• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Runaway Directions in O’Raifeartaigh Models?

    2018-12-13 06:33:12ZhengSun孫錚andXingYueWei衛(wèi)星月
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:衛(wèi)星

    Zheng Sun(孫錚) and Xing-Yue Wei(衛(wèi)星月)

    Center for Theoretical Physics,College of Physical Science and Technology,Sichuan University,29 Wangjiang Road,Chengdu 610064,China

    AbstractR-symmetries,which are needed for supersymmetry(SUSY)breaking in O’Raifeartaigh models,often lead to SUSY runaway directions trough a complexified R-transformation.Non-R symmetries also lead to runaway directions in a similar way.This work investigates the occurrence of runaway directions of both SUSY and SUSY breaking types.We clarify previous issues on fractional charges and genericness,and make a re fined statement on conditions for runaway directions related to either R-symmetries or non-R symmetries.We present a generic and anomaly-free model to show the existence of runaway directions related to non-R symmetries.We also comment on the possibility to combine the non-R symmetry case to the R-symmetry case by an R-charge redefinition.

    Key words:supersymmetry,O’Raifeartaigh model,R-symmetry,global symmetry,runaway

    1 Introduction

    Inthestudyofsupersymmetry(SUSY)model building,[1?2]R-symmetries are needed for SUSY breaking O’Raifeartaigh models because of the generic relations described by the Nelson-Seiberg theorem and its extensions.[3?5]The study of metastable SUSY breaking[6]also takes advantage from approximate R-symmetries.[7]In addition,the SUSY breaking sector often contains global(non-R)symmetries,which may be broken or gauged in the complete model.It has been found that SUSY runaway directions related to R-symmetries are common in these models.[8?10]So the SUSY breaking vacuum due to the Nelson-Seiberg theorem can tunnel to the runaway direction through a non-perturbative process[11?12]and becomes metastable.To build a phenomenologically plausible model,one needs to tune the superpotential to give a long lifetime for the metastable vacuum against tunneling,or calculate quantum corrections which may stabilize fields at finite values along the runaway direction.

    Runaway directions are obtained by a complexified R-transformation,which pushes some field values to the in finity and satisfies SUSY equations at the asymptotic limit.Proofs in previous literature utilize a generic form of R-symmetric superpotentials.Fields are either assumed to have integer R-charges,[8?9]or redefined to alter the expression of the superpotential.[10]In this work we will clarify several issues in previous literature.We point out that fractional R-charges complicate the superpotential,and renormalizability often leads to a non-generic superpotential.Both of these issues make parts of the previous proof invalid.We also show that models with no negatively R-charged field do not give runaway directions related to R-symmetries.So the occurrence of runaway directions is less often than the estimation in previous literature.And we make a re fined statement on conditions for runaway directions of both SUSY and SUSY breaking types.

    The technique of complexified transformation can also be applied to non-R U(1)symmetries.[13]With an argument similar to the R-symmetry one,it can be shown that there exist runaway directions related to non-R U(1)symmetries.Besides the example in Ref.[13]which needs another ZNsymmetry for genericness,we present a new model to show the existence of such a runaway direction,with a generic superpotential respecting both an R-symmetry and a non-R U(1)symmetry,and an anomalyfree U(1)charge assignment.Although non-R U(1)symmetries can be absorbed into R-symmetries by an R-charge redefinition,[14]the non-R U(1)argument provides a clear view on the occurrence of runaway directions in certain examples and may have phenomenological advantages.

    This paper is organized as follows.Section 2 reviews runaway directions from R-symmetries and clarify several issues in previous literature;Section 3 discusses runaway directions from non-R U(1)symmetries using a similar technique as in the R-symmetry cases,presents a generic and anomaly-free model to show the existence of runaway directions related to non-R symmetries,and comments on the R-charge redefinition to absorb non-R symmetries;Section 4 summarizes results of this paper,lists the conditions for runaway directions,and discusses issues of non genericness and D-term runaway directions,which are not covered in our work.

