• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Pressure Parametric Dark Energy Model?

    2018-12-13 06:33:20JunChaoWang王俊超andXinHeMeng孟新河
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:新河

    Jun-Chao Wang(王俊超) and Xin-He Meng(孟新河)

    Department of Physics,Nankai University,Tianjin 300071,China

    AbstractIn this paper,we propose a new pressure parametric model of the total cosmos energy components in a spatially flat Friedmann-Robertson-Walker(FRW)universe and then reconstruct the model into quintessence and phantom scenarios,respectively.By constraining with the datasets of the type Ia supernova(SNe Ia),the baryon acoustic oscillation(BAO)and the observational Hubble parameter data(OHD),we find thatat the 1σ level and our universe slightly biases towards quintessence behavior.Then we use two diagnostics including Om(a)diagnostic and state finder to discriminate our model from the cosmology constant cold dark matter(ΛCDM)model.From Om(a)diagnostic,we find that our model has a relatively large deviation from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model at low redshifts and in the future evolution,but they can be easily differentiated from each other at the 1σ level all along.By the state finder,we find that both of quintessence case and phantom case can be well distinguished from the ΛCDM model and will gradually deviate from each other.Finally,we discuss the fate of universe evolution(named the rip analysis)for the phantom case of our model and find that the universe will run into a little rip stage.

    Key words:dark energy model,quintessence,phantom,Om diagnostic,state finder,the rip

    1 Introduction

    The conventional Einstein field equation dominated by matter without negative pressure(Gμν=8πGTμν)and Hubble law leads to the conclusion that the universe is in a decelerating expansion period.However,since the reported results of the accelerated expasnion of the universe from the supernova data observed in 1998[1]and 1999,[2]further observations consistently show that that the current universe is in the phase of accelerated expansion.In order to physically account for the phenomenon,one way is to modify the left side of the traditional Einstein field equation(modify the gravity).Another way is to add a negative pressure matter component named dark energy to the right side of the equation.One of the global fitting well scenarios is the so-called standard cosmology or the ΛCDM model,which includes the simplest dark energy model with the equation of state(EoS)ω ≡ p/ρ= ?1 that provides a reasonably good account of the properties of the currently observed cosmos such as accelerating expansion of the universe,the large-scale structure and cosmic microwave background(CMB)radiation.However,there has a major problem(named the fine-tuning problem)that the observed value of dark energy density is 120 orders of magnitude smaller than the theoretical value in quantum field theory if taking the allowed highest energy cut o ffscale as the Planck mass;[3?4]besides,there is also the so called coincidence problem,which asks why dark energy density and physical material density are exactly in the same order of magnitude.To alleviate these problems,some extended models have been raised such as an evolving scalar field with the time variant EoS,for example.

    In order to study the characterization of dark energy component,one of the feasible methods is to parameterize some observable physical quantities and then use the observed data to quantify the parameters.The mainstream is the EoS parametrization,such as Chevalier-Polarski-Linder(CPL)[5?6]parametrization ωde(z)= ω0+ωaz/(1+z)which behaves as ωde→ ω0for z → 0 and ωde→ ω0+ωafor z→ ∞.A few years later a more general form ωde(z)= ω0+ ωaz/(1+z)pnamed Jassal-Bagla-Padmanabhan(JBP)[7]parametrization has been proposed.In addition,Wetterich[8]has also given a parametric form which goes by ωde(z)= ω0/[1+bln(1+z)]2and it behaves as ωde→ ω0for z → 0 and ωde→ 0 for z→∞.

    In recent years,some pressure parametric models for the mysterious dark energy or total energy components have been continuously proposed.In 2008,Sen,Kumar,and Nautiyal[9?10]have put forward a pressure parametric model of dark energy

    Seven years later,Zhang,et al.,[11?12]have proposed two dark energy models for the total pressure P(z)=Pa+Pbz and P(z)=Pc+Pd(z/(1+z)).Then,two years latter,Wang,Yan,and Meng[13]have raised a pressureparametrization unified dark fluid model P(z)=Pa+Pb(z+z/(1+z)).In the following of this paper we give out a new pressure parametric model of the total energy components as P(z)=Pa+Pbln(1+z),(z≠ ?1)in a spatially flat FRW universe and then we discuss its property detailedly.

    To investigate the model properties in details,this paper is organized as follows:In Sec.2,we propose the parametric model by continuously previous studying with the essential formalism and discuss the meanings for the two parameters of the model analytically.Section 3 is the reconstructions of our model with the quintessence and phantom scalar fields,respectively.In Sec.4,we constrain our model by using data from SNe Ia,BAO and OHD.In Sec.5,we discriminate our model from the ΛCDM model by using Om(a)diagnostic and the state finder parameters.Section 6 shows the discussions about the fate of universe evolution named the rip analysis for the phantom case of proposed model.In the last section,Sec.7,the conclusions and discussions are given.

