沈 旻,蔣志敏,李 南,陳慧闖,董經(jīng)博,馬國強(qiáng)
?
高安全性鋰離子電池電解液
沈 旻,蔣志敏,李 南,陳慧闖,董經(jīng)博,馬國強(qiáng)
(浙江省化工研究院,浙江 杭州 310023)
鋰離子電池安全性問題的本質(zhì)是電池內(nèi)部發(fā)生了熱失控,熱量不斷的累積,造成電池內(nèi)部溫度持續(xù)上升,其外在的表現(xiàn)是燃燒、爆炸等。因此,鋰離子電池的安全性與比能量、使用溫度和倍率性能等存在一定的矛盾。電池能量密度越高、倍率性能越快和使用環(huán)境越惡劣,其能量劇烈釋放時對電池體系的影響就越大,安全問題也越突出。當(dāng)前鋰離子電池電解液一般由低閃點(diǎn)的碳酸酯、對痕量水和溫度敏感的LiPF6和其它添加劑組成,本身具有高度可燃性。同時,電解液與正負(fù)極材料之間形成界面膜被認(rèn)為是電池?zé)崾Э氐钠瘘c(diǎn)。因此,電解液改性是提升電池安全性的重要措施。本文分析了離子液體和氟代溶劑等溶劑對電解液安全性的提升效果,對比了多種鋰鹽對電解液安全性的影響,介紹了阻燃劑、過充保護(hù)劑、鋰枝晶抑制劑和成膜穩(wěn)定劑等電解液添加劑對鋰電池安全性的改善。最后,從電池整體應(yīng)用性能的角度出發(fā),討論了今后高安全性鋰離子電池電解液的研發(fā)方向。
安全性電解液;鋰離子電池;溶劑;鋰鹽;添加劑
鋰離子電池(LIB)具有能量密度高、工作電壓高、循環(huán)壽命長、環(huán)境污染小、無記憶效應(yīng)等優(yōu)點(diǎn),被認(rèn)為是發(fā)展前景最大的二次電池之一。目前已廣泛應(yīng)用于便攜電子設(shè)備領(lǐng)域,如手機(jī)、筆記本、照相機(jī)等[1]。在新興的動力與儲能領(lǐng)域,鋰離子電池也逐漸占據(jù)不可取代的地位。但同時,隨著人們在這一領(lǐng)域?qū)恿卧蟮牟粩嗵嵘?,鋰離子電池在安全性能、高低溫性能和倍率性能等方面都面臨著巨大的挑戰(zhàn)。
鋰離子電池貼近人們的生活,安全性問題輕則損毀設(shè)備,造成經(jīng)濟(jì)損失,重則危及使用者的生命。因此,安全性能一直是這一領(lǐng)域的研究重點(diǎn)。近年來,裝載鋰離子電池的設(shè)備屢發(fā)爆炸傷人事件。表1列舉了國內(nèi)外知名企業(yè)最近幾年的鋰電安全事故,這些事件的發(fā)生小到影響公司的信譽(yù)與效益,大到影響行業(yè)整體發(fā)展。2016年,三星Note7手機(jī)發(fā)布一個月內(nèi),在全球發(fā)生三十多起因電池缺陷造成的爆炸和起火事故。在國內(nèi),三星公司對“爆炸門”事件的不當(dāng)處置也使公司信譽(yù)受損,市場占有率逐年下滑。電動汽車進(jìn)入全球市場后,特斯拉、比亞迪等新能源車接連發(fā)生碰撞起火事故,造成乘用人員傷亡,引起業(yè)內(nèi)人員和社會輿論的廣泛關(guān)注。鋰離子電池在擠壓、沖擊、針刺等極端狀態(tài)下的安全性問題仍有待解決。在追求高性能的同時,安全問題已經(jīng)成為鋰離子電池進(jìn)一步發(fā)展和應(yīng)用的制約因素。
表1 近年鋰離子電池重大安全事故
電池系統(tǒng)熱失控是電池安全問題的起因。在電池濫用情況下,物理化學(xué)變化產(chǎn)生的熱量遠(yuǎn)大于散熱量,導(dǎo)致熱量累積、溫度飛升,引起著火爆炸[2],圖1模擬了電池在高溫濫用下的熱失控過程。鋰離子電池工作本質(zhì)是高能量的存儲與釋放的電化學(xué)反應(yīng)過程。這一過程中,Li+在正負(fù)極的嵌入與脫嵌完成電池的充放電。充放電倍率的提高、突發(fā)事故造成的短路等因素會導(dǎo)致產(chǎn)熱速率增加,從而產(chǎn)生一系列連鎖反應(yīng),引發(fā)安全問題[3]。在高溫環(huán)境下,鋰離子電池的各個組成部分均存在著安全隱患。目前,商業(yè)化的鋰離子電池產(chǎn)品中,電解液具有高活性、易分解、易燃易爆和易揮發(fā)的特點(diǎn)?,F(xiàn)有隔膜材料燃點(diǎn)較低,在高溫下易燃燒分解。正極活性物質(zhì)在Li+脫嵌過程中易發(fā)生金屬氧化物的剝離,負(fù)極材料則易形成鋰枝晶以及其它物質(zhì)的共嵌,正負(fù)極的問題均會改變電極結(jié)構(gòu),使電池體積膨脹,嚴(yán)重時刺破隔膜,形成短路,進(jìn)一步加劇安全問題。