    2 Runaway Directions from R-symmetries

    In O’Raifeartaigh models,the need for R-symmetries comes from their importance for SUSY breaking,as described by the Nelson-Seiberg theorem.Given a superpotential W(?i),the SUSY breaking scale can be described by the F-terms Fi=?iW at the vacuum.So a solution to equations?iW=0 gives an SUSY vacuum,and a minimum of the scalar potential V=|?iW|2with ?iW≠0 gives an SUSY breaking vacuum.R-symmetries are a special type of U(1)symmetries which do not commute with the supercharge,thus rotate the superpotential by a phase.The original Nelson-Seiberg theorem[3]claims that,for SUSY breaking in a generic O’Raifeartaigh model,a necessary condition is to have an R-symmetric superpotential,and a sufficient condition is to have spontaneous R-symmetry breaking at the vacuum.An improved proof[5]shows that the necessary and sufficient condition for SUSY breaking is to have an R-symmetric superpotential and more R-charge 2 fields than R-charge 0 fields.A small modification towards an approximate R-symmetry gives metastable SUSY breaking.[7]These results provide general guidelines for model building with R-symmetries.

    Apart from vacua at finite field values,the vacuum structure of the model may also contains runaway directions.Along the runaway direction,F-terms keep decreasing and reach zero at the asymptotic limit where some field values move to in finity.One may also get SUSY breaking runaway directions if some F-terms remain to be non-zero at the limit.A special type of SUSY runaway directions are often found in models with R-symmetries,by applying the complexified R-transformation:

    where R(?i)is the R-charge of ?i.Notice that this is not a symmetry of the whole SUSY action because of kinetic terms.Since the superpotential always has R-charge 2,F-terms are also rescaled under the complexified R-transformation:

    In other words,?iW scales like a field with R-charge 2?R(?i).If one of equations?iW=0 is solved,rescaling field values with the complexified R-transformation still solves the equation.

    To show the occurrence of runaway directions,SUSY equations are classified according to their F-term R-charges:In SUSY breaking models,these equations can not be solved simultaneously.If one can just solve equations of type(3)and(4),the complexified R-transformation with α→?∞satisfies equations of type(5)at the limit and gives a runaway direction.An example of such case is the Witten’s runaway model:[15]

    with the R-charge assignment

    The resulting SUSY runaway direction is given as:

    Similarly,if one can solve equations of type(4)and(5),the complexified R-transformation with α → +∞ satisfies equations of type(3)at the limit and gives a runaway direction.An example of such case is the spontaneous R-symmetry breaking model:[16]

    with the R-charge assignment

    The resulting SUSY runaway direction is given as:

    If equations of type(4)can not be solved,one needs to find a minimum of the potential from R-charge 0 F-terms:

    The complexified R-transformation leaves these non-zero F-terms invariant.One may get SUSY breaking runaway directions by just solving equations of either type(3)or type(5),and asymptotically satisfying the other.In all cases,there are more fields than equations to be solved before taking the limit,and runaway directions should exist for a generic W.

    For models with all R-charges to be integers,one can go further to prove some stronger statements.[8]In such a model,if there is only one R-charge 2 field,(4)and(5)can always be solved and a runaway direction exists if there are fields with R-charge other than 0,1,2.A similar statement can be made with more than one R-charge 2 fields,by satisfying some mild conditions of R-charge counting.These statements can not be generalized to models with fractional R-charges,such as the tree-level R-symmetry breaking models.[14,17?18]We show here an example of superpotential

    with the R-charge assignment

    All R-charges are fixed by the form of superpotential and can not be redefined to integers.Such fractional R-charges complicate the superpotential and invalidate the stronger statements made by Ref.[8].And detailed calculation indeed gives SUSY breaking at the global minimum without any runaway direction.[18]

    An alternative attempt to show the existence of runaway directions has been provided[10]using the field redefinition introduced in the original proof of the Nelson-Seiberg theorem:[3]

    ?i≥2W=0 equations can be satisfied by solving ?Yif=0 for a generic function f. And the rest equation??1W=0 can be satisfied asymptotically by applying a proper complexified R-transformation. The asymptotic limit either gives an SUSY runaway direction if R(?1) ∈ (?∞,0)∪ (2,+∞),or pushes ?1to zero which is a singular point in the field redefinition.The result sounds too strong to be true:In contrast to the previous R-charge counting requirement,only one field with R-charge negative or greater than 2 is needed for the runaway direction.It turns out that the discrepancy comes from non-genericness of f(Y2,...,Yn).The field redefinition from ?i’s to Yi’s introduces fractional and negative powers of ?1,which have to be combined to integer and positive powers in the expression of W.A renormalizable W can have only polynomial terms up to cubic.So many combinations of Yi’s,although allowed by the R-symmetry,can not show up in f.Such non-genericness can be demonstrated in the spontaneous R-symmetry breaking model(9).We identify the ?1in(9)as the ?1in(15).A term like Y2Y3in f corresponds to ?21?2?3in W,which respects the R-symmetry but is not renormalizable.So we see renormalizability puts a strong constraint on the possible form of f,and makes this statement through redefined fields invalid.