    2 The Parametric Model

    Though two decades have passed a consistent and convincing dark energy theory is yet to come.To understand the puzzling dark energy physics better and by keeping on our exploration,we can properly parameterize its pressure.For example,one can hypothesize a relation between the pressure and the redshift,then integrate out the expression of the density ρ through the conservation equation.Finally from the Fridemann equations H2=(8πG/3)∑iρiand the EoS ω =P/ρ we are able to get the form of the Hubble parameter H and ω expression,respectively.By this treatment so far,a closed system for the evolution of the universe has been established,which is described by the Friedmann equations,the conservation or continous equation and the EoS form.

    Assume a relationship between the pressure of all energy components in the universe and the redshift as below,

    where Paand Pbare free parameters.We make this assumption because the form of ln(1+z)=z?(z2/2)+(z3/3)? ···for|z|<1 and it may be much helpful for providing more opportunities to further other studies related.When Pb=0,the model is reduced to the well known ΛCDM model;while when Pb≠0,the total pressure gives more interesting properties.By using the relation of scale factor a=1/(1+z)and the conservation equation,we have

    where C is an integration constant.We assume that ρ0is the present-day energy density i.e.ρ(a=1)= ρ0.Finally the total energy density and pressure can be integrated separately as

    Here the parameters(Pa,Pb)are replaced by new dimensionless parameters(α,?m0)where α ≡ ?Pb/ρ0and?m0≡ (1/ρ0)(ρ0+Pa+(1/3)Pb).

    In this model,ρ(a)contains cosmic matter contribution ?m0a3and the cosmic dark energy composition 1??m0?αlna.If we require that the density of each component would be greater than zero,then ρde/ρ0=1??m0+αln(1/a)>0,so the part of a>exp((1??m0)/α)>1 if α >0 and a0 are out of discussing.Further,if we bend the rules and only require H2=(8πG/3)ρ0(1??m0?αlna+?m0a?3)to be greater than zero,then,for α>0,H2goes less than zero with a large a;For α<0,H2increases first and then decreases,and gets the minimum at a=(?(3/α)?m0)1/3.Taking an example of ?m0=0.3,the α > ?4 guarantees H2>0.The EoS of the dark energy and the dimensionless Hubble parameter take the form,respectively

    To exhibit dark energy better,we derive the density ratio parameter of the dark energy as follows

    Two parameters α and ?m0will be constrained by observations in the following section.On the one hand,when a=1,?m=1??de= ?m0.So ?m0is the presentday matter density parameter.On the other hand,when α =0,the model reduces to the flat ΛCDM model.Further,we can see clearly that in the next section,the α>0 for the quintessence case while α<0 corresponded to the phantom case.

    3 The Reconstructions

    Unlike the ΛCDM model,this scenario gets the dynamical dark energy within.The natural way to introduce varying dark energy is to assume a scalar field that changes over time and the corresponding pressure and energy are respective i.e.Pde=Pscalar,ρde= ρscalar.In this section,we discuss the quintessence and phantom scalar field separately.Consider the dark energy as a real scalar field ? with the action of stress energy,which can be written as

    where(b/2)gμν?μ??ν? is the kinetic energy and V(?)is the potential energy,b=1 or?1 corresponding to the quintessence case and phantom case,respectively.And the stress-energy tensor is

    If we regard the scalar field as a perfect fluid,the energy density and pressure of the scalar field can be written as

    Assume ? is uniform in space and only relies on time i.e.?= ?(t),then Eqs.(10)and(11)can be simplified to

    where the dot denotes the derivatives w.r.t.the cosmic time.

    3.1 The Quintessence Case

    Assume the universe consists of quintessence and matter.By comparing Eqs.(3)and(4)with Eqs.(12)and(13),we can obtain

    Simplify the above two equations,then we have

    where Mpl≡ (8πG)?1/2and.In Eq.(18),“±” corresponds to two solutions.Only when α >0,Eq.(18)is meaningful.So α>0 corresponds to the quintessence case.And from Eq.(5)we know that at this time ωde> ?1.

    From Eqs.(17)and(18)we can draw the relation between ?(a)and V(?)shown in Fig.1.In Fig.1,from the upper panels we know that ? increases as a increases while V decreases as ? increases.The lower panels show that ? decreases as a increases while V decreases as ? decreases.So for quintessence case,V decreases as a increases and it implies ρdewill decrease in the future.

    Fig.1 The quintessence field ?/?0versus the scale factor a,and the quintessence field ?/?0versus the potential V/V0(assume ?0= ?(a=0)=1 and V0= ρ0).The upper and lower panels correspond to the plus and minus sign in Eq.(18),respectively.The arrows indicate the evolutional directions of the potential,and we have used ?m0=0.3 and α =0.05 numerically.