針對以上問題,研究者分別提供了多種保護(hù)機(jī)制以改善電池安全性,如改性電極材料[5-6]、使用高安全性電解液[7]、使用特殊隔膜材料、設(shè)置外部安全控制系統(tǒng)[8]等。對電極材料的改性主要包括表面包覆和摻雜改性,以提高其結(jié)構(gòu)穩(wěn)定性,但這類方法仍然無法解決電池在濫用狀態(tài)下的安全事故。設(shè)置外部安全控制系統(tǒng)主要包括設(shè)置限壓閥、正溫度系數(shù)元件等,這類方法能夠在安全事故發(fā)生初期對其進(jìn)行有效的控制,缺點(diǎn)在于成本高、增加電池體積。復(fù)合隔膜和隔膜表面涂覆可以提高隔膜的熱收縮溫度,但是很難將電池的安全性寄希望于隔膜在高溫下閉孔,進(jìn)而切斷熱失控初期的反應(yīng)回路。已有研究表明,SEI膜的分解是電池?zé)崾Э氐钠瘘c(diǎn),后續(xù)伴隨著電解液與正負(fù)極材料的反應(yīng),這些熱失控因素都與電解液性質(zhì)直接相關(guān)。因此,從目前來看,使用高安全性電解液仍然是較為實(shí)用和有效的措施,可以從根源上改善鋰離子電池的安全性。
圖1 155 ℃熱箱實(shí)驗1200 s鋰離子電池溫度分布[4]
電解液之于鋰離子電池相當(dāng)于血液之于人體,它起著輸送和傳導(dǎo)電池內(nèi)部的“氧氣”——鋰離子的作用,同時,電解液幾乎參與到電池內(nèi)部的所有反應(yīng)過程。已實(shí)現(xiàn)規(guī)?;a(chǎn)的鋰離子電池中,碳酸酯為綜合性能最佳的溶劑,但其閃點(diǎn)低,受熱時易分解并產(chǎn)生氣體,在高溫下易燃易爆;LiPF6作為應(yīng)用最為廣泛的鋰鹽,對電解液中的痕量水敏感,高溫下易分解并產(chǎn)生有毒、有腐蝕性的氣體。如圖2所示,F(xiàn)ENG等[9]將電池?zé)崾Э剡^程劃分為六個階段,其中第一至第二階段主要為SEI膜的分解。RICHARD等[10]發(fā)現(xiàn),負(fù)極的熱分解起始溫度為100 ℃左右,這主要是由SEI膜的分解導(dǎo)致的。BELHAROUAK等[11]研究了負(fù)極材料分別在充放電狀態(tài)下的熱分解情況。ZHENG等[12]通過加速量熱法(ARC)和差式掃描量熱法(DSC)分析了4種商用軟包鋰離子電池?zé)崾Э貦C(jī)理,發(fā)現(xiàn)熱失控起始于含有電解液的正負(fù)極。因此,鋰離子電池?zé)崾Э氐钠瘘c(diǎn)源于SEI膜的分解,SEI膜的不穩(wěn)定則會導(dǎo)致電解液持續(xù)在電極表面反應(yīng),從而引發(fā)安全性問題。
目前,高安全性鋰離子電池電解液的設(shè)計思路主要有:①溶劑改性,常用溶劑具有高活性、高揮發(fā)性和易燃性,溶劑改性主要通過降低溶劑的揮發(fā)性和可燃性;②鋰鹽改性,商業(yè)化鋰鹽LiPF6受熱易分解且對痕量水敏感,鋰鹽改性主要通過提高其熱穩(wěn)定性以及尋找綜合性能更優(yōu)的新型鋰鹽。③高安全性添加劑的使用,直接起到安全保護(hù)作用的高安全性添加劑有阻燃添加劑和過充保護(hù)添加劑兩種,另外如鋰枝晶抑制劑、SEI膜穩(wěn)定劑等添加劑,在提高電池循環(huán)穩(wěn)定性的同時,可以抑制鋰枝晶的生成,防止鋰枝晶穿透隔膜,進(jìn)而有利于提升電池的安全性能。下文是對近些年來關(guān)于高安全性電解液研究的總結(jié),分為溶劑改性、新型鋰鹽和電解液添加劑三部分。
圖2 鋰離子電池?zé)崾Э夭煌A段的溫度范圍[9]
如表2所示,環(huán)狀碳酸酯作為常用溶劑,具有較高的介電常數(shù),能夠提高電池電導(dǎo)率。但環(huán)狀碳酸酯存在高熔點(diǎn)、高黏度的問題,一般輔以鏈狀碳酸酯來提高流動性并拓寬電池的工作溫度。然而,鏈狀碳酸酯在強(qiáng)放熱狀態(tài)下易燃燒、分解,碳酸酯類溶劑存在易揮發(fā)的特點(diǎn),對電池的安全性能造成了較大影響。目前對溶劑改性的研究主要針對上述問題,從降低溶劑可燃性、揮發(fā)性和抑制溶劑分 解這幾方面展開,涉及到離子液體和氟代溶劑的 使用。
表2 常用有機(jī)溶劑及其物理性質(zhì)[13-14]
2.1.1 離子液體
離子液體(RTIL),又稱室溫熔融鹽,一般由有機(jī)陽離子和有機(jī)/無機(jī)陰離子構(gòu)成,在室溫下呈液態(tài)。離子液體具有熱穩(wěn)定性好、揮發(fā)性低、不易燃、熱容量大、液程寬和電化學(xué)窗口寬的優(yōu)點(diǎn)[15-16][Lux, 2009 #4][Lux, 2009 #4]。然而,黏度高、電導(dǎo)率低的缺陷,限制了離子液體進(jìn)一步發(fā)展[17]。近年來,相繼報道了聚合物-離子液體-鋰鹽的三元聚合物鋰離子電池體系,以提高固態(tài)鋰離子電池的安全性、溶鹽能力和工作性能[18-19]。另外,離子液體也廣泛應(yīng)用于鋰硫電池以提高其安全性和循環(huán)穩(wěn)定性[20-21]。
表3 常用離子液體及其物理性質(zhì)[17, 23]
