• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Pressure Parametric Dark Energy Model?

    2018-12-13 06:33:20JunChaoWang王俊超andXinHeMeng孟新河
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:新河

    Jun-Chao Wang(王俊超) and Xin-He Meng(孟新河)

    Department of Physics,Nankai University,Tianjin 300071,China

    AbstractIn this paper,we propose a new pressure parametric model of the total cosmos energy components in a spatially flat Friedmann-Robertson-Walker(FRW)universe and then reconstruct the model into quintessence and phantom scenarios,respectively.By constraining with the datasets of the type Ia supernova(SNe Ia),the baryon acoustic oscillation(BAO)and the observational Hubble parameter data(OHD),we find thatat the 1σ level and our universe slightly biases towards quintessence behavior.Then we use two diagnostics including Om(a)diagnostic and state finder to discriminate our model from the cosmology constant cold dark matter(ΛCDM)model.From Om(a)diagnostic,we find that our model has a relatively large deviation from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model at low redshifts and in the future evolution,but they can be easily differentiated from each other at the 1σ level all along.By the state finder,we find that both of quintessence case and phantom case can be well distinguished from the ΛCDM model and will gradually deviate from each other.Finally,we discuss the fate of universe evolution(named the rip analysis)for the phantom case of our model and find that the universe will run into a little rip stage.

    Key words:dark energy model,quintessence,phantom,Om diagnostic,state finder,the rip

    1 Introduction

    The conventional Einstein field equation dominated by matter without negative pressure(Gμν=8πGTμν)and Hubble law leads to the conclusion that the universe is in a decelerating expansion period.However,since the reported results of the accelerated expasnion of the universe from the supernova data observed in 1998[1]and 1999,[2]further observations consistently show that that the current universe is in the phase of accelerated expansion.In order to physically account for the phenomenon,one way is to modify the left side of the traditional Einstein field equation(modify the gravity).Another way is to add a negative pressure matter component named dark energy to the right side of the equation.One of the global fitting well scenarios is the so-called standard cosmology or the ΛCDM model,which includes the simplest dark energy model with the equation of state(EoS)ω ≡ p/ρ= ?1 that provides a reasonably good account of the properties of the currently observed cosmos such as accelerating expansion of the universe,the large-scale structure and cosmic microwave background(CMB)radiation.However,there has a major problem(named the fine-tuning problem)that the observed value of dark energy density is 120 orders of magnitude smaller than the theoretical value in quantum field theory if taking the allowed highest energy cut o ffscale as the Planck mass;[3?4]besides,there is also the so called coincidence problem,which asks why dark energy density and physical material density are exactly in the same order of magnitude.To alleviate these problems,some extended models have been raised such as an evolving scalar field with the time variant EoS,for example.

    In order to study the characterization of dark energy component,one of the feasible methods is to parameterize some observable physical quantities and then use the observed data to quantify the parameters.The mainstream is the EoS parametrization,such as Chevalier-Polarski-Linder(CPL)[5?6]parametrization ωde(z)= ω0+ωaz/(1+z)which behaves as ωde→ ω0for z → 0 and ωde→ ω0+ωafor z→ ∞.A few years later a more general form ωde(z)= ω0+ ωaz/(1+z)pnamed Jassal-Bagla-Padmanabhan(JBP)[7]parametrization has been proposed.In addition,Wetterich[8]has also given a parametric form which goes by ωde(z)= ω0/[1+bln(1+z)]2and it behaves as ωde→ ω0for z → 0 and ωde→ 0 for z→∞.

    In recent years,some pressure parametric models for the mysterious dark energy or total energy components have been continuously proposed.In 2008,Sen,Kumar,and Nautiyal[9?10]have put forward a pressure parametric model of dark energy

    Seven years later,Zhang,et al.,[11?12]have proposed two dark energy models for the total pressure P(z)=Pa+Pbz and P(z)=Pc+Pd(z/(1+z)).Then,two years latter,Wang,Yan,and Meng[13]have raised a pressureparametrization unified dark fluid model P(z)=Pa+Pb(z+z/(1+z)).In the following of this paper we give out a new pressure parametric model of the total energy components as P(z)=Pa+Pbln(1+z),(z≠ ?1)in a spatially flat FRW universe and then we discuss its property detailedly.

    To investigate the model properties in details,this paper is organized as follows:In Sec.2,we propose the parametric model by continuously previous studying with the essential formalism and discuss the meanings for the two parameters of the model analytically.Section 3 is the reconstructions of our model with the quintessence and phantom scalar fields,respectively.In Sec.4,we constrain our model by using data from SNe Ia,BAO and OHD.In Sec.5,we discriminate our model from the ΛCDM model by using Om(a)diagnostic and the state finder parameters.Section 6 shows the discussions about the fate of universe evolution named the rip analysis for the phantom case of proposed model.In the last section,Sec.7,the conclusions and discussions are given.