    3.2 The Phantom Case

    Assume the universe consists of phantom and matter.By comparing Eqs.(3)and(4)with Eqs.(12)and(13),we can obtain

    Subsequently,by solving the above two equations,one can derive

    From Eqs.(22)and(23)we can draw the relation between ?(a)and V(?)shown in Fig.2.In Fig.2,from the upper panels we know that ? increases as a increases while V increases as ? increases.And the lower panels show that ? decreases as a increases while V increases as ? decreases.So for the phantom case,V increases as a increases,which implies ρdewill increase in the future and lead H→∞as a→∞,and universe will get rip in the end.

    Fig.2 The phantom field ?/?0versus the scale factor a,and the phantom field ?/?0versus the potential V/V0(assume ?0= ?(a=0)=1 and V0= ρ0).The upper and lower panels correspond to the plus and minus sign in Eq.(23),respectively.The arrows indicate the evolutional directions of the potential.We have used ?m0=0.3 and α = ?0.05 numerically.

    4 The Constraints

    4.1 Type Ia Supernova

    Measuring the distance by the light curve of a supernova is one of the most accurate ways to measure the distance to the universe.In this paper we use the Union2.1 SNe Ia dataset,[14]which contains 580 SNe Ia.First,we minimize the chi-square

    whereμobs(zi)is the observed distance modulus,σiis the 1σ level of the observed distance modulus for each supernova andμ(zi)is the theoretical distance modulus which is defined as

    where H0is the Hubble parameter at z=0,C is the zero value of the distance modulus and DLis the Hubblefree luminosity distance in a spatially flat FRW universe,which can be written as

    where E(z)is the dimensionless Hubble parameter.Since the zero value C in Eq.(25)of the distance modulus measured in the astronomical observation is arbitrarily selected,H0is also arbitrary.In Eq.(25),H0appears in 5lnH0.Assume x=5lnH0for a uniform distribution,P(x)=1.Then the likelihood for marginalize x can be written as

    By solving Eq.(27),we get the marginalized result

    4.2 Baryon Acoustic Oscillations

    BAO is the fluctuations of the visible baryonic matter density on the length scale after the pre-recombination universe,and the BAO peak is centered on a comoving distance equal to the sound horizon at the drag epoch,rs.BAO can be measured in the transverse and radial direction.The transverse measurement DLH0/(1+z)rsis sensitive to the photometric redshift,where DLis the Hubble-free luminosity distance shown in Eq.(26);While the radial measurement DH/rsis correlative to the Hubble parameter H(z),where DH=c/H0E(z)is the Hubble distance.The geometrical mean of radial and transverse distance named the volume averaged comoving angular diameter distance Dv(z)is given by

    Then we get the observables d(z)and A(z)which can be written as

    Table 1 The BAO data at the 1σ level used in this paper.

    In this section,H0and rsare the extra parameters so we use the data of Plank15 for H0=67.3 km ·s?1·Mpc?1and rs=147.33 Mpc.And the BAO data used in this paper are listed in Table 1.Next,by using the datasets Refs.[15–22],we need to calculate the chi-squares respectively,which are written as

    and

    And then we get

    4.3 Observational Hubble Parameter Data

    The observational methods for H0are the differential age method,the radial BAO size method and the gravitational wave method.In this paper,we use a compilation of 33 uncorrelated data points measured by the differential age method listed in Table 2.

    Fig.3 (Color online)The 1σ and 2σ level ranges of the model parameter pair(?m0,α)for using SNe Ia data(grey),OHD data(green),BAO data(pink)and the combined data of SNe Ia+OHD+BAO(yellow).

    Then we need to figure out

    The observational constraints on the model parameter pair(?m0,α)are shown in Fig.3;The best- fit values at the 1σ level of parameters ?m0and α from the joint constraints SNe Ia+BAO+OHD are listed in Table 3;The relations of(a,ωde),(a,q)and(a,?de)compared with our model for the best- fit values,which is the quintessence case and the ΛCDM model for ?m0=0.27 are shown in Fig.4,where q(a)is the deceleration parameter written as

    Table 2 The observational Hubble parameter data measured by the differential age method used in this paper.

    Table 3 The best- fit values at the 1σ level of parameters ?m0and α from the joint constraints SNe Ia+BAO+OHD.

    From Fig.3 and Table 3,we can see that the range of ?m0is acceptable and the range of α supports quintessence behavior slightly.But it can not be completely excluded phantom case at the 1σ level. From Fig.4,the evolutionary trajectories of ωde,q and ?decan’t be distinguished from the ΛCDM model at the 1σ level.Therefore,we will adopt the Om diagnostic and state finder to discriminate our model from the ΛCDM model better.From Fig.4(b),we can find that the universe of our model is accelerating expansion,which fits the observation.Interestingly,from Fig.4(c),it seems that?deof our model will gradually coincide with the ΛCDM one,which tends to be a de Sitter universe.But in this model,for the quintessence case(the shaded region above the red dashed line in Fig.4(c)),if we extend a,we can find ?destarts to go down,which is very different from the ΛCDM model.