咪唑類離子液體以1-乙基-3-甲基咪唑陽離子(EMI+)為代表。在離子液體中,這類物質(zhì)具有黏度低、電導(dǎo)率高的優(yōu)點(diǎn),最早應(yīng)用于鋰離子電池中。但EMI+還原電位較高,電化學(xué)窗口較窄,抑制了其在高性能電池中的應(yīng)用[24]。NAKAGAWA等[25]發(fā)現(xiàn),以EMI[BF4]作為純?nèi)軇?,在理論嵌鋰電位較低的鈦酸鋰正極的Li4Ti5O12/LiCoO2電池中能顯著提升電池?zé)岱€(wěn)定性,電解液升溫至300 ℃未分解,同時保持較好的循環(huán)性能。曹輝[26]提出,EMI[TFSI]能顯著提高電解液的熱穩(wěn)定性。如圖3所示,相較于EC/DMC(1∶1)溶劑150 ℃時完全分解,100%EMI[TFSI]溶劑升溫至400 ℃以上才明顯分解。當(dāng)EMI[TFSI]溶劑添加量達(dá)到40%以上時,電解液完全不燃燒。使用EMI[TFSI]作為阻燃添加劑(10%,體積百分比)使用時,NCM/石墨電池仍能保持較高的循環(huán)性能,但若將其作為共溶劑(40%,體積百分比)使用時,必須加入碳酸亞乙烯酯(VC)、雙草酸硼酸鋰(LiBOB)等成膜添加劑來抑制其在負(fù)極的分解。
季銨鹽類離子液體具有化學(xué)穩(wěn)定性好、電化學(xué)窗口寬的優(yōu)勢[25],但其也存在黏度較大、電導(dǎo)率較低的問題,早期的季銨鹽類離子液體以烷基取代基為主,存在著對電極材料和隔膜的浸潤性較差的問題。現(xiàn)有研究通過加入腈基[27]、醚鍵[28]、酯基[29]等極性基團(tuán)改善了這一問題。SATO等[28]發(fā)現(xiàn),N,N-二乙基-N-甲基-N-甲氧基亞乙基雙三氟甲基磺酰亞胺季銨鹽(DEME[TFSI])具有良好的熱穩(wěn)定性,其作為溶劑可使電解液的熱分解溫度提升至350 ℃以上。但是,季銨鹽類在石墨或金屬鋰負(fù)極表面不能穩(wěn)定存在,影響電池循環(huán)性能[30],現(xiàn)有研究主要通過加入負(fù)極成膜添加劑減小不可逆反應(yīng)的影響[31]。
圖3 EMI[TFSI]+EC/DMC(1∶1)混合電解液質(zhì)量損失曲線圖[26]
2.1.2 氟代溶劑
氟代溶劑是目前研究較為深入的一類有機(jī)溶劑,在高安全性鋰離子電池電解液的開發(fā)過程中具有廣泛應(yīng)用。氟元素原子半徑小,電負(fù)性強(qiáng),使得氟代溶劑具有凝固點(diǎn)低、閃點(diǎn)高、與電極之間浸潤性好的優(yōu)點(diǎn)。同時,含氟化學(xué)鍵鍵能強(qiáng),通過氟取代活潑元素能顯著提高溶劑的熱穩(wěn)定性和電化學(xué)穩(wěn)定性?,F(xiàn)有氟代溶劑的開發(fā)主要包括氟代碳酸酯、氟代羧酸酯和氟代醚。氟代碳酸乙烯酯(FEC)已經(jīng)商業(yè)化規(guī)模生產(chǎn)。FEC閃點(diǎn)高,作為共溶劑加入到電解液中,可以大大降低電解液的可燃性,被廣泛應(yīng)用于高安全性電解液的研究[32]。同時,它具有黏度低、能形成穩(wěn)定的SEI膜的優(yōu)點(diǎn),可減少充放電過程中的副反應(yīng),提高電極材料的穩(wěn)定性,提升高溫下的電池性能[33-34]。KATAYAMA等[35]研究發(fā)現(xiàn),三氟代碳酸丙烯酯(TFPC)與常用有機(jī)溶劑EC、PC組成的二元共溶劑具有較高閃點(diǎn),并獲得較好的放電容量和循環(huán)壽命。YAMAKI等[36]則發(fā)現(xiàn)二氟代乙酸甲酯(MFA)和二氟代乙酸乙酯(EFA)對電解液安全性的提高,尤其提高了電池在鈷酸鋰正極和金屬鋰負(fù)極的熱穩(wěn)定性。如圖4所示,MFA作為共溶劑明顯抑制了PC溶劑的高溫分解,且其添加量達(dá)到60%時對Li金屬負(fù)極的熱穩(wěn)定性有顯著改善。典型的氟代醚類有機(jī)溶劑包括九氟丁基甲基醚(MFE)和九氟丁基乙基醚(EFE)等,具有較低黏度和熔點(diǎn)的優(yōu)勢[37]。在EMC溶劑中加入20%MFE,即可消除閃點(diǎn),且不影響電池循環(huán)性能[38]。
LiPF6現(xiàn)今仍是鋰離子電池領(lǐng)域應(yīng)用最廣泛的鋰鹽。傳統(tǒng)的無機(jī)鋰鹽中,LiPF6具有較優(yōu)的綜合性能,其優(yōu)勢在于常溫循環(huán)性能好、電化學(xué)窗口寬、無毒、且成本低廉。但是,在高電壓、高倍率及電池濫用的情況下,LiPF6受熱易分解,生成的五氟化磷(PF5)會與碳酸酯類溶劑發(fā)生反應(yīng),生成CO2,同時破壞SEI膜,損害電池的循環(huán)性能與使用壽 命[39]。PF5還會與有機(jī)溶劑中的質(zhì)子性雜質(zhì)如痕量水發(fā)生反應(yīng)產(chǎn)生劇毒的POF3、HF[40],在熱失控的狀態(tài)下,反應(yīng)會更加劇烈[41]。目前,高安全性鋰鹽的使用主要通過以下兩種方式實(shí)現(xiàn):①對LiPF6改性以提高其熱穩(wěn)定性和化學(xué)穩(wěn)定性;②尋找綜合性能更優(yōu)的新型鋰鹽。