    2 The Parametric Model

    Though two decades have passed a consistent and convincing dark energy theory is yet to come.To understand the puzzling dark energy physics better and by keeping on our exploration,we can properly parameterize its pressure.For example,one can hypothesize a relation between the pressure and the redshift,then integrate out the expression of the density ρ through the conservation equation.Finally from the Fridemann equations H2=(8πG/3)∑iρiand the EoS ω =P/ρ we are able to get the form of the Hubble parameter H and ω expression,respectively.By this treatment so far,a closed system for the evolution of the universe has been established,which is described by the Friedmann equations,the conservation or continous equation and the EoS form.

    Assume a relationship between the pressure of all energy components in the universe and the redshift as below,

    where Paand Pbare free parameters.We make this assumption because the form of ln(1+z)=z?(z2/2)+(z3/3)? ···for|z|<1 and it may be much helpful for providing more opportunities to further other studies related.When Pb=0,the model is reduced to the well known ΛCDM model;while when Pb≠0,the total pressure gives more interesting properties.By using the relation of scale factor a=1/(1+z)and the conservation equation,we have

    where C is an integration constant.We assume that ρ0is the present-day energy density i.e.ρ(a=1)= ρ0.Finally the total energy density and pressure can be integrated separately as

    Here the parameters(Pa,Pb)are replaced by new dimensionless parameters(α,?m0)where α ≡ ?Pb/ρ0and?m0≡ (1/ρ0)(ρ0+Pa+(1/3)Pb).

    In this model,ρ(a)contains cosmic matter contribution ?m0a3and the cosmic dark energy composition 1??m0?αlna.If we require that the density of each component would be greater than zero,then ρde/ρ0=1??m0+αln(1/a)>0,so the part of a>exp((1??m0)/α)>1 if α >0 and a0 are out of discussing.Further,if we bend the rules and only require H2=(8πG/3)ρ0(1??m0?αlna+?m0a?3)to be greater than zero,then,for α>0,H2goes less than zero with a large a;For α<0,H2increases first and then decreases,and gets the minimum at a=(?(3/α)?m0)1/3.Taking an example of ?m0=0.3,the α > ?4 guarantees H2>0.The EoS of the dark energy and the dimensionless Hubble parameter take the form,respectively

    To exhibit dark energy better,we derive the density ratio parameter of the dark energy as follows

    Two parameters α and ?m0will be constrained by observations in the following section.On the one hand,when a=1,?m=1??de= ?m0.So ?m0is the presentday matter density parameter.On the other hand,when α =0,the model reduces to the flat ΛCDM model.Further,we can see clearly that in the next section,the α>0 for the quintessence case while α<0 corresponded to the phantom case.

    3 The Reconstructions

    Unlike the ΛCDM model,this scenario gets the dynamical dark energy within.The natural way to introduce varying dark energy is to assume a scalar field that changes over time and the corresponding pressure and energy are respective i.e.Pde=Pscalar,ρde= ρscalar.In this section,we discuss the quintessence and phantom scalar field separately.Consider the dark energy as a real scalar field ? with the action of stress energy,which can be written as

    where(b/2)gμν?μ??ν? is the kinetic energy and V(?)is the potential energy,b=1 or?1 corresponding to the quintessence case and phantom case,respectively.And the stress-energy tensor is

    If we regard the scalar field as a perfect fluid,the energy density and pressure of the scalar field can be written as

    Assume ? is uniform in space and only relies on time i.e.?= ?(t),then Eqs.(10)and(11)can be simplified to

    where the dot denotes the derivatives w.r.t.the cosmic time.

    3.1 The Quintessence Case

    Assume the universe consists of quintessence and matter.By comparing Eqs.(3)and(4)with Eqs.(12)and(13),we can obtain

    Simplify the above two equations,then we have

    where Mpl≡ (8πG)?1/2and.In Eq.(18),“±” corresponds to two solutions.Only when α >0,Eq.(18)is meaningful.So α>0 corresponds to the quintessence case.And from Eq.(5)we know that at this time ωde> ?1.

    From Eqs.(17)and(18)we can draw the relation between ?(a)and V(?)shown in Fig.1.In Fig.1,from the upper panels we know that ? increases as a increases while V decreases as ? increases.The lower panels show that ? decreases as a increases while V decreases as ? decreases.So for quintessence case,V decreases as a increases and it implies ρdewill decrease in the future.

    Fig.1 The quintessence field ?/?0versus the scale factor a,and the quintessence field ?/?0versus the potential V/V0(assume ?0= ?(a=0)=1 and V0= ρ0).The upper and lower panels correspond to the plus and minus sign in Eq.(18),respectively.The arrows indicate the evolutional directions of the potential,and we have used ?m0=0.3 and α =0.05 numerically.