    Fig.4(Color online)The relations of(a,ωde)(a),(a,q)(b),and(a,?de)(c)compared with our model and the ΛCDM model.The black line and red dashed line correspond to our model with the best- fit values listed in Table 3 and the ΛCDM model with ?m0=0.27,respectively.The shaded region and blue lines represent the 1σ level regions and corresponding boundaries.

    For the phantom case(the shaded region below the red dashed line in Fig.4(c)),although ?deof our model rises monotonously as same as the ΛCDM model,it will go to a little rip in the final while the ΛCDM model will go to the pseudo-rip.The detail of rip will be discussed at the rip section below.

    5 Discriminations byOm(a)Diagnostic and the State finder

    As more and more dark energy models are proposed so far,how to discriminate different dark energy models becomes an important and meaningful issue.In the first part of this section,we employ Om(a)diagnostic to distinguish our model with the best- fit values from the ΛCDM model.In the second part,we use the state finder parameters to discriminate among the quintessence picture,the phantom picture and the ΛCDM model.

    5.1 Om(a)Diagnostic

    The Om(a)diagnostic[31]is a geometrical method,which combines Hubble parameter and redshift to discriminate the dark energy models by measuring their deviation from the ΛCDM model.Om is defined as

    For a spatially flat ΛCDM model,E2(a)= ?m0a?3+(1??m0).So Om(a)|ΛCDM? ?m0=0,which provides a null test of ΛCDM hypothesis.

    In Fig.5,we plot the evolutionary trajectories of our model and the ΛCDM model.From Fig.5,we can see that our model has a relatively large deviation from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model at low redshifts and in the future evolution.But they can be easily distinguished from each other at the 1σ level all along.The Om diagnostic discriminates our model from the ΛCDM model very well.

    Fig.5(Color online)The Om diagnostic for our model and the ΛCDM model.The black line represents our model with the best- fit values listed in Table 3.The red dashed line represents the ΛCDM model with ?m0=0.3.The shaded region and blue lines represent the 1σ level regions and corresponding boundaries.

    5.2 State finder

    The Om(a)diagnostic relies on the first order derivative of the scale factor with the respect to cosmic time alone while the state finder[32]relies on the higher order derivatives.The geometric parameter pair(r,s)are deif ned as

    where q is the deceleration parameter shown in Eq.(39).By using Eqs.(41)and(42)we can derive q and s of our model and the ΛCDM model,and they are listed in Table 4.For the better comparison,we also list the dimensionless Hubble parameter E,the density ratio parameter of the matter ?mand the deceleration parameter q in Table 4.

    Table 4 The comparison of different parameters between our model and the ΛCDM model.

    Figure 6 shows the relation between q and r.The relation between r and s is shown in Fig.7.Both of two if gures indicate that the quintessence case and the phantom case can be well distinguished from the ΛCDM model and will gradually deviate from each other.Interestingly,in Fig.7,when two cases deviate slightly from a=0,they both oscillate up and down at point(1,0)and constantly overlap.Then they quickly move away from point(1,0)in the opposite directions and immediately tend to be stabilized and part ways.It implies that this two cases may share the same phase at the birth of the universe.

    Fig.6 (Color online)The state finder pair(q,r)for quintessence case(blue line),phantom case(orange line)and the ΛCDM model(green line).Arrows represent the directions of time evolution.The spots indicate the present epoch.We have used ?m0=0.3,α =0.05 for quintessence case,?m0=0.3,α = ?0.05 for phantom case and ?m0=0.3,α =0 for the ΛCDM model.

    Fig.7 (Color online)The state finder pair(r,s)for quintessence case(blue line),phantom case(orange line)and the ΛCDM model(the fixed point(1,0)).Arrows represent the directions of time evolution.The spots indicate the present epoch.We have used ?m0=0.3,α =0.05 for quintessence case and ?m0=0.3,α = ?0.05 for phantom case.

    6 The Rip

    From the conservation equation˙ρ=?3Hρ(1+ω)we know that the density will increase in the future when the EoS of dark energy ωde< ?1 which corresponds the phantom case.Based on various evolutionary behaviors of H(t),we divide the ultimate fates of the universe into the following categories:[33](i)The big rip,for which H(t)→∞at finite time.At that time,the dark energy density is in finity and produces an in finite repulsion,the gravitationally bound system will be dissociated in order of large to small.[34](ii)The little rip,for which H(t)→∞at in finite time.This scenario has no singularity in the future whereas also leads to a dissolution of bounds tructures at some point in the future.[35](iii)The pseudo-rip,for which H(t)→constant,which is an intermediate case between the de Sitter cosmology and the little rip.Next,we will make a rip analysis for the phantom case of our model briefly.For our model,the Hubble parameter is

    When a→∞,Eq.(43)can be simplified as

    where n ≡ ?(8πG/3)ρ0α. By solving the differential Eq.(44),we can obtain the scale factor a as a function of time t

    where t0is the present value of time.Substitute Eq.(45)to Eq.(44),we get

    From Eq.(46)we can find H(t)→∞as time goes to in finity.So the ultimate fate of the phantom case of our model is the little rip.