    Finally,we make a comment on the case with no negatively R-charged field.Since W has R-charge 2,such models also contain no field with R-charge larger than 2.So any field in such a model has R-charge in the[0,2]range.There is no equation of type(3).If(4)and(5)both are solved,one gets an SUSY vacuum.If only(4)is solved,the needed complexified R-transformation with α→?∞to solve(5)asymptotically pushes all positively R-charged fields to zero,and leaves R-invariant fields unchanged.Unlike the proof in Ref.[10],no field redefinition has been done and W remains to be a polynomial.The asymptotic limit is actually an SUSY vacuum at finite field values.So we have shown that at least one field with negative R-charge is necessary for the existence of runaway directions related to R-symmetries.

    3 Runaway Directions from Non-R U(1)Symmetries

    The technique of complexified transformation used in the previous proof can also be applied to non-R U(1)symmetries.[13]The procedure is almost the same to what has been done in the R-symmetry case.The complexified U(1)transformation is

    where Q(?i)is the U(1)charge of ?i.Notice again that this is not a symmetry of the whole SUSY action because of kinetic terms.The superpotential must be invariant under the symmetry,thus has U(1)charge 0,F-terms are also rescaled under the complexified U(1)transformation:

    In other words,?iW scales like a field with U(1)charge?Q(?i).If one of equations ?iW=0 is solved,rescaling field values with the complexified U(1)transformation still solves the equation.SUSY equations are classified according to their F-term U(1)charges:

    In SUSY breaking models,these equations can not be solved simultaneously.If one can just solve equations of type(18)and(19),the complexified U(1)transformation with α → ?∞ satisfies equations of type(20)at the limit and gives a runaway direction.Similarly,if one can solve equations of type(19)and(20),the complexified U(1)transformation with α → +∞ satisfies equations of type(18)at the limit and gives a runaway direction.If equations of type(19)can not be solved,one needs to find a minimum of the potential from U(1)charge 0 F-terms:

    The complexified U(1)transformation leaves these nonzero F-terms invariant.One may get SUSY breaking runaway directions by just solving equations of either type(18)or type(20),and asymptotically satisfying the other.In all cases,there are more fields than equations to be solved before taking the limit,and runaway directions should exist for a generic W.

    The literature[13]provides an example with the following superpotential

    and the R-charge and U(1)charge assignment

    It is noticed that only the first three terms of W are necessary for showing the runaway direction along the ?1direction.But a negatively charged field X3is needed for anomaly cancellation if the U(1)is promoted to a gauge symmetry at high scale.Another neutral field ?3in the fourth term is needed to keep the runaway direction intact.And an additional ZN>2symmetry,under which X3and ?3have charges 1 and ?1,is needed for W to be generic.

    Here we will present a new model with both an R-symmetry and a non-R U(1)symmetry,but its genericness does not rely on extra symmetries.Although extra symmetries like the ZNin the previous model are generally accepted for realistic model building,our model provides an alternative way for genericness and simplicity.The superpotential is

    with the R-charge and U(1)charge assignment

    The U(1)charge assignment ensures the model to be anomaly-free when the U(1)is gauged,so one can later use D-terms to stabilize fields at finite values along the runaway direction,as was done in Ref.[13].Furthermore,the superpotential can be obtained from a more generic form

    which includes all terms respecting bo th symmetries.A field redefinition

    and a coefficient reassignment

    converts W to the form(25).So we will regard the superpotential(25)as generic.

