| 日本-黄色视频高清免费观看| 精品国产乱码久久久久久小说| 综合色av麻豆| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式| 亚洲精华国产精华液的使用体验| 国产有黄有色有爽视频| 26uuu在线亚洲综合色| 日韩强制内射视频| 成年人午夜在线观看视频| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看 | 在现免费观看毛片| 欧美成人午夜免费资源| 亚洲无线观看免费| 男女边摸边吃奶| 亚洲内射少妇av| 日本欧美国产在线视频| 久久久久久久久久久丰满| 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 综合色丁香网| 久久精品国产亚洲网站| 国产欧美日韩精品一区二区| 你懂的网址亚洲精品在线观看| 亚洲精品成人久久久久久| 日本av手机在线免费观看| 国产乱来视频区| 午夜视频国产福利| 国产高潮美女av| 爱豆传媒免费全集在线观看| 禁无遮挡网站| 如何舔出高潮| 国产毛片在线视频| 免费看a级黄色片| 一级毛片电影观看| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 久久精品综合一区二区三区| 水蜜桃什么品种好| 久久这里有精品视频免费| av.在线天堂| 亚洲内射少妇av| 国产精品伦人一区二区| 国产高潮美女av| 超碰av人人做人人爽久久| 建设人人有责人人尽责人人享有的 | 免费观看a级毛片全部| 色婷婷久久久亚洲欧美| 一个人看视频在线观看www免费| 亚洲成人中文字幕在线播放| 国产片特级美女逼逼视频| 三级经典国产精品| 久久久国产一区二区| 亚洲成人一二三区av| 大陆偷拍与自拍| 一级毛片电影观看| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在| 嫩草影院新地址| 国产老妇伦熟女老妇高清| 小蜜桃在线观看免费完整版高清| 亚洲精品乱码久久久久久按摩| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 亚洲成人精品中文字幕电影| 亚洲色图综合在线观看| 国产在线一区二区三区精| 十八禁网站网址无遮挡 | 有码 亚洲区| 人妻系列 视频| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 国产免费视频播放在线视频| 成年av动漫网址| 中文字幕av成人在线电影| 午夜老司机福利剧场| 亚洲,欧美,日韩| 亚洲av免费在线观看| 美女视频免费永久观看网站| 亚洲国产高清在线一区二区三| 一边亲一边摸免费视频| 特大巨黑吊av在线直播| 寂寞人妻少妇视频99o| 嫩草影院精品99| 国产日韩欧美亚洲二区| 亚洲精品乱码久久久久久按摩| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 1000部很黄的大片| 嫩草影院新地址| 男女那种视频在线观看| 亚洲精品,欧美精品| 色播亚洲综合网| 大又大粗又爽又黄少妇毛片口| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 免费av不卡在线播放| 国产男女内射视频| 亚洲成人一二三区av| 国产成人精品久久久久久| 日韩强制内射视频| 亚洲久久久久久中文字幕| 国产乱人视频| 国产精品熟女久久久久浪| 亚洲,欧美,日韩| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜爱| 老女人水多毛片| 国产精品成人在线| 六月丁香七月| 欧美高清成人免费视频www| 久久久久久久久大av| 麻豆乱淫一区二区| 色网站视频免费| 久久精品综合一区二区三区| 欧美成人午夜免费资源| 亚洲精品亚洲一区二区| 久久韩国三级中文字幕| 成人综合一区亚洲| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影小说 | 一级片'在线观看视频| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 久久综合国产亚洲精品| 国产成人精品一,二区| 亚洲熟女精品中文字幕| 国内精品宾馆在线| 色综合色国产| 久久久久久久午夜电影| 亚洲图色成人| 午夜日本视频在线| 午夜老司机福利剧场| 亚洲精品一二三| 七月丁香在线播放| 热re99久久精品国产66热6| 国产爱豆传媒在线观看| 大片免费播放器 马上看| 在线播放无遮挡| 国产精品一及| 久久精品久久久久久久性| 国产av码专区亚洲av| 噜噜噜噜噜久久久久久91| 新久久久久国产一级毛片| 久久99精品国语久久久| 18禁裸乳无遮挡免费网站照片| 91精品一卡2卡3卡4卡| av免费在线看不卡| 国产精品一二三区在线看| 成年女人看的毛片在线观看| 久久久久久久精品精品| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 97精品久久久久久久久久精品| 欧美最新免费一区二区三区| 听说在线观看完整版免费高清| 久久久a久久爽久久v久久| 亚洲精品日韩av片在线观看| 国产 精品1| 人体艺术视频欧美日本| 久久综合国产亚洲精品| 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 免费观看av网站的网址| 69av精品久久久久久| 18+在线观看网站| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 男人舔奶头视频| 久久久色成人| 亚洲经典国产精华液单| 午夜免费鲁丝| 人妻 亚洲 视频| 日日撸夜夜添| 特大巨黑吊av在线直播| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 亚洲经典国产精华液单| 国产精品女同一区二区软件| 成年女人在线观看亚洲视频 | 国产中年淑女户外野战色| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 国国产精品蜜臀av免费| 搡老乐熟女国产| 99热这里只有是精品50| 精品国产三级普通话版| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 欧美少妇被猛烈插入视频| 最近最新中文字幕大全电影3| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 国产精品一区二区在线观看99| 午夜免费鲁丝| 尾随美女入室| 亚洲av欧美aⅴ国产| 美女内射精品一级片tv| 黄色配什么色好看| 国产高清国产精品国产三级 | 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 乱系列少妇在线播放| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 少妇高潮的动态图| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 王馨瑶露胸无遮挡在线观看| 成年版毛片免费区| 国产成人免费无遮挡视频| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 深爱激情五月婷婷| 欧美老熟妇乱子伦牲交| 97在线视频观看| 波多野结衣巨乳人妻| 久久久久久久午夜电影| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| 国产视频首页在线观看| 国产午夜精品一二区理论片| 久久久精品94久久精品| 欧美高清成人免费视频www| 一级毛片电影观看| 国产精品人妻久久久久久| 久久ye,这里只有精品| 97超碰精品成人国产| 国产精品女同一区二区软件| 伊人久久精品亚洲午夜| 69人妻影院| 五月开心婷婷网| av卡一久久| 国产老妇女一区| 午夜福利视频1000在线观看| 国产成人精品久久久久久| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 久久精品夜色国产| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 蜜桃亚洲精品一区二区三区| av免费观看日本| 九九爱精品视频在线观看| 精品久久久久久电影网| 中文在线观看免费www的网站| 99久久中文字幕三级久久日本| 又黄又爽又刺激的免费视频.| 大码成人一级视频| 可以在线观看毛片的网站|