    7 Conclusions and Discussions

    In this paper,we propose a pressure parametric model of the total energy components in a spatially flat FRW universe.This model has two parameters ?m0and α where ?m0is the present-day matter density parameter and α displays the model difference from the flat ΛCDM model. By constraining with the datasets of SNe Ia,BAO and OHD,we find that ?m0=and α=at the 1σ level indicating that our universe slightly biases towards quintessence behavior while it can not be completely excluded phantom at the 1σ level.It also implies that our model includes the ΛCDM model when α=0.Then we use Om(a)diagnostic to discriminate our model with the best- fit values from the ΛCDM model.We find that our model deviates relatively far from the ΛCDM model at high redshifts and gradually approaches the ΛCDM model in the future.However they can be easily distinguished from each other at the 1σ level all along.Next,we use the state finder to discriminate among the quintessence case,the phantom case and the ΛCDM model.Both of panels(q,r)and(r,s)indicate that quintessence and phantom scenarios can be well distinguished from the ΛCDM model and will gradually deviate from each other.Finally,we discuss the fate of universe evolution named the rip analysis for the phantom case of our model and find that the universe will run into a little rip stage,which has no singularity in the future whereas also leads to a dissolution of bound structures at some point in the future.

    On the one hand,dark energy phenomenon has appeared about two decades,but we still do not know its physical reality.While waiting for upcoming new observations,lots of theoretical efforts need continuously paid with the hope we can understand it better.On the other hand,the constraints give a tiny α,so this model can also provide a possible solution for other studies to approximate the pressure at low redshifts.