2.2.1 LiPF6的改性
針對LiPF6熱穩(wěn)定性和化學(xué)穩(wěn)定性差的問題,主要通過取代部分氟原子來尋找結(jié)構(gòu)更穩(wěn)定的LiPF6衍生物。全氟烷基取代的LiPF6在碳酸酯類有機(jī)溶劑中有較高的溶解度,SCHMIDT等[42]研究發(fā)現(xiàn),LiPF3(C2F5)3(LiFAP)具有良好的耐水解性能,在含有該鋰鹽的電解液中加入1000 ppm(1 ppm= 10-6mg/kg)H2O,靜置70 h未發(fā)生水解,明顯優(yōu)于LiPF6,且具有較優(yōu)的電導(dǎo)率和充放電容量。同時,全氟乙基的存在也大大提高了電解液的閃點(diǎn)[43]。XU 等[44]發(fā)現(xiàn)四氟草酸磷酸鋰的熱穩(wěn)定性明顯高于LiPF6,在65 ℃高溫貯存兩周后仍能保持較高的循環(huán)性能,且其電導(dǎo)率、電化學(xué)窗口和循環(huán)穩(wěn)定性能與LiPF6相近。QIN等[45]發(fā)現(xiàn)四氟草酸磷酸鋰能夠改善中間相碳微球負(fù)極在富鋰狀態(tài)下的熱穩(wěn)定性,在55 ℃高溫下循環(huán)200周仍能保持較高的容量保持率。最近HAN等[46]發(fā)現(xiàn)雙草酸取代的二氟雙草酸磷酸鋰可作為負(fù)極成膜添加劑使用,提高了電池的循環(huán)穩(wěn)定性和倍率性能。KIM等[47]提出二氟磷酸鋰(LiDFP)與VC共同作用,可顯著提高石墨負(fù)極的倍率性能。但這兩種鋰鹽的溶解度較低,目前主要作為添加劑使用。
圖4 1mol/L LiPF6/PC+MFA共溶劑(a)DSC曲線;(b)140~300 ℃升溫放熱量/剩余Li金屬百分比[32]
2.2.2 新型鋰鹽
以硼元素為中心原子的陰離子基團(tuán)是現(xiàn)今研究的一個重點(diǎn)方向,其中雙草酸硼酸鋰(LiBOB)和二氟草酸硼酸鋰(LiDFOB)的研究最多[48]。LiBOB熱穩(wěn)定性好,具有良好的高溫性能,XU等[44]研究發(fā)現(xiàn)LiBOB在70 ℃下的高溫循環(huán)性能遠(yuǎn)優(yōu)于LiPF6。他們[49]還發(fā)現(xiàn)LiBOB具有優(yōu)秀的抗過充能力,在1 C過充測試時,LiBOB電池僅發(fā)生100 ℃以內(nèi)溫和的升溫變化,而相同狀態(tài)下LiPF6電池則發(fā)生嚴(yán)重的爆炸事故,溫度飛升至400 ℃。同時,LiBOB還能作為成膜添加劑使用,它能在石墨負(fù)極形成致密的SEI膜,抑制PC在石墨負(fù)極的共嵌和剝離[50]。LiDFOB在結(jié)構(gòu)上是由LiBOB和LiBF4各自的半分子構(gòu)成,結(jié)合了兩者優(yōu)點(diǎn)。相較于LiBOB,其黏度更低,且在碳酸酯類溶劑中溶解度更高。在過充保護(hù)方面,LiDFOB作用機(jī)理與LiBOB相類似,過充時發(fā)生氧化反應(yīng)生成CO2,反應(yīng)放熱緩慢,且易觸發(fā)泄壓閥,阻止過充進(jìn)一步發(fā)生。同時,其具有良好的高溫循環(huán)性能,且在作為添加劑使用時具有良好的負(fù)極成膜作用,并能夠鈍化鋁箔[49]。此外,如五氟乙烷三氟硼酸鋰(LiC2F5BF3)[51]、鄰苯二酚硼酸二甲酯鋰(LiCDMB)[52]、雙-2-氟代丙二酸硼酸鋰(LiBFMB)[53]等新型含硼鋰鹽均出現(xiàn)在高安全性電解液的研究中。
表4 常用鋰鹽及其物理、電化學(xué)性質(zhì)[42,48,54]
以磺酰亞胺根離子為陰離子的新型鋰鹽是另一類研究較為廣泛的高安全性鋰鹽,以雙氟磺酰亞胺鋰(LiFSI)和雙三氟甲基磺酰亞胺鋰(LiTFSI)為代表。氟代磺酸根基團(tuán)具有強(qiáng)吸電子作用,加劇了負(fù)電荷的離域化,提高了鋰鹽的溶解度[54-55]。同時,其具有電導(dǎo)率高、不易水解、熱穩(wěn)定性好等優(yōu)點(diǎn),尤其是分解溫度,一般均在360 ℃以上,遠(yuǎn)高于其它鋰鹽[56]。這類鋰鹽還能有效提高電池的低溫性能,并抑制脹氣,但在較高電壓下會嚴(yán)重腐蝕Al集流體。這限制了其在高電壓鋰離子電池體系中的使用[14]。不過在對電壓要求不高的電池體系,如鋰-空氣電池、鋰硫電池中,離子液體具有明顯優(yōu)勢。也有研究通過取代基團(tuán)改性的方式,如合成雙全氟乙基磺酰亞胺鋰(LiBETI)、N-三氟甲基磺酰-N-九氟丁基磺酰亞胺鋰(LiTNSI)和氟烷氧基類磺酰亞胺鋰[57],提高鋰鹽對鋁箔的耐腐蝕性。如表4所示,列舉了LiPF6和一些研究較多的常用新型鋰鹽及其物理、電化學(xué)性質(zhì)。迄今為止,雖然涌現(xiàn)出多種綜合性能優(yōu)異的新型鋰鹽,但由于合成和分離過程中成本頗高,它們在電解液的規(guī)?;a(chǎn)過程中大多仍扮演著添加劑的“角色”。