    3.2 The Phantom Case

    Assume the universe consists of phantom and matter.By comparing Eqs.(3)and(4)with Eqs.(12)and(13),we can obtain

    Subsequently,by solving the above two equations,one can derive

    From Eqs.(22)and(23)we can draw the relation between ?(a)and V(?)shown in Fig.2.In Fig.2,from the upper panels we know that ? increases as a increases while V increases as ? increases.And the lower panels show that ? decreases as a increases while V increases as ? decreases.So for the phantom case,V increases as a increases,which implies ρdewill increase in the future and lead H→∞as a→∞,and universe will get rip in the end.

    Fig.2 The phantom field ?/?0versus the scale factor a,and the phantom field ?/?0versus the potential V/V0(assume ?0= ?(a=0)=1 and V0= ρ0).The upper and lower panels correspond to the plus and minus sign in Eq.(23),respectively.The arrows indicate the evolutional directions of the potential.We have used ?m0=0.3 and α = ?0.05 numerically.

    4 The Constraints

    4.1 Type Ia Supernova

    Measuring the distance by the light curve of a supernova is one of the most accurate ways to measure the distance to the universe.In this paper we use the Union2.1 SNe Ia dataset,[14]which contains 580 SNe Ia.First,we minimize the chi-square

    whereμobs(zi)is the observed distance modulus,σiis the 1σ level of the observed distance modulus for each supernova andμ(zi)is the theoretical distance modulus which is defined as

    where H0is the Hubble parameter at z=0,C is the zero value of the distance modulus and DLis the Hubblefree luminosity distance in a spatially flat FRW universe,which can be written as

    where E(z)is the dimensionless Hubble parameter.Since the zero value C in Eq.(25)of the distance modulus measured in the astronomical observation is arbitrarily selected,H0is also arbitrary.In Eq.(25),H0appears in 5lnH0.Assume x=5lnH0for a uniform distribution,P(x)=1.Then the likelihood for marginalize x can be written as

    By solving Eq.(27),we get the marginalized result

    4.2 Baryon Acoustic Oscillations

    BAO is the fluctuations of the visible baryonic matter density on the length scale after the pre-recombination universe,and the BAO peak is centered on a comoving distance equal to the sound horizon at the drag epoch,rs.BAO can be measured in the transverse and radial direction.The transverse measurement DLH0/(1+z)rsis sensitive to the photometric redshift,where DLis the Hubble-free luminosity distance shown in Eq.(26);While the radial measurement DH/rsis correlative to the Hubble parameter H(z),where DH=c/H0E(z)is the Hubble distance.The geometrical mean of radial and transverse distance named the volume averaged comoving angular diameter distance Dv(z)is given by

    Then we get the observables d(z)and A(z)which can be written as

    Table 1 The BAO data at the 1σ level used in this paper.

    In this section,H0and rsare the extra parameters so we use the data of Plank15 for H0=67.3 km ·s?1·Mpc?1and rs=147.33 Mpc.And the BAO data used in this paper are listed in Table 1.Next,by using the datasets Refs.[15–22],we need to calculate the chi-squares respectively,which are written as

    and

    And then we get

    4.3 Observational Hubble Parameter Data

    The observational methods for H0are the differential age method,the radial BAO size method and the gravitational wave method.In this paper,we use a compilation of 33 uncorrelated data points measured by the differential age method listed in Table 2.

    Fig.3 (Color online)The 1σ and 2σ level ranges of the model parameter pair(?m0,α)for using SNe Ia data(grey),OHD data(green),BAO data(pink)and the combined data of SNe Ia+OHD+BAO(yellow).

    Then we need to figure out

    The observational constraints on the model parameter pair(?m0,α)are shown in Fig.3;The best- fit values at the 1σ level of parameters ?m0and α from the joint constraints SNe Ia+BAO+OHD are listed in Table 3;The relations of(a,ωde),(a,q)and(a,?de)compared with our model for the best- fit values,which is the quintessence case and the ΛCDM model for ?m0=0.27 are shown in Fig.4,where q(a)is the deceleration parameter written as

    Table 2 The observational Hubble parameter data measured by the differential age method used in this paper.

    Table 3 The best- fit values at the 1σ level of parameters ?m0and α from the joint constraints SNe Ia+BAO+OHD.

    From Fig.3 and Table 3,we can see that the range of ?m0is acceptable and the range of α supports quintessence behavior slightly.But it can not be completely excluded phantom case at the 1σ level. From Fig.4,the evolutionary trajectories of ωde,q and ?decan’t be distinguished from the ΛCDM model at the 1σ level.Therefore,we will adopt the Om diagnostic and state finder to discriminate our model from the ΛCDM model better.From Fig.4(b),we can find that the universe of our model is accelerating expansion,which fits the observation.Interestingly,from Fig.4(c),it seems that?deof our model will gradually coincide with the ΛCDM one,which tends to be a de Sitter universe.But in this model,for the quintessence case(the shaded region above the red dashed line in Fig.4(c)),if we extend a,we can find ?destarts to go down,which is very different from the ΛCDM model.