    猜你喜歡
    新河
    新河草編:傳百年編藝,承造物精神
    新河大橋健康監(jiān)測系統(tǒng)設(shè)計與數(shù)據(jù)分析
    河北新河:傳統(tǒng)手工掛面成致富新動能
    吳相然
    Dark Energy Phenomenon from Backreaction Effect
    河北新河:造血式產(chǎn)業(yè)扶貧拔窮根
    永定新河河口水文特征分析
    浣溪紗 新月
    岷峨詩稿(2014年1期)2014-11-15 05:17:32
    洙趙新河擴(kuò)大治理環(huán)境影響分析
    治淮(2013年3期)2013-03-11 20:05:29
    塘漢快速路永定新河特大橋方案比選
    久久中文字幕一级| 十分钟在线观看高清视频www| 国产精品亚洲av一区麻豆| 久久99热这里只频精品6学生| 国产精品免费视频内射| 午夜免费观看性视频| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 天堂8中文在线网| 老司机影院成人| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 黄色片一级片一级黄色片| 久久人人爽av亚洲精品天堂| 欧美日韩黄片免| 国产欧美日韩一区二区三 | 精品欧美一区二区三区在线| 99国产精品一区二区三区| 男女之事视频高清在线观看| 男人操女人黄网站| 淫妇啪啪啪对白视频 | 黑丝袜美女国产一区| 男人操女人黄网站| 啦啦啦在线免费观看视频4| 激情视频va一区二区三区| av视频免费观看在线观看| 最近最新中文字幕大全免费视频| 亚洲成国产人片在线观看| 国产免费视频播放在线视频| 亚洲av成人不卡在线观看播放网 | 丝袜美足系列| 老司机靠b影院| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 搡老乐熟女国产| 少妇 在线观看| 男人添女人高潮全过程视频| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 无限看片的www在线观看| 亚洲精品一区蜜桃| 狠狠婷婷综合久久久久久88av| 亚洲国产av新网站| 日韩免费高清中文字幕av| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 亚洲天堂av无毛| 久久综合国产亚洲精品| 亚洲 国产 在线| 性高湖久久久久久久久免费观看| 免费不卡黄色视频| 久久精品亚洲熟妇少妇任你| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91| 爱豆传媒免费全集在线观看| 五月天丁香电影| 亚洲国产毛片av蜜桃av| 美女大奶头黄色视频| 2018国产大陆天天弄谢| 国产精品一区二区精品视频观看| 欧美老熟妇乱子伦牲交| a在线观看视频网站| 国产精品 欧美亚洲| 欧美日韩av久久| 精品一品国产午夜福利视频| 交换朋友夫妻互换小说| 制服人妻中文乱码| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 极品人妻少妇av视频| 黑人操中国人逼视频| 亚洲精品一区蜜桃| 国产精品久久久久久人妻精品电影 | 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 美女视频免费永久观看网站| 国产在线视频一区二区| 久久这里只有精品19| 国产成人精品久久二区二区免费| 国产日韩欧美在线精品| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 亚洲专区国产一区二区| www.999成人在线观看| tocl精华| 久久国产亚洲av麻豆专区| 精品少妇一区二区三区视频日本电影| 一级黄色大片毛片| 又大又爽又粗| 久久久水蜜桃国产精品网| 亚洲中文av在线| 日本a在线网址| 成年女人毛片免费观看观看9 | 国产熟女午夜一区二区三区| 搡老熟女国产l中国老女人| 91字幕亚洲| 午夜福利在线免费观看网站| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 制服诱惑二区| 一本久久精品| 他把我摸到了高潮在线观看 | 淫妇啪啪啪对白视频 | 国产色视频综合| 亚洲欧美日韩高清在线视频 | 久久久国产精品麻豆| 久久这里只有精品19| 国产亚洲精品一区二区www | 少妇精品久久久久久久| 久久久久久久久久久久大奶| 国产99久久九九免费精品| 欧美日韩亚洲高清精品| 国产福利在线免费观看视频| 精品第一国产精品| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 人人妻人人添人人爽欧美一区卜| 人人妻,人人澡人人爽秒播| 叶爱在线成人免费视频播放| 久久久精品94久久精品| 美女视频免费永久观看网站| 欧美xxⅹ黑人| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 满18在线观看网站| av一本久久久久| 超碰97精品在线观看| 亚洲精品粉嫩美女一区| 777米奇影视久久| 丝袜脚勾引网站| 91麻豆精品激情在线观看国产 | 精品亚洲成国产av| 中亚洲国语对白在线视频| 黄色a级毛片大全视频| 韩国精品一区二区三区| 国产成人精品无人区| 欧美中文综合在线视频| 飞空精品影院首页| 免费观看av网站的网址| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 精品国产一区二区久久| 亚洲欧美清纯卡通| 黄片小视频在线播放| 99精品久久久久人妻精品| 99九九在线精品视频| 欧美97在线视频| 最新的欧美精品一区二区| av国产精品久久久久影院| 99国产极品粉嫩在线观看| 性色av乱码一区二区三区2| 黑人猛操日本美女一级片| 婷婷色av中文字幕| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 老熟女久久久| 视频在线观看一区二区三区| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 日本wwww免费看| 欧美精品啪啪一区二区三区 | 人妻久久中文字幕网| 国产精品国产三级国产专区5o| 国产精品.