    Since there are equal number of R-charge 2 and R-charge 0 fields,SUSY vacua should generically exist.But because the non-R U(1)symmetry restricts the form of W,our model actually has no SUSY vacuum.One can see this by working out the SUSY equations from(25):

    Equations(32)can always be solved by setting all X’s to zero.But equations(31)can not be solved simultaneously.Searching for stationary points of the scalar potential turns out that there is only an SUSY breaking saddle point with all ?’s at zero.Since all X fields have R-charge 2 one can not see the existence of runaway directions through a complexified R-transformation.However,one can classify the unsolved equations according to their F-term U(1)charges:Eqs.(35)with the complexified U(1)transformation at the α → +∞ limit.The resulting SUSY runaway direction is given as:

    As shown in Ref.[14],for a choice of R-charges ri’s and non-R U(1)charges qi’s,R-charges can be reassigned as=ri+aqifor a∈R.One can try to absorb the U(1)symmetry into the R-symmetry,for example,by taking R′(?)=R(?)+Q(?).The R-charge assignment(26)becomes

    The runaway direction can be found by solving equations with Q(X)≤0,i.e.,Eqs.(33)and(34),and satisfying

    The SUSY runaway direction(36)can be described as a result of R-symmetry with this new R-charge assignment,by solving equations of type(4)and(5),and satisfying equa-tions of type(3)with the complexified R-transformation at the α → +∞ limit.Although most runaway directions from non-R U(1)symmetries have such an R-symmetry description,there may exist some special choice of R-symmetries and non-R symmetries which are preferred for phenomenology study.For example,a certain choice of U(1)may be gauged at high scale and provide the D-term.[13]And the non-R symmetry description provides a clear view on the occurrence of runaway directions in such models.

    4 Conclusions

    We have discussed two general types of runaway directions in O’Raifeartaigh models. They are obtained by the technique of complexified transformation from R-symmetries and non-R U(1)symmetries,both of which are common in SUSY model building.After clarifying issues on fractional charges and genericness,the conditions for runaway directions of both SUSY and SUSY breaking types are given as follows.

    For runaway directions related to R-symmetries,SUSY equations are classified to three types(3),(4),and(5)according to their F-term R-charges.SUSY breaking means all equations can not be solved simultaneously.

    (i)If there is no negatively R-charged field,then there is no runaway direction related to R-symmetries.At least one field with negative R-charge is necessary for the existence of runaway directions related to R-symmetries.

    (ii)If equations of type(3)and(4)can be solved,complexified R-transformation can asymptotically satisfy equations of type(5)and give an SUSY runaway direction.

    (iii)If equations of type(4)and(5)can be solved,complexified R-transformation can asymptotically satisfy equations of type(3)and give an SUSY runaway direction.

    (iv)If equations of type(4)can not be solved,one needs to find a minimum of the potential from R-charge 0 F-terms.Then solving either one of Eqs.(3)and(5)and asymptotically satisfying the other leads to an SUSY breaking runaway direction.

    For runaway directions related to non-R U(1)symmetries,SUSY equations are classified to three types(18),(19)and(20)according to their F-term U(1)charges.SUSY breaking means all equations can not be solved simultaneously.

    (i)If equations of type(18)and(19)can be solved,complexified U(1)transformation can asymptotically satisfy equations of type(20)and give an SUSY runaway direction.

    (ii)If equations of type(19)and(20)can be solved,complexified U(1)transformation can asymptotically satisfy equations of type(18)and give an SUSY runaway direction.

    (iii)If equations of type(19)can not be solved,one needs to find a minimum of the potential from U(1)charge 0 F-terms.Then solving either one of(18)and(20)and asymptotically satisfying the other leads to an SUSY breaking runaway direction.

    As an example,we have presented a model with both an R-symmetry and a non-R U(1)symmetry.The superpotential includes all generic terms respecting both symmetries,and the model is anomaly-free when the U(1)is gauged.One finds a runaway direction(36)related to the non-R U(1)symmetry and no runaway directions related to the R-symmetry.The non-R U(1)symmetry case can be combined to the R-symmetry case by an R-charge redefinition,which absorbs the non-R symmetry.But the non-R symmetry description provides a clear view on the occurrence of runaway directions in certain models and may have phenomenological advantages.

    In all cases,there are more fields than equations to be solved before taking the asymptotic limit,and runaway directions should exist for a generic W.In certain examples the specific form of W may make such small number of equations still unsolvable,and one needs to check by detailed calculation whether SUSY or SUSY breaking runaway directions exist.In addition,runaway directions may also appear after including D-terms[7,15,19?20]which are not discussed in our work,and provide various tools for model building.

    Acknowledgement

    The authors thank Benrong Mu for helpful discussions.