    Fig.4(Color online)The relations of(a,ωde)(a),(a,q)(b),and(a,?de)(c)compared with our model and the ΛCDM model.The black line and red dashed line correspond to our model with the best- fit values listed in Table 3 and the ΛCDM model with ?m0=0.27,respectively.The shaded region and blue lines represent the 1σ level regions and corresponding boundaries.

    For the phantom case(the shaded region below the red dashed line in Fig.4(c)),although ?deof our model rises monotonously as same as the ΛCDM model,it will go to a little rip in the final while the ΛCDM model will go to the pseudo-rip.The detail of rip will be discussed at the rip section below.

    5 Discriminations byOm(a)Diagnostic and the State finder

    As more and more dark energy models are proposed so far,how to discriminate different dark energy models becomes an important and meaningful issue.In the first part of this section,we employ Om(a)diagnostic to distinguish our model with the best- fit values from the ΛCDM model.In the second part,we use the state finder parameters to discriminate among the quintessence picture,the phantom picture and the ΛCDM model.

    5.1 Om(a)Diagnostic

    The Om(a)diagnostic[31]is a geometrical method,which combines Hubble parameter and redshift to discriminate the dark energy models by measuring their deviation from the ΛCDM model.Om is defined as

    For a spatially flat ΛCDM model,E2(a)= ?m0a?3+(1??m0).So Om(a)|ΛCDM? ?m0=0,which provides a null test of ΛCDM hypothesis.

    In Fig.5,we plot the evolutionary trajectories of our model and the ΛCDM model.From Fig.5,we can see that our model has a relatively large deviation from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model at low redshifts and in the future evolution.But they can be easily distinguished from each other at the 1σ level all along.The Om diagnostic discriminates our model from the ΛCDM model very well.

    Fig.5(Color online)The Om diagnostic for our model and the ΛCDM model.The black line represents our model with the best- fit values listed in Table 3.The red dashed line represents the ΛCDM model with ?m0=0.3.The shaded region and blue lines represent the 1σ level regions and corresponding boundaries.

    5.2 State finder

    The Om(a)diagnostic relies on the first order derivative of the scale factor with the respect to cosmic time alone while the state finder[32]relies on the higher order derivatives.The geometric parameter pair(r,s)are deif ned as

    where q is the deceleration parameter shown in Eq.(39).By using Eqs.(41)and(42)we can derive q and s of our model and the ΛCDM model,and they are listed in Table 4.For the better comparison,we also list the dimensionless Hubble parameter E,the density ratio parameter of the matter ?mand the deceleration parameter q in Table 4.

    Table 4 The comparison of different parameters between our model and the ΛCDM model.

    Figure 6 shows the relation between q and r.The relation between r and s is shown in Fig.7.Both of two if gures indicate that the quintessence case and the phantom case can be well distinguished from the ΛCDM model and will gradually deviate from each other.Interestingly,in Fig.7,when two cases deviate slightly from a=0,they both oscillate up and down at point(1,0)and constantly overlap.Then they quickly move away from point(1,0)in the opposite directions and immediately tend to be stabilized and part ways.It implies that this two cases may share the same phase at the birth of the universe.

    Fig.6 (Color online)The state finder pair(q,r)for quintessence case(blue line),phantom case(orange line)and the ΛCDM model(green line).Arrows represent the directions of time evolution.The spots indicate the present epoch.We have used ?m0=0.3,α =0.05 for quintessence case,?m0=0.3,α = ?0.05 for phantom case and ?m0=0.3,α =0 for the ΛCDM model.

    Fig.7 (Color online)The state finder pair(r,s)for quintessence case(blue line),phantom case(orange line)and the ΛCDM model(the fixed point(1,0)).Arrows represent the directions of time evolution.The spots indicate the present epoch.We have used ?m0=0.3,α =0.05 for quintessence case and ?m0=0.3,α = ?0.05 for phantom case.

    6 The Rip

    From the conservation equation˙ρ=?3Hρ(1+ω)we know that the density will increase in the future when the EoS of dark energy ωde< ?1 which corresponds the phantom case.Based on various evolutionary behaviors of H(t),we divide the ultimate fates of the universe into the following categories:[33](i)The big rip,for which H(t)→∞at finite time.At that time,the dark energy density is in finity and produces an in finite repulsion,the gravitationally bound system will be dissociated in order of large to small.[34](ii)The little rip,for which H(t)→∞at in finite time.This scenario has no singularity in the future whereas also leads to a dissolution of bounds tructures at some point in the future.[35](iii)The pseudo-rip,for which H(t)→constant,which is an intermediate case between the de Sitter cosmology and the little rip.Next,we will make a rip analysis for the phantom case of our model briefly.For our model,the Hubble parameter is

    When a→∞,Eq.(43)can be simplified as

    where n ≡ ?(8πG/3)ρ0α. By solving the differential Eq.(44),we can obtain the scale factor a as a function of time t

    where t0is the present value of time.Substitute Eq.(45)to Eq.(44),we get

    From Eq.(46)we can find H(t)→∞as time goes to in finity.So the ultimate fate of the phantom case of our model is the little rip.