久久久| 少妇的丰满在线观看| 一二三四在线观看免费中文在| 亚洲成av片中文字幕在线观看| 精品久久久久久电影网| 97精品久久久久久久久久精品| 99国产精品免费福利视频| 老司机午夜十八禁免费视频| 国产视频一区二区在线看| 19禁男女啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区mp4| 欧美日本中文国产一区发布| 午夜久久久在线观看| 在线观看www视频免费| 久久女婷五月综合色啪小说| 欧美精品av麻豆av| 91成人精品电影| 欧美在线一区亚洲| 啦啦啦中文免费视频观看日本| videos熟女内射| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 成年人免费黄色播放视频| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 999精品在线视频| 香蕉丝袜av| 久久ye,这里只有精品| 18禁观看日本| 视频在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 午夜免费观看性视频| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 欧美激情 高清一区二区三区| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 狠狠婷婷综合久久久久久88av| 9色porny在线观看| av欧美777| 中文字幕人妻熟女乱码| 亚洲精品国产av成人精品| 亚洲男人天堂网一区| 国产精品亚洲av一区麻豆| 亚洲精品在线美女| 老鸭窝网址在线观看| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 日韩制服骚丝袜av| 久久久久久免费高清国产稀缺| 久久人妻福利社区极品人妻图片| av在线播放精品| 日韩视频在线欧美| 少妇人妻久久综合中文| 欧美 日韩 精品 国产| 亚洲黑人精品在线| 一区二区三区乱码不卡18| 人妻一区二区av| 欧美黄色淫秽网站| 三上悠亚av全集在线观看| 国产精品 国内视频| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| svipshipincom国产片| 自线自在国产av| 亚洲国产欧美一区二区综合| 免费在线观看视频国产中文字幕亚洲 | 午夜老司机福利片| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 在线十欧美十亚洲十日本专区| 亚洲精品国产精品久久久不卡| 多毛熟女@视频| 亚洲精品一区蜜桃| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 国产免费福利视频在线观看| 午夜日韩欧美国产| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 久久久久久久大尺度免费视频| 国产精品久久久久久人妻精品电影 | 咕卡用的链子| 国产一区二区三区综合在线观看| 欧美久久黑人一区二区| 一区福利在线观看| av在线app专区| 中文字幕人妻丝袜制服| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 免费在线观看日本一区| 久久亚洲精品不卡| 老司机午夜福利在线观看视频 | 久久久久久人人人人人| 肉色欧美久久久久久久蜜桃| 男人操女人黄网站| www.av在线官网国产| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线| 午夜福利视频精品| 亚洲精品国产av蜜桃| 久久精品人人爽人人爽视色| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 亚洲精品久久午夜乱码| 91字幕亚洲| 天堂中文最新版在线下载| 午夜久久久在线观看| 午夜成年电影在线免费观看| 丰满饥渴人妻一区二区三| 久久久国产精品麻豆| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看 | 国产欧美日韩一区二区精品| 日日夜夜操网爽| 91成人精品电影| 亚洲av欧美aⅴ国产| 精品国产国语对白av| 亚洲久久久国产精品| 午夜成年电影在线免费观看| 欧美97在线视频| 桃花免费在线播放| 伊人久久大香线蕉亚洲五| a在线观看视频网站| a 毛片基地| 中文字幕另类日韩欧美亚洲嫩草| netflix在线观看网站| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 精品亚洲成国产av| 国产精品亚洲av一区麻豆| 丝瓜视频免费看黄片| 香蕉国产在线看| 国产视频一区二区在线看| av网站免费在线观看视频| 99国产精品一区二区三区| 成在线人永久免费视频| 午夜日韩欧美国产| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| 亚洲成人国产一区在线观看| 丰满迷人的少妇在线观看| 精品一品国产午夜福利视频| 国产亚洲午夜精品一区二区久久| tube8黄色片| 老司机午夜十八禁免费视频| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线观看av| 中文字幕制服av| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 满18在线观看网站| 欧美日韩av久久| 国产福利在线免费观看视频| 色婷婷久久久亚洲欧美| 狠狠婷婷综合久久久久久88av| 久久精品国产综合久久久| 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 91成人精品电影| 操美女的视频在线观看| 精品亚洲成a人片在线观看| 日韩制服骚丝袜av| 丁香六月天网| 日本wwww免费看| 自线自在国产av| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| 国产成人免费观看mmmm| 国产成人系列免费观看| 高清av免费在线| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 丁香六月天网| 色综合欧美亚洲国产小说| 日本欧美视频一区| √禁漫天堂资源中文www| 美女午夜性视频免费| 中文精品一卡2卡3卡4更新| 国产xxxxx性猛交| 各种免费的搞黄视频| 涩涩av久久男人的天堂| e午夜精品久久久久久久| av线在线观看网站| 精品一区二区三区四区五区乱码| 自线自在国产av| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲| 一本—道久久a久久精品蜜桃钙片| 午夜免费成人在线视频| 性少妇av在线| 天天躁狠狠躁夜夜躁狠狠躁| 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 亚洲男人天堂网一区| 天堂8中文在线网| 亚洲久久久国产精品| 久久青草综合色| 国产在线视频一区二区| 精品少妇内射三级| 国产伦人伦偷精品视频| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美精品亚洲一区二区| 成人手机av| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 亚洲伊人色综图| 