    猜你喜歡
    衛(wèi)星
    把衛(wèi)星甩上天
    miniSAR遙感衛(wèi)星
    如何確定衛(wèi)星的位置?
    軍事文摘(2021年16期)2021-11-05 08:48:58
    滿天都是小衛(wèi)星
    靜止衛(wèi)星派
    科學(xué)家(2019年3期)2019-08-18 09:47:43
    衛(wèi)星掠影
    咣當(dāng)! 天上掉衛(wèi)星
    Puma" suede shoes with a focus on the Product variables
    競(jìng)射導(dǎo)航衛(wèi)星為哪般
    太空探索(2015年6期)2015-07-12 12:48:29
    我國(guó)成功發(fā)射遙感衛(wèi)星二十五號(hào)
    河北遙感(2014年4期)2014-07-10 13:54:59
    欧美日韩国产mv在线观看视频| 制服丝袜香蕉在线| 国产精品.久久久| 日本黄大片高清| 日韩一本色道免费dvd| 国产免费福利视频在线观看| 国产女主播在线喷水免费视频网站| 看十八女毛片水多多多| 国产精品.久久久| 全区人妻精品视频| 波野结衣二区三区在线| 日韩熟女老妇一区二区性免费视频| www.av在线官网国产| 免费大片黄手机在线观看| 日本黄色日本黄色录像| 亚洲在久久综合| 精品酒店卫生间| 一区二区三区精品91| 多毛熟女@视频| 国产精品熟女久久久久浪| 亚洲国产精品国产精品| 一级毛片黄色毛片免费观看视频| 最近最新中文字幕免费大全7| videossex国产| 中文字幕免费在线视频6| 人妻一区二区av| 一级,二级,三级黄色视频| 久久久国产一区二区| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| av视频免费观看在线观看| 国产成人精品无人区| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 亚洲,一卡二卡三卡| 欧美3d第一页| 久久久久国产网址| 一区二区av电影网| 国产精品欧美亚洲77777| 久久韩国三级中文字幕| 亚洲第一av免费看| 久久女婷五月综合色啪小说| 亚洲av.av天堂| 精品国产国语对白av| 男人舔女人的私密视频| av有码第一页| 我的女老师完整版在线观看| 精品卡一卡二卡四卡免费| 女的被弄到高潮叫床怎么办| 国产欧美亚洲国产| 日韩制服骚丝袜av| 久久精品国产综合久久久 | 婷婷色综合大香蕉| 中国国产av一级| 熟女人妻精品中文字幕| h视频一区二区三区| 永久免费av网站大全| av片东京热男人的天堂| 高清欧美精品videossex| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 国产av国产精品国产| 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 日韩成人伦理影院| 亚洲精品,欧美精品| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| 韩国精品一区二区三区 | 在线 av 中文字幕| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 国产精品久久久久久久久免| 大陆偷拍与自拍| 亚洲国产精品国产精品| 久久99一区二区三区| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 成人午夜精彩视频在线观看| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 国产色婷婷99| 国产黄频视频在线观看| 美女福利国产在线| 国产xxxxx性猛交| 天天操日日干夜夜撸| 亚洲内射少妇av| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 亚洲av中文av极速乱| 国产日韩一区二区三区精品不卡| 国产精品蜜桃在线观看| 最近最新中文字幕大全免费视频 | 久久精品国产亚洲av天美| 免费看光身美女| 亚洲熟女精品中文字幕| 最后的刺客免费高清国语| 老女人水多毛片| 亚洲欧美一区二区三区黑人 | 亚洲欧美中文字幕日韩二区| 高清视频免费观看一区二区| 国产成人91sexporn| 一本久久精品| 18禁国产床啪视频网站| 草草在线视频免费看| 亚洲欧美清纯卡通| 国产不卡av网站在线观看| 男人操女人黄网站| 美女内射精品一级片tv| 国产精品麻豆人妻色哟哟久久| 满18在线观看网站| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美| 日本-黄色视频高清免费观看| 亚洲av福利一区| 丝袜脚勾引网站| 成人午夜精彩视频在线观看| 搡女人真爽免费视频火全软件| av电影中文网址| 日韩电影二区| 国产 一区精品| 国产av国产精品国产| 精品亚洲成国产av| 久久99精品国语久久久| 