阻燃劑是最為重要的一類高安全性添加劑,其使用量一般占電解液的10%左右,能夠有效降低電解液的可燃性。阻燃機(jī)理主要分化學(xué)阻燃和物理阻燃,前者通過捕捉燃燒過程中產(chǎn)生的氫自由基來終止自由基鏈?zhǔn)椒磻?yīng)[58-59],而后者主要通過添加劑本身的低揮發(fā)性和熱穩(wěn)定性來“稀釋”電解液中的可燃成分[39]。目前為止,鋰離子電池用阻燃劑大致可分為含磷阻燃劑、含氟阻燃劑、含氮阻燃劑和復(fù)合阻燃劑,如表5所示。
表5 常用阻燃添加劑分類及其特點(diǎn)
2.3.1 含磷阻燃劑
含磷阻燃劑以自由基捕捉機(jī)理為主,阻燃效果優(yōu)異。磷酸三甲酯(TMP)和磷酸三乙酯(TEP)是最早研究的阻燃添加劑,阻燃效果好,但其磷含量較高,易于造成石墨負(fù)極剝離,影響電池的循環(huán)性能[61-62]。使用丁基或苯基取代改性的磷酸三丁酯(TBP)和磷酸三苯酯(TPP)能在石墨負(fù)極形成較為穩(wěn)定的鈍化膜[39,63]。具有類似性質(zhì)的阻燃劑還包括亞磷酸三甲酯(TMPi)[64]、甲苯基二苯基磷酸酯(CDP)[65]、三-4-甲氧基苯基磷酸酯(TMPP)[66]和異丙苯基二苯基磷酸酯(IPPP)[67]等。XIANG等[60]發(fā)現(xiàn),甲基磷酸二甲酯(DMMP)的加入能使電解液具有較好的自熄滅性,大大提升了電池使用的安全溫度,同時改善了電解液的低溫性能,圖5探討了DMMP的自由基捕獲阻燃機(jī)理。NAM等[68]發(fā)現(xiàn),磷酸二苯異辛酯(DPOF)作為阻燃添加劑加入5%~10%時,亦可改善LiCoO2電池的高溫循環(huán)性能。也有研究發(fā)現(xiàn),TEP[69]和三(三甲基硅烷)磷酸酯(TMSP)[70]等含磷添加劑在提升電池阻燃性的基礎(chǔ)上,還能促進(jìn)正極成膜,形成穩(wěn)定的正極/電解液界面膜(CEI),提高正極穩(wěn)定性。
2.3.2 氟代阻燃劑
氟代阻燃劑主要通過物理阻燃提高電池的安全性。雖然無法捕捉燃燒反應(yīng)過程中的自由基,但其仍可通過提高閃點(diǎn)、降低揮發(fā)性的方法來“延后”安全事故的發(fā)生。在氟代溶劑研究初期,考慮到氟代化合物黏度、溶鹽能力等方面的問題,只在電解液中加入較小量的阻燃添加劑,提高電池的安全性。MCMIILLAN等[71]將FEC用作添加劑加入到碳酸酯類溶劑中,大大提高了電池的安全性和循環(huán)壽命。ARAI等[37]則發(fā)現(xiàn)將微量MFE加入到羧酸酯類溶液中,能夠明顯降低提高電池的揮發(fā)性,同時提高熱穩(wěn)定性。XIA等[72]發(fā)現(xiàn)六氟異丙基甲基醚(HFPM)具有明顯的阻燃效果,如圖6(a)所示。近年來,大多氟代添加劑的使用仍在對鏈狀碳酸酯[73]和環(huán)狀碳酸酯類[74]溶劑進(jìn)行改性和修飾,從而提高電池的安全性。
圖5 DMMP阻燃機(jī)理[60]
2.3.3 含氮阻燃劑
含氮阻燃劑以腈類化合物為主,具有高閃點(diǎn)、低揮發(fā)性、寬電化學(xué)窗口和寬液程的優(yōu)點(diǎn)。KIM 等[76]研究了C2、C5、C10的單腈和二腈類脂肪族鏈狀化合物,發(fā)現(xiàn)直鏈腈類可以有效提高電池?zé)岱€(wěn)定性,在滿電狀態(tài)下80 ℃存儲三天,電池膨脹率遠(yuǎn)小于未加腈類的對照組。這類物質(zhì)還可以吸附在鈷酸鋰(LCO)正極表面,在過充或電池濫用的情況下有效阻隔或延緩電解液的分解,同時,腈類還能對電池的高溫循環(huán)性能起到促進(jìn)作用。己二腈是一種綜合性能優(yōu)異的含氮阻燃劑,閃點(diǎn)高、電導(dǎo)率高,不少研究甚至將其用作高安全性共溶劑,用于高電壓、高倍率鋰離子電池[77-78]。腈類物質(zhì)還能在Al集流體表面形成致密的氧化膜,在含有TFSI-、FSI-的電解液中具有較廣的應(yīng)用前景[79]。
圖6 燃燒測試(a)氟代阻燃劑HFMP[72];(b)復(fù)合阻燃劑[75]
2.3.4 復(fù)合阻燃劑