    7 Conclusions and Discussions

    In this paper,we propose a pressure parametric model of the total energy components in a spatially flat FRW universe.This model has two parameters ?m0and α where ?m0is the present-day matter density parameter and α displays the model difference from the flat ΛCDM model. By constraining with the datasets of SNe Ia,BAO and OHD,we find that ?m0=and α=at the 1σ level indicating that our universe slightly biases towards quintessence behavior while it can not be completely excluded phantom at the 1σ level.It also implies that our model includes the ΛCDM model when α=0.Then we use Om(a)diagnostic to discriminate our model with the best- fit values from the ΛCDM model.We find that our model deviates relatively far from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model in the future.However they can be easily distinguished from each other at the 1σ level all along.Next,we use the state finder to discriminate among the quintessence case,the phantom case and the ΛCDM model.Both of panels(q,r)and(r,s)indicate that quintessence and phantom scenarios can be well distinguished from the ΛCDM model and will gradually deviate from each other.Finally,we discuss the fate of universe evolution named the rip analysis for the phantom case of our model and find that the universe will run into a little rip stage,which has no singularity in the future whereas also leads to a dissolution of bound structures at some point in the future.

    On the one hand,dark energy phenomenon has appeared about two decades,but we still do not know its physical reality.While waiting for upcoming new observations,lots of theoretical efforts need continuously paid with the hope we can understand it better.On the other hand,the constraints give a tiny α,so this model can also provide a possible solution for other studies to approximate the pressure at low redshifts.