18禁在线无遮挡免费观看视频| 欧美精品高潮呻吟av久久| 男女下面插进去视频免费观看 | 亚洲国产日韩一区二区| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 亚洲国产日韩一区二区| 国产男女内射视频| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 亚洲精品乱久久久久久| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频| 五月天丁香电影| 午夜福利,免费看| 免费播放大片免费观看视频在线观看| 在线 av 中文字幕| 久久av网站| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 久久久欧美国产精品| 日本av免费视频播放| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 男女边摸边吃奶| 看免费av毛片| 美女中出高潮动态图| 超色免费av| 卡戴珊不雅视频在线播放| 91成人精品电影| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 汤姆久久久久久久影院中文字幕| 日韩欧美精品免费久久| 午夜免费观看性视频| 日本与韩国留学比较| 精品少妇内射三级| 久久狼人影院| 国产 精品1| 久久久精品免费免费高清| 国产 一区精品| 春色校园在线视频观看| 国产一区有黄有色的免费视频| 丝袜人妻中文字幕| 一二三四中文在线观看免费高清| 久热这里只有精品99| 一区二区三区精品91| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 99久久精品国产国产毛片| 精品人妻在线不人妻| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频 | 国产1区2区3区精品| 亚洲少妇的诱惑av| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 视频区图区小说| 亚洲四区av| 亚洲精华国产精华液的使用体验| 免费不卡的大黄色大毛片视频在线观看| 午夜激情av网站| 精品少妇黑人巨大在线播放| 国产国拍精品亚洲av在线观看| 亚洲av综合色区一区| 色网站视频免费| 搡老乐熟女国产| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 最近中文字幕高清免费大全6| 男女午夜视频在线观看 | 18禁观看日本| 亚洲一区二区三区欧美精品| 成人无遮挡网站| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 亚洲五月色婷婷综合| 成人亚洲欧美一区二区av| 夫妻午夜视频| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 99久久综合免费| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 久久久久网色| 99国产综合亚洲精品| 久久热在线av| 美女中出高潮动态图| 美女主播在线视频| 最近的中文字幕免费完整| 日韩熟女老妇一区二区性免费视频| 日韩av免费高清视频| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 亚洲高清免费不卡视频| 亚洲成av片中文字幕在线观看 | 中文字幕最新亚洲高清| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 欧美成人午夜免费资源| 1024视频免费在线观看| 丝袜美足系列| 亚洲丝袜综合中文字幕| 亚洲成国产人片在线观看| 久久久精品区二区三区| 午夜日本视频在线| 最后的刺客免费高清国语| 色5月婷婷丁香| 午夜激情久久久久久久| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 亚洲国产色片| 国产av码专区亚洲av| 久久热在线av| 精品人妻在线不人妻| 亚洲伊人久久精品综合| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 高清不卡的av网站| 欧美人与善性xxx| 日韩不卡一区二区三区视频在线| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 69精品国产乱码久久久| 免费观看无遮挡的男女| 国产av一区二区精品久久| 草草在线视频免费看| 人妻系列 视频| 最近中文字幕2019免费版| 人人澡人人妻人| 国产淫语在线视频| 亚洲成国产人片在线观看| a级毛色黄片| 国产又色又爽无遮挡免| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 黄色 视频免费看| 免费人成在线观看视频色| 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| 国产亚洲一区二区精品| 国产亚洲av片在线观看秒播厂| 欧美日韩综合久久久久久| 91国产中文字幕| 国产男女内射视频| 天堂俺去俺来也www色官网| 99精国产麻豆久久婷婷| 成人漫画全彩无遮挡| 午夜激情av网站| 国产高清三级在线| 国产极品天堂在线| 国产成人免费无遮挡视频| 精品亚洲乱码少妇综合久久| 国产精品国产三级专区第一集| 国产一区亚洲一区在线观看| 成人影院久久| 午夜激情av网站| 国产精品.久久久| 日本wwww免费看| 青青草视频在线视频观看| 蜜桃国产av成人99| 亚洲久久久国产精品| 狠狠婷婷综合久久久久久88av| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的| 精品少妇黑人巨大在线播放| 亚洲一码二码三码区别大吗| 日韩人妻精品一区2区三区| 日韩成人av中文字幕在线观看| 中文字幕制服av| 伦理电影大哥的女人| 色吧在线观看| 久久99热这里只频精品6学生| 青春草国产在线视频| 秋霞伦理黄片| 欧美最新免费一区二区三区| 午夜福利网站1000一区二区三区| 日韩精品有码人妻一区| 有码 亚洲区| 美女内射精品一级片tv| 国产69精品久久久久777片| 国产男女超爽视频在线观看| 国产 一区精品| 99热国产这里只有精品6| 人妻人人澡人人爽人人| av在线老鸭窝| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 成人漫画全彩无遮挡| av女优亚洲男人天堂| 亚洲第一av免费看| 国产成人精品久久久久久| av又黄又爽大尺度在线免费看| 一边摸一边做爽爽视频免费| 成人午夜精彩视频在线观看| 亚洲欧美精品自产自拍| 久久这里只有精品19| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 久久久精品免费免费高清| 亚洲国产av影院在线观看| 婷婷色综合www| 自线自在国产av| 人成视频在线观看免费观看| 成人影院久久| 中文字幕精品免费在线观看视频 | 国产黄色免费在线视频| 一级片'在线观看视频| 国产精品一区www在线观看| 日韩视频在线欧美| 插逼视频在线观看| 国产亚洲最大av| 欧美 日韩 精品 国产| 色网站视频免费| 最黄视频免费看| 国内精品宾馆在线| 乱码一卡2卡4卡精品| 色网站视频免费| 国产片内射在线| 久久国内精品自在自线图片| 十八禁网站网址无遮挡| 超色免费av| 免费久久久久久久精品成人欧美视频 | 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 日本午夜av视频| 一二三四中文在线观看免费高清| 丝袜喷水一区| 超色免费av| 热99国产精品久久久久久7| 亚洲成av片中文字幕在线观看 | 九草在线视频观看| 国产成人精品婷婷| 国产精品熟女久久久久浪| 伦精品一区二区三区| 欧美bdsm另类| 春色校园在线视频观看| 精品国产一区二区三区四区第35| 中文字幕另类日韩欧美亚洲嫩草| 桃花免费在线播放| 熟女人妻精品中文字幕| 精品人妻在线不人妻| av播播在线观看一区| 热99国产精品久久久久久7| 国产免费现黄频在线看| 国产高清国产精品国产三级| av线在线观看网站| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 国产乱人偷精品视频| 免费观看在线日韩| 人人妻人人添人人爽欧美一区卜| 精品99又大又爽又粗少妇毛片| 男的添女的下面高潮视频| 男男h啪啪无遮挡| 久久久精品免费免费高清| 成人国产av品久久久| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 久久久精品区二区三区| 天天操日日干夜夜撸| 国产精品免费大片| 人妻人人澡人人爽人人| 国产高清三级在线| 亚洲人成77777在线视频| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 深夜精品福利| 婷婷色麻豆天堂久久| 成人国语在线视频| 性色av一级| 日韩人妻精品一区2区三区| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| av天堂久久9| 老女人水多毛片| 亚洲一区二区三区欧美精品| 久久影院123| 精品亚洲成a人片在线观看| 一区在线观看完整版| 国产成人aa在线观看| 色网站视频免费| av国产精品久久久久影院| 久热这里只有精品99| 十分钟在线观看高清视频www| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看 | 国产色婷婷99| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 亚洲精品视频女| 在线 av 中文字幕| 插逼视频在线观看| 久久国产亚洲av麻豆专区| 人人妻人人爽人人添夜夜欢视频| 久久久精品94久久精品| 日本91视频免费播放| 最新中文字幕久久久久| 国产精品三级大全| 国产精品99久久99久久久不卡 | 国产精品久久久久久久电影| 精品国产国语对白av| av.