復(fù)合阻燃添加劑兼顧不同元素阻燃劑的優(yōu)點(diǎn),并在元素的協(xié)同作用下減少阻燃劑的使用量,達(dá)到更好的阻燃效果。和單一含磷阻燃劑相比,復(fù)合阻燃劑擁有更優(yōu)異的電化學(xué)穩(wěn)定性、熱穩(wěn)定性和阻燃性。氟代烷基磷酸酯是一類綜合性能優(yōu)良的阻燃劑。XU等[62]發(fā)現(xiàn),添加20%三(2,2,2-三氟乙基)磷酸酯(TFP),電解液完全不燃,且對正負(fù)極材料無負(fù)面影響。他們還發(fā)現(xiàn)[80],三(2,2,2-三氟乙基)亞磷酸酯(TTFP)也有類似的阻燃效果,并能促進(jìn)電池的高溫循環(huán)性能。TAN等[81]發(fā)現(xiàn)三(六氟異丙基)磷酸酯(HFiP)在提高阻燃性能的同時還可作為正極成膜添加劑使用。另外,磷腈類阻燃劑的研究相對較多,CAO等[82]發(fā)現(xiàn),含磷雜環(huán)化合物六甲基磷腈在保持較高磷含量和高阻燃性能的同時,還能在負(fù)極形成致密的SEI膜,提高負(fù)極穩(wěn)定性。TSUJIKAWA等[75]采用一系列氟代膦腈(FCPN)作為阻燃劑,阻燃效果如圖6(b)所示。經(jīng)過1 C、10 V過充測試,電池未燃燒爆炸,且對電池常溫循環(huán)性能幾無影響。ZHANG等[83]研究了環(huán)狀氟代磷氮阻燃劑三甲氧基三氟環(huán)三磷腈(FMOCPN),發(fā)現(xiàn)5%的添加量即可將電解液熱分解溫度提升至300 ℃以上。
過充保護(hù)劑能在電池過充電時通過一定的方式阻斷電流,從而提高電池的安全性。目前常用的添加劑主要有兩類:氧化還原對添加劑和電聚合添加劑[84]。能夠作為過充保護(hù)添加劑的化合物必須具備以下特點(diǎn)[85]:①其氧化電位應(yīng)在陰極充電截止電勢和電解液氧化分解電勢之間;②對電池的循環(huán)性能無負(fù)面影響。
2.4.1 氧化還原對添加劑
圖7 氧化還原穿梭電對工作機(jī)理圖[86]
2.4.2 電聚合添加劑
電聚合添加劑是利用電聚合原理[93],當(dāng)電池電壓超過一定值時單體發(fā)生聚合附著在電極表面,生成高阻抗的膜,增大電池內(nèi)阻,將充電過程強(qiáng)制結(jié)束?;蛘弋?dāng)聚合物單體的濃度足夠大,生成的聚合物能夠穿透隔膜,在正負(fù)極之間形成導(dǎo)電橋,造成內(nèi)部微短路,從而降低電池電壓。XU等[94]發(fā)現(xiàn)電池過充后環(huán)己苯(CHB)會在在正極和隔膜上形成聚合物,造成電池內(nèi)阻增大,從而阻斷電池的過充進(jìn)程。XIAO等[95]發(fā)現(xiàn)聯(lián)苯(BP)發(fā)生電化學(xué)聚合反應(yīng)的電勢為4.5~4.75 V,當(dāng)過充時間很長,正極表面的聚合膜會變厚,進(jìn)而穿透隔膜到達(dá)負(fù)極,使電池內(nèi)部發(fā)生短路。圖8分析了BP和CHB的反應(yīng)機(jī)理。相比于氧化還原對添加劑,電聚合添加劑最大的缺點(diǎn)為聚合反應(yīng)的過程不可逆,電聚合添加劑發(fā)揮作用的同時,電池壽命也告終結(jié)。
低溫或高倍率循環(huán)時,容易造成鋰枝晶的形成和生長,有可能穿透隔膜,引起電池內(nèi)短路,造成嚴(yán)重的安全風(fēng)險。早在20 世紀(jì)70年代就有研究者對金屬鋰的沉積和脫出過程進(jìn)行了研究[96],目前研究人員普遍認(rèn)為,充電過程中Li+在負(fù)極表面的不均勻沉積是形成金屬鋰枝晶的主要原因,圖9顯示了鋰枝晶的形成過程與危害。
圖8 電聚合添加劑BP和CHB的反應(yīng)機(jī)理[92]
圖9 鋰枝晶的形成與危害[97]
當(dāng)前已有眾多學(xué)者開展了抑制鋰枝晶生長的方法研究,比如采用負(fù)極結(jié)構(gòu)修飾(復(fù)合納米結(jié)構(gòu)鋰負(fù)極、原位及非原位人造SEI 膜等)[98],電解液調(diào)控[99-100],添加固態(tài)電解質(zhì)[101]等,均取得了良好的效果。通過電解液改性的方式抑制鋰枝晶,最常用的就是電解液添加劑。這些添加劑會在鋰負(fù)極表面發(fā)生吸附、分解或者聚合,有些還可作為反應(yīng)物參與SEI膜的生成,改變SEI膜的組成與結(jié)構(gòu),修飾SEI的物理化學(xué)性能。另外也可以做為表面活性劑改變鋰負(fù)極表面的反應(yīng)活性,調(diào)節(jié)鋰沉積過程中的電流分布,增加鋰離子沉積過程的均一性。常見的電解液添加劑有LiNO3[101]、CsPF6[102]、FEC[103]、LiPO2F2[104]等。
MOGI等[105]對比了不同種類有機(jī)添加劑對金屬鋰枝晶的影響。結(jié)果表明,5%的FEC可以提高鋰負(fù)極的循環(huán)效率。研究發(fā)現(xiàn),含F(xiàn)EC的電解液中形成的SEI膜更加均勻、致密,阻抗更低,同時具有一定的彈性,因而可以抑制鋰枝晶的生長。最近,二氟磷酸鋰(LiPO2F2)作為電解液添加劑在鋰離子電池和金屬鋰電池中開始得到應(yīng)用,不僅可以抑制石墨負(fù)極鋰的析出,還有助于提升電池的低溫和倍率性能。SHI等[104]的研究也發(fā)現(xiàn)LiPO2F2可以抑制金屬鋰枝晶的生成,有助于Li/LiNi1/3Co1/3Mn1/3O2半電池的長期循環(huán)。