    猜你喜歡
    新河
    新河草編:傳百年編藝,承造物精神
    新河大橋健康監(jiān)測系統(tǒng)設(shè)計與數(shù)據(jù)分析
    河北新河:傳統(tǒng)手工掛面成致富新動能
    吳相然
    Dark Energy Phenomenon from Backreaction Effect
    河北新河:造血式產(chǎn)業(yè)扶貧拔窮根
    永定新河河口水文特征分析
    浣溪紗 新月
    岷峨詩稿(2014年1期)2014-11-15 05:17:32
    洙趙新河擴(kuò)大治理環(huán)境影響分析
    治淮(2013年3期)2013-03-11 20:05:29
    塘漢快速路永定新河特大橋方案比選
    级片在线观看| 亚洲精品美女久久久久99蜜臀| 欧美国产日韩亚洲一区| 欧美乱妇无乱码| 1024手机看黄色片| 母亲3免费完整高清在线观看| 观看美女的网站| 国产高清有码在线观看视频| 舔av片在线| 观看美女的网站| 日韩高清综合在线| a在线观看视频网站| 亚洲五月天丁香| 午夜精品久久久久久毛片777| 久99久视频精品免费| 免费在线观看亚洲国产| 色综合欧美亚洲国产小说| 亚洲精品456在线播放app | 成人精品一区二区免费| 熟妇人妻久久中文字幕3abv| 手机成人av网站| 国产免费一级a男人的天堂| 久久精品人妻少妇| 久久欧美精品欧美久久欧美| 成人三级黄色视频| 国产私拍福利视频在线观看| 老汉色av国产亚洲站长工具| 90打野战视频偷拍视频| 日本a在线网址| 午夜免费激情av| 成人鲁丝片一二三区免费| 成人18禁在线播放| 在线播放国产精品三级| 成人精品一区二区免费| 欧美不卡视频在线免费观看| 三级国产精品欧美在线观看| 久久欧美精品欧美久久欧美| 国产精品av视频在线免费观看| 五月玫瑰六月丁香| 欧美一区二区国产精品久久精品| 亚洲性夜色夜夜综合| 亚洲黑人精品在线| 午夜精品在线福利| 女警被强在线播放| 亚洲一区高清亚洲精品| 日韩亚洲欧美综合| 操出白浆在线播放| 高清在线国产一区| 好看av亚洲va欧美ⅴa在| 老司机在亚洲福利影院| 12—13女人毛片做爰片一| 亚洲国产精品sss在线观看| 国产高清激情床上av| 哪里可以看免费的av片| 最近视频中文字幕2019在线8| 欧美黑人巨大hd| 亚洲国产精品成人综合色| 嫁个100分男人电影在线观看| 首页视频小说图片口味搜索| 国产aⅴ精品一区二区三区波| 搡老熟女国产l中国老女人| 在线观看免费视频日本深夜| 欧美av亚洲av综合av国产av| 国产精品一区二区三区四区久久| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线 | 99国产极品粉嫩在线观看| 18禁国产床啪视频网站| 国产精品自产拍在线观看55亚洲| 亚洲最大成人手机在线| 国产69精品久久久久777片| 中文在线观看免费www的网站| 亚洲无线观看免费| 色哟哟哟哟哟哟| 97人妻精品一区二区三区麻豆| 91麻豆精品激情在线观看国产| 18禁在线播放成人免费| 精品久久久久久久末码| 18禁黄网站禁片午夜丰满| 国产精品久久电影中文字幕| 丁香六月欧美| 内射极品少妇av片p| 国产精品99久久99久久久不卡| 在线观看av片永久免费下载| 一a级毛片在线观看| 欧美黄色片欧美黄色片| 亚洲精品粉嫩美女一区| 五月玫瑰六月丁香| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 久久国产精品人妻蜜桃| h日本视频在线播放| 三级国产精品欧美在线观看| 村上凉子中文字幕在线| 岛国视频午夜一区免费看| 听说在线观看完整版免费高清| 国产成人影院久久av| 女人被狂操c到高潮| 国产aⅴ精品一区二区三区波| 国产精品亚洲美女久久久| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| a级毛片a级免费在线| 日本一二三区视频观看| 久久草成人影院| 亚洲欧美日韩高清在线视频| 国产毛片a区久久久久| 久久香蕉精品热| 精品人妻1区二区| 亚洲精品色激情综合| 成人特级av手机在线观看| 亚洲黑人精品在线| 亚洲成人久久爱视频| 校园春色视频在线观看| 亚洲av中文字字幕乱码综合| 国产伦一二天堂av在线观看| 国产一级毛片七仙女欲春2| 色噜噜av男人的天堂激情| 噜噜噜噜噜久久久久久91| 一本一本综合久久| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 精品不卡国产一区二区三区| 亚洲真实伦在线观看| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久| 国产成人av教育| svipshipincom国产片| 国产午夜精品论理片| 91久久精品电影网| 97超视频在线观看视频| 观看美女的网站| 在线免费观看不下载黄p国产 | 女生性感内裤真人,穿戴方法视频| 啪啪无遮挡十八禁网站| 国产精品美女特级片免费视频播放器| 欧美另类亚洲清纯唯美| 午夜免费男女啪啪视频观看 | 搡老岳熟女国产| 久久久久久大精品| 欧美乱妇无乱码| 99热这里只有精品一区| 亚洲中文日韩欧美视频| 亚洲人成网站在线播放欧美日韩| 午夜福利在线在线| 亚洲18禁久久av| 十八禁人妻一区二区| 国产精品久久电影中文字幕| 免费看光身美女| 日韩欧美国产一区二区入口| 波多野结衣高清作品| 久久久久国内视频| 婷婷丁香在线五月| 特级一级黄色大片| 在线观看av片永久免费下载| 18禁黄网站禁片午夜丰满| 国产美女午夜福利| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 一a级毛片在线观看| 叶爱在线成人免费视频播放| 亚洲国产色片| 精品久久久久久久久久久久久| 手机成人av网站| 欧美av亚洲av综合av国产av| 中文字幕熟女人妻在线| 成人av在线播放网站| 国产aⅴ精品一区二区三区波| 757午夜福利合集在线观看| 男人舔奶头视频| 久久久久久国产a免费观看| 午夜精品久久久久久毛片777| 看免费av毛片| 国产精品久久久久久久电影 | 校园春色视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 极品教师在线免费播放| 少妇人妻精品综合一区二区 | 国产黄色小视频在线观看| 少妇人妻精品综合一区二区 | 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 丁香六月欧美| 九九在线视频观看精品| 搡女人真爽免费视频火全软件 | 亚洲aⅴ乱码一区二区在线播放| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| 在线观看av片永久免费下载| 国产精品三级大全| 国产亚洲精品久久久com| xxx96com| 国内精品美女久久久久久| av欧美777| 欧美激情在线99| 欧美成人免费av一区二区三区| 757午夜福利合集在线观看| 美女大奶头视频| 日韩av在线大香蕉| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 久久久成人免费电影| 久久精品91无色码中文字幕| 亚洲久久久久久中文字幕| 天天一区二区日本电影三级| 在线视频色国产色| 综合色av麻豆| 美女 人体艺术 gogo| 国产成人av激情在线播放| 久久国产精品影院| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区成人 | 国产精品国产高清国产av| 午夜影院日韩av| 制服丝袜大香蕉在线| 亚洲一区高清亚洲精品| 男女那种视频在线观看| av天堂中文字幕网| 宅男免费午夜| 精品久久久久久久末码| 99久久成人亚洲精品观看| 国产精品98久久久久久宅男小说| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 久久国产精品影院| 国产三级在线视频| 久久久国产精品麻豆| 99精品久久久久人妻精品| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 麻豆一二三区av精品| 免费看光身美女| 亚洲av成人不卡在线观看播放网| 国产成年人精品一区二区| 久久午夜亚洲精品久久| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 91麻豆精品激情在线观看国产| 日韩欧美精品免费久久 | 夜夜夜夜夜久久久久| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| e午夜精品久久久久久久| 国产午夜精品论理片| 美女免费视频网站| 亚洲欧美一区二区三区黑人| 久久草成人影院| 老司机深夜福利视频在线观看| 91av网一区二区| 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看| 一本综合久久免费| 亚洲真实伦在线观看| 精品久久久久久久毛片微露脸| 欧美色欧美亚洲另类二区| 免费av观看视频| 国产成人系列免费观看| 欧美日韩乱码在线| 欧美色欧美亚洲另类二区| 特级一级黄色大片| 国产精品av视频在线免费观看| 国模一区二区三区四区视频| 亚洲在线自拍视频| 免费在线观看影片大全网站| 国产精品一区二区三区四区久久| 一本一本综合久久| av专区在线播放| 97碰自拍视频| 91在线精品国自产拍蜜月 | 亚洲精品影视一区二区三区av| 亚洲av电影不卡..在线观看| 久久久久国产精品人妻aⅴ院| 日韩 欧美 亚洲 中文字幕| 欧美在线一区亚洲| 高清在线国产一区| 欧美日韩黄片免| 成年女人永久免费观看视频| 久久久久性生活片| 国产探花极品一区二区| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看 | 久久久成人免费电影| a在线观看视频网站| 日韩大尺度精品在线看网址| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 观看免费一级毛片| 不卡一级毛片| 成人特级av手机在线观看| 成熟少妇高潮喷水视频| 亚洲精品在线美女| 国产精品三级大全| 国产97色在线日韩免费| 国内精品一区二区在线观看| 色综合亚洲欧美另类图片| 青草久久国产| 午夜免费男女啪啪视频观看 | 有码 亚洲区| 国产欧美日韩一区二区精品| 看黄色毛片网站| 色在线成人网| 欧美黑人巨大hd| 性欧美人与动物交配| 国产色爽女视频免费观看| 日韩中文字幕欧美一区二区| 噜噜噜噜噜久久久久久91| 久久天躁狠狠躁夜夜2o2o| 最后的刺客免费高清国语| 88av欧美| 3wmmmm亚洲av在线观看| 亚洲成人精品中文字幕电影| 亚洲成人免费电影在线观看| 一区福利在线观看| 天堂√8在线中文| 欧美日韩一级在线毛片| 在线国产一区二区在线| 最新中文字幕久久久久| 国模一区二区三区四区视频| 成人欧美大片| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 欧美日本亚洲视频在线播放| 亚洲av电影在线进入| www国产在线视频色| 精品国产亚洲在线| 欧美日韩中文字幕国产精品一区二区三区| 热99re8久久精品国产| 欧美不卡视频在线免费观看| 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 精品福利观看| 宅男免费午夜| 国内精品久久久久久久电影| 精品福利观看| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 手机成人av网站| 亚洲熟妇熟女久久| 国产日本99.免费观看| 国产乱人伦免费视频| 一二三四社区在线视频社区8| 亚洲欧美日韩高清专用| 免费av观看视频| 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 深夜精品福利| www国产在线视频色| 欧美日韩黄片免| 成人午夜高清在线视频| 99热这里只有是精品50| 嫩草影视91久久| 午夜福利在线观看吧| 午夜日韩欧美国产| 欧美在线黄色| 亚洲国产色片| 国产精品一区二区三区四区免费观看 | 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 国产色婷婷99| 国产一区二区在线观看日韩 | 好看av亚洲va欧美ⅴa在| 久久婷婷人人爽人人干人人爱| 18禁黄网站禁片午夜丰满| 白带黄色成豆腐渣| АⅤ资源中文在线天堂| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 中文字幕高清在线视频| 国产主播在线观看一区二区| 热99re8久久精品国产| 女同久久另类99精品国产91| 亚洲av电影在线进入| av黄色大香蕉| 亚洲欧美日韩无卡精品| 国产淫片久久久久久久久 | 亚洲国产日韩欧美精品在线观看 | 精品国内亚洲2022精品成人| 亚洲国产精品999在线| 亚洲国产色片| 在线a可以看的网站| 免费高清视频大片| 亚洲avbb在线观看| 亚洲成人久久性| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 亚洲国产精品999在线| 精品熟女少妇八av免费久了| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 国产精品亚洲av一区麻豆| 夜夜看夜夜爽夜夜摸| 