在线av久久热| 亚洲国产看品久久| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 夫妻午夜视频| 久久中文看片网| 精品少妇久久久久久888优播| 捣出白浆h1v1| 男男h啪啪无遮挡| 久久国产精品大桥未久av| 美国免费a级毛片| 亚洲欧美精品自产自拍| 少妇 在线观看| 91国产中文字幕| 婷婷色av中文字幕| 国产一区二区在线观看av| 国产亚洲av片在线观看秒播厂| 老司机午夜福利在线观看视频 | 成年人免费黄色播放视频| 少妇猛男粗大的猛烈进出视频| 国产男女超爽视频在线观看| 亚洲专区字幕在线| 69av精品久久久久久 | 亚洲av美国av| 男男h啪啪无遮挡| 欧美日韩亚洲综合一区二区三区_| 亚洲自偷自拍图片 自拍| 亚洲七黄色美女视频| 九色亚洲精品在线播放| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃| 欧美一级毛片孕妇| 国产91精品成人一区二区三区 | 999久久久国产精品视频| 老司机午夜十八禁免费视频| 男女无遮挡免费网站观看| 国产高清videossex| 亚洲成人国产一区在线观看| 久久 成人 亚洲| 国产有黄有色有爽视频| 国产精品1区2区在线观看. | 国产在线免费精品| av电影中文网址| 交换朋友夫妻互换小说| 超碰97精品在线观看| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三 | 91麻豆精品激情在线观看国产 | 欧美在线一区亚洲| 啦啦啦啦在线视频资源| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 亚洲欧美精品综合一区二区三区| 老司机影院毛片| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看 | 18禁黄网站禁片午夜丰满| 亚洲专区中文字幕在线| 18禁裸乳无遮挡动漫免费视频| h视频一区二区三区| av天堂久久9| 亚洲精品粉嫩美女一区| 欧美 亚洲 国产 日韩一| av超薄肉色丝袜交足视频| 日韩欧美一区二区三区在线观看 | 美女主播在线视频| 国产一区有黄有色的免费视频| 一级毛片电影观看| 日韩,欧美,国产一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产精品久久久久久人妻精品电影 | 免费在线观看影片大全网站| 亚洲国产av影院在线观看| 国产一区有黄有色的免费视频| 高清在线国产一区| 五月开心婷婷网| 又黄又粗又硬又大视频| 午夜福利在线观看吧| 动漫黄色视频在线观看| 日韩制服骚丝袜av| 久久久精品免费免费高清| 一级毛片女人18水好多| 久久人妻福利社区极品人妻图片| 亚洲精品第二区| 日本一区二区免费在线视频| 青春草视频在线免费观看| 黄片播放在线免费| 久久国产精品大桥未久av| 下体分泌物呈黄色| 99精品久久久久人妻精品| 少妇精品久久久久久久| 9色porny在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩 亚洲 欧美在线| 男人操女人黄网站| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 天天添夜夜摸| 亚洲五月色婷婷综合| 18禁黄网站禁片午夜丰满| 欧美在线黄色| 人人澡人人妻人| 老司机影院毛片| 狂野欧美激情性bbbbbb| 别揉我奶头~嗯~啊~动态视频 | 黄片播放在线免费| 91av网站免费观看| 在线观看www视频免费| av片东京热男人的天堂| 18禁国产床啪视频网站| 亚洲av成人一区二区三| 1024视频免费在线观看| 91字幕亚洲| 亚洲国产中文字幕在线视频| 大香蕉久久网| 黄色视频在线播放观看不卡| 别揉我奶头~嗯~啊~动态视频 | 人人澡人人妻人| 国产有黄有色有爽视频| 精品国产超薄肉色丝袜足j| 女人精品久久久久毛片| 亚洲国产精品999| 国产免费一区二区三区四区乱码| 国产黄色免费在线视频| 亚洲av成人不卡在线观看播放网 | 大香蕉久久网| 精品福利观看| 国产成人一区二区三区免费视频网站| 人妻 亚洲 视频| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 精品国内亚洲2022精品成人 | 欧美+亚洲+日韩+国产| 亚洲天堂av无毛| 亚洲全国av大片| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 午夜福利在线观看吧| 一二三四在线观看免费中文在| 亚洲一区二区三区欧美精品| 性色av一级| 亚洲人成电影免费在线| 亚洲伊人色综图| 自拍欧美九色日韩亚洲蝌蚪91| 两个人免费观看高清视频| 国产一区二区 视频在线| 亚洲精品美女久久久久99蜜臀| 中文字幕av电影在线播放| 午夜福利免费观看在线| 久久精品国产综合久久久| 天堂中文最新版在线下载| 超碰成人久久| 在线看a的网站| 在线观看舔阴道视频| 国产精品九九99| 国产一区二区 视频在线| 亚洲久久久国产精品| 淫妇啪啪啪对白视频 | 成人18禁高潮啪啪吃奶动态图| 国产男女超爽视频在线观看| 日韩中文字幕欧美一区二区| 少妇的丰满在线观看| 国产在线视频一区二区| 老司机在亚洲福利影院| 亚洲国产av影院在线观看| 国产91精品成人一区二区三区 | 精品国产一区二区三区四区第35| 50天的宝宝边吃奶边哭怎么回事| 亚洲一码二码三码区别大吗| 悠悠久久av| 欧美另类亚洲清纯唯美| 日韩熟女老妇一区二区性免费视频| 久久久久国产精品人妻一区二区| 性少妇av在线| 99re6热这里在线精品视频| 亚洲自偷自拍图片 自拍| 久久香蕉激情| 国产主播在线观看一区二区| 中文字幕高清在线视频| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 脱女人内裤的视频| 亚洲精华国产精华精| 精品亚洲成a人片在线观看| 高潮久久久久久久久久久不卡| 纵有疾风起免费观看全集完整版| 久久久久久久国产电影| 男女高潮啪啪啪动态图| 免费观看人在逋| 999精品在线视频| 国产亚洲午夜精品一区二区久久| 大陆偷拍与自拍| 999精品在线视频| 多毛熟女@视频| 叶爱在线成人免费视频播放| 黄色 视频免费看| 亚洲国产中文字幕在线视频| 日韩视频一区二区在线观看| 亚洲精品国产区一区二| 法律面前人人平等表现在哪些方面 | 高清在线国产一区| 肉色欧美久久久久久久蜜桃| 三上悠亚av全集在线观看| 国产精品一区二区在线不卡| 国产免费福利视频在线观看| 91字幕亚洲| 国产精品一区二区免费欧美 | 欧美日韩亚洲高清精品| 伦理电影免费视频| 欧美激情高清一区二区三区| 亚洲国产欧美日韩在线播放| 欧美中文综合在线视频| 久久中文字幕一级| 午夜精品国产一区二区电影| 中国国产av一级| 人成视频在线观看免费观看| 精品亚洲成a人片在线观看| 啦啦啦中文免费视频观看日本| 久久久久国内视频|