SEI膜和CEI膜是鋰離子電池的重要組成部分,一般由成膜添加劑在正負(fù)極表面發(fā)生氧化還原反應(yīng)形成[39]。目前研究普遍認(rèn)為,SEI膜的破壞是電池?zé)崾Э氐钠瘘c(diǎn),SEI膜的熱穩(wěn)定性對電池的安全性會產(chǎn)生重要影響。因此,尋找能形成熱分解溫度更高、更穩(wěn)定的成膜添加劑,是高安全性添加劑開發(fā)的一個重要方向。
MFA是一種符合該理念的成膜添加劑。IHARA等[106]發(fā)現(xiàn),MFA在碳負(fù)極表面形成含有二氟代乙酸鋰的致密SEI膜,使得負(fù)極的主放熱峰從290 ℃提升至400 ℃。SATO等[107]發(fā)現(xiàn),VC能在石墨負(fù)極形成致密的SEI膜的同時,大大降低富鋰石墨負(fù)極在高溫下的放熱量,提高負(fù)極穩(wěn)定性。同時,它也能顯著提高電解液的熱分解溫度。MATSUDA 等[108]列舉了一系列氟代碳酸酯類添加劑對石墨負(fù)極熱穩(wěn)定性的促進(jìn)作用。LI等[109]研究了TMP對鎳鈷錳(NCM)正極的CEI成膜作用,如圖10所示,TMP可將脫鋰正極的熱分解溫度從191 ℃提升至202 ℃。
圖10 脫鋰NCM正極升溫?zé)崃髑€[109]
安全性是對鋰離子電池的使用性能的重要指標(biāo),尤其當(dāng)前鋰電池能量密度提升速度更快,對鋰電池安全性的考驗更大。當(dāng)前電解液使用閃電低的有機(jī)溶劑和穩(wěn)定性較差的LiPF6,并且與正負(fù)極界面形成SEI膜的熱穩(wěn)定性也有待提高。因此,通過電解液的改性,改善電解液的安全性以及電解液與電極之間形成界面膜的穩(wěn)定性,是提升當(dāng)前電池安全性的重要手段。本文從鋰鹽改性、溶劑優(yōu)化和添加劑優(yōu)選等多個角度介紹了當(dāng)前高安全性電解液的研究進(jìn)展。
以離子液體為代表的高安全性溶劑存在的黏度高、電導(dǎo)率低或?qū)﹄姌O兼容性差的問題,需要新型溶劑的研發(fā)。氟代溶劑具有安全性好、耐氧化和可設(shè)計性強(qiáng)的優(yōu)點(diǎn),是未來高安全性溶劑的重要方向。LiFSI具有電導(dǎo)率高、熱穩(wěn)定性好和抑制電池膨脹等優(yōu)點(diǎn),卻會腐蝕鋁箔,現(xiàn)在只能作為添加劑使用。阻燃、過充類添加劑雖然能夠提升電池的安全性,但是一般對電池的循環(huán)壽命和倍率性能等電化學(xué)性能有害。因此新型的、多功能型添加劑的研究是未來電解液添加劑的研究方向。但是,電解液的改性只是提升電池安全性的手段之一,只有配合以電池設(shè)計、正極改性和隔膜優(yōu)化等手段之后,才能獲得安全性足夠好的鋰電池。當(dāng)然,凝膠或聚合物電解質(zhì)和固態(tài)電池均避免了可燃性溶劑對電池安全性的影響,如果能克服新的電池裝配技術(shù)、界面調(diào)控和正負(fù)極兼容性等難題,相信會對電池的安全性和其它使用性能帶來革命性的變化。
[1] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954.
[2] TOBISHIMA S I, YAMAKI J I. A consideration of lithium cell safety[J]. Journal of Power Sources, 1999, 81: 882-886.
[3] 胡廣俠, 解晶瑩. 影響鋰離子電池安全性的因素[J]. 電化學(xué), 2002, 8(3): 245-251.
HU G X, XIE J Y. Some consideration for lithium-ion cells' safety[J]. Electrochemistry, 2002, 8(3): 245-251.
[4] GUO G, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398.
[5] XIANG J, CHANG C, YUAN L, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2cathode materials for lithium ion battery[J]. Electrochemistry Communications, 2008, 10(9): 1360-1363.
[6] LIAO P Y, DUH J G, SHEU H S. Structural and thermal properties of LiNi0.6?xMgCo0.25Mn0.15O2cathode materials[J]. Journal of Power Sources, 2008, 183(2): 766-770.