在线天堂| 一二三四在线观看免费中文在 | 亚洲欧美一区二区三区国产| 亚洲美女黄色视频免费看| 欧美成人精品欧美一级黄| 日本wwww免费看| 国产成人精品一,二区| 久久久精品94久久精品| 国产在线视频一区二区| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区黑人 | 18+在线观看网站| 人人澡人人妻人| videosex国产| 在现免费观看毛片| 2022亚洲国产成人精品| 亚洲精品国产av蜜桃| 日日撸夜夜添| 国产精品国产av在线观看| 观看美女的网站| 久久国产精品大桥未久av| 国产亚洲精品久久久com| 汤姆久久久久久久影院中文字幕| 狠狠精品人妻久久久久久综合| 亚洲av男天堂| 久久久欧美国产精品| 亚洲 欧美一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 少妇人妻精品综合一区二区| 欧美日韩精品成人综合77777| 97在线人人人人妻| 日本猛色少妇xxxxx猛交久久| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久| 亚洲精品日韩在线中文字幕| 中文字幕免费在线视频6| xxx大片免费视频| 18禁国产床啪视频网站| 99九九在线精品视频| 国产免费福利视频在线观看| 亚洲av综合色区一区| 色婷婷av一区二区三区视频| 午夜免费观看性视频| 精品少妇久久久久久888优播| 国产精品久久久久久久电影| 韩国av在线不卡| 又大又黄又爽视频免费| 青春草视频在线免费观看| 午夜免费鲁丝| 中文字幕人妻丝袜制服| 欧美丝袜亚洲另类| 女人精品久久久久毛片| 中国美白少妇内射xxxbb| 日日爽夜夜爽网站| 精品福利永久在线观看| 麻豆精品久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 国产xxxxx性猛交| 视频中文字幕在线观看| 精品国产露脸久久av麻豆| 日韩 亚洲 欧美在线| 免费观看a级毛片全部| 国产精品麻豆人妻色哟哟久久| 中文字幕最新亚洲高清| 最近中文字幕2019免费版| 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 免费人成在线观看视频色| 国产av国产精品国产| 亚洲欧美一区二区三区黑人 | 久久鲁丝午夜福利片| 国产亚洲精品久久久com| 亚洲美女黄色视频免费看| av在线app专区| 欧美国产精品一级二级三级| 性高湖久久久久久久久免费观看| 九色亚洲精品在线播放| 午夜av观看不卡| 国产成人精品一,二区| 欧美国产精品一级二级三级| 夫妻性生交免费视频一级片| 少妇人妻精品综合一区二区| 亚洲伊人久久精品综合| 午夜免费男女啪啪视频观看| 在线观看国产h片| 久久女婷五月综合色啪小说| 99热6这里只有精品| 亚洲国产av新网站| 秋霞伦理黄片| 美女福利国产在线| 亚洲av中文av极速乱| 久久精品国产亚洲av天美| 国产视频首页在线观看| 黑丝袜美女国产一区| 麻豆精品久久久久久蜜桃| 七月丁香在线播放| 深夜精品福利| 2021少妇久久久久久久久久久| 波多野结衣一区麻豆| 国产xxxxx性猛交| 国精品久久久久久国模美| 午夜福利网站1000一区二区三区| 精品99又大又爽又粗少妇毛片| 国产国拍精品亚洲av在线观看| 伦理电影大哥的女人| 久久久久精品性色| 一区二区av电影网| 国产午夜精品一二区理论片| 午夜91福利影院| av在线观看视频网站免费| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 日本-黄色视频高清免费观看| 亚洲成人一二三区av| 一级片'在线观看视频| 久久久久国产网址| 97精品久久久久久久久久精品| 国产成人免费观看mmmm| 国产精品国产av在线观看| 丰满少妇做爰视频| 亚洲色图 男人天堂 中文字幕 | 美女主播在线视频| 精品一品国产午夜福利视频| av国产久精品久网站免费入址| 汤姆久久久久久久影院中文字幕| 一个人免费看片子| 青青草视频在线视频观看| 成人毛片60女人毛片免费| 精品99又大又爽又粗少妇毛片| 久久ye,这里只有精品| 国产av码专区亚洲av| 黄色 视频免费看| 国产激情久久老熟女| 国产免费现黄频在线看| 99热全是精品| 中文精品一卡2卡3卡4更新| 国产一区二区激情短视频 | 高清视频免费观看一区二区| 亚洲av免费高清在线观看| 国产精品一国产av| 国产淫语在线视频| 欧美性感艳星| 亚洲成人av在线免费| 欧美 亚洲 国产 日韩一| 日韩精品有码人妻一区| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| 色网站视频免费| 九色亚洲精品在线播放| 久久久久久伊人网av| 免费在线观看完整版高清| av女优亚洲男人天堂| 又大又黄又爽视频免费| 熟女av电影| 色婷婷久久久亚洲欧美| 亚洲国产av影院在线观看| 亚洲国产精品999|