欧美激情在线99| 亚洲国产日韩欧美精品在线观看 | svipshipincom国产片| 神马国产精品三级电影在线观看| 久久精品91无色码中文字幕| 在线观看舔阴道视频| 中文字幕人妻丝袜一区二区| 一本久久中文字幕| 亚洲午夜理论影院| 99精品欧美一区二区三区四区| 亚洲男人的天堂狠狠| 国产精品影院久久| 1024手机看黄色片| 久久香蕉精品热| 欧美zozozo另类| 香蕉久久夜色| 亚洲精品美女久久久久99蜜臀| 成熟少妇高潮喷水视频| 国产av在哪里看| 亚洲国产色片| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩高清专用| 国产精品99久久99久久久不卡| 淫秽高清视频在线观看| 久久久久久久亚洲中文字幕 | 久久这里只有精品中国| 又爽又黄无遮挡网站| 亚洲专区中文字幕在线| 免费观看的影片在线观看| 波野结衣二区三区在线 | 国产色爽女视频免费观看| 国产高清激情床上av| 欧美中文日本在线观看视频| 日本免费一区二区三区高清不卡| 亚洲最大成人手机在线| 久久精品亚洲精品国产色婷小说| 久久久国产精品麻豆| 国产 一区 欧美 日韩| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 一a级毛片在线观看| 欧美中文日本在线观看视频| 男人舔奶头视频| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在 | 国产免费男女视频| 久久久精品欧美日韩精品| 高清在线国产一区| 日本 av在线| 精品日产1卡2卡| 2021天堂中文幕一二区在线观| 亚洲aⅴ乱码一区二区在线播放| 女人被狂操c到高潮| 97碰自拍视频| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月 | 在线免费观看的www视频| 高清在线国产一区| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 91久久精品国产一区二区成人 | 精品人妻1区二区| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 九九热线精品视视频播放| 成人欧美大片| 国产成人福利小说| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 亚洲人成网站在线播| 国产一区二区在线观看日韩 | 老司机深夜福利视频在线观看| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 一二三四社区在线视频社区8| 久久久精品大字幕| 88av欧美| 亚洲天堂国产精品一区在线| 一进一出好大好爽视频| 黄色丝袜av网址大全| 久久久成人免费电影| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 天天躁日日操中文字幕| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| netflix在线观看网站| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 亚洲一区二区三区色噜噜| 日韩欧美精品免费久久 | 精品一区二区三区av网在线观看| 香蕉av资源在线| 在线播放国产精品三级| 搡女人真爽免费视频火全软件 | 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 在线看三级毛片| 最好的美女福利视频网| 亚洲成a人片在线一区二区| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| 色在线成人网| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| aaaaa片日本免费| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 国内少妇人妻偷人精品xxx网站| 欧美色视频一区免费| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 中文字幕av成人在线电影| 狂野欧美白嫩少妇大欣赏| 日韩免费av在线播放| 黄色片一级片一级黄色片| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 亚洲乱码一区二区免费版| 免费看日本二区| avwww免费| 高清在线国产一区| 国产伦在线观看视频一区| 制服丝袜大香蕉在线| 欧美+日韩+精品| 亚洲av一区综合| 亚洲最大成人中文| 老鸭窝网址在线观看| 日本成人三级电影网站| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 性欧美人与动物交配| 国内揄拍国产精品人妻在线| 欧美大码av| 国产av不卡久久| 少妇的逼水好多| 天美传媒精品一区二区| 少妇熟女aⅴ在线视频| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 中文字幕精品亚洲无线码一区| 无遮挡黄片免费观看| 久久精品国产99精品国产亚洲性色| av欧美777| 国产高清三级在线| 免费av毛片视频| 久久人妻av系列| 久久久久久国产a免费观看| 久久精品国产综合久久久| 搡老妇女老女人老熟妇| 成人国产综合亚洲| 欧美xxxx黑人xx丫x性爽| 精品国产超薄肉色丝袜足j| 亚洲人成电影免费在线| 国产三级中文精品| 女人被狂操c到高潮| 少妇丰满av| 国产高清videossex| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看 | 久久久久久久久中文| 偷拍熟女少妇极品色| 国内精品一区二区在线观看| 午夜老司机福利剧场| 久久精品91蜜桃| 51国产日韩欧美| 日韩成人在线观看一区二区三区| 成人亚洲精品av一区二区| 国产精品一及| 一级毛片女人18水好多| 欧美性猛交黑人性爽| 99国产精品一区二区三区| 亚洲黑人精品在线| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 日韩人妻高清精品专区| 成年女人毛片免费观看观看9| 久久久久久久久大av| 真人做人爱边吃奶动态| 日日干狠狠操夜夜爽| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 欧美在线黄色| 亚洲第一电影网av| 久久精品影院6| 亚洲午夜理论影院| 午夜亚洲福利在线播放| 亚洲色图av天堂| 1024手机看黄色片| 村上凉子中文字幕在线| svipshipincom国产片| 19禁男女啪啪无遮挡网站|