[7] 楊升, 袁永華. 鋰離子電池電解液安全性添加劑探析[J]. 石化技術(shù), 2015, 12: 118.
YANG S, YUAN Y H. Additive for improving safety of electrolyte of lithium ion battery[J]. Petrochemical Industry Technology, 2015, 12: 118.
[8] SWART J, ARORA A, MEGERLE M, et al. Methods for measuring the mechanical safety vent pressure of lithium ion battery cells[C]// Proceedings of the Product Safety Engineering Society Symposium, 2006 IEEE, 2006.
[9] FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.
[10] RICHARD M, DAHN J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077.
[11] BELHAROUAK I, SUN Y K, LU W, et al. On the safety of the Li4Ti5O12/LiMn2O4lithium-ion battery system[J]. Journal of the Electrochemical Society, 2007, 154(12): A1083-A1087.
[12] ZHENG S, WANG L, FENG X, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378: 527-536.
[13] 鄭洪河. 鋰離子電池電解質(zhì)[M]. 北京: 化學(xué)工業(yè)出版社, 2007.
ZHENG H H. Lithium-ion battery electrolyte[M]. Beijing: Chemical Industry Press, 2007.
[14] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418.
[15] LEWANDOWSKI A, ?WIDERSKA-MOCEK A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies[J]. Journal of Power Sources, 2009, 194(2): 601-609.
[16] LUX S F, SCHMUCK M, APPETECCHI G B, et al. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature[J]. Journal of Power Sources, 2009, 192(2): 606-611.
[17] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
[18] CHATTORAJ J, DIDDENS D, HEUER A. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes[J]. The Journal of Chemical Physics, 2014, 140(2): doi: 10.1063/1.4861219.
[19] OSADA I, DE VRIES H, SCROSATI B, et al. Ionic-liquid-based polymer electrolytes for battery applications[J]. Angewandte Chemie International Edition, 2016, 55(2): 500-513.
[20] DOKKO K, TACHIKAWA N, YAMAUCHI K, et al. Solvate ionic liquid electrolyte for Li-S batteries[J]. Journal of the Electrochemical Society, 2013, 160(8): A1304-A1310.
[21] PARK J W, UENO K, TACHIKAWA N, et al. Ionic liquid electrolytes for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2013, 117(40): 20531-20541.
[22] BONHOTE P, DIAS A P, PAPAGEORGIOU N, et al. Hydrophobic, highly conductive ambient-temperature molten salts[J]. Inorganic Chemistry, 1996, 35(5): 1168-1178.
[23] TOKUDA H, ISHII K, SUSAN M A, et al. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures[J]. The Journal of Physical Chemistry B, 2006, 110(6): 2833-2839.
[24] SAKAEBE H, MATSUMOTO H, TATSUMI K. Application of room temperature ionic liquids to Li batteries[J]. Electrochimica Acta, 2007, 53(3): 1048-1054.
[25] NAKAGAWA H, IZUCHI S, KUWANA K, et al. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt[J]. Journal of the Electrochemical Society, 2003, 150(6): A695-A700.
[26] 曹輝. 離子液體在鋰離子電池中的應(yīng)用研究[D]. 北京: 北京有色金屬研究總院, 2013.
CAO H. Application of ionic liquid in lithium ion battery[D]. Beijing: General Research Institute for Nonferrous Metals, 2013.
[27] EGASHIRA M, OKADA S, YAMAKI J I, et al. The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte[J]. Journal of Power Sources, 2004, 138(1/2): 240-244.
[28] SATO T, MARUO T, MARUKANE S, et al. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells[J]. Journal of Power Sources, 2004, 138(1/2): 253-261.
[29] LEE J, QUAN N, HWANG J, et al. Ionic liquids containing an ester group as potential electrolytes[J]. Electrochemistry Communications, 2006, 8(3): 460-464.
[30] KATAYAMA Y, YUKUMOTO M, MIURA T. Electrochemical intercalation of lithium into graphite in room-temperature molten salt containing ethylene carbonate[J]. Electrochemical and Solid-State Letters, 2003, 6(5): A96-A97.
[31] TAGGOUGUI M, DIAW M, CARR B, et al. Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery[J]. Electrochimica Acta, 2008, 53(17): 5496-5502.
[32] SATO K, YAMAZAKI I, OKADA S, et al. Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells[J]. Solid State Ionics, 2002, 148(3/4): 463-466.
[33] RYOU M H, HAN G B, LEE Y M, et al. Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J]. Electrochimica Acta, 2010, 55(6): 2073-2077.
[34] LIAO L, CHENG X, MA Y, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4electrode[J]. Electrochimica Acta, 2013, 87: 466-472.
[35] KATAYAMA H, ARAI J, AKAHOSHI H. Solvation states and properties of binary mixtures of halogenated cyclic carbonates and a linear carbonate[J]. Journal of Power Sources, 1999, 81: 705-708.
[36] YAMAKI J I, YAMAZAKI I, EGASHIRA M, et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells[J]. Journal of Power Sources, 2001, 102(1/2): 288-293.
[37] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32(10): 1071-1079.
[38] ARAI J. No-flash-point electrolytes applied to amorphous carbon/Li1+xMn2O4cells for EV use[J]. Journal of Power Sources, 2003, 119: 388-392.
[39] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.
[40] SLOOP S E, KERR J B, KINOSHITA K. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge[J]. Journal of Power Sources, 2003, 119: 330-337.
[41] CAMPION C L, LI W, LUCHT B L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(12): A2327-A2334.
[42] SCHMIDT M, HEIDER U, KUEHNER A, et al. Lithium fluoroalkylphosphates: A new class of conducting salts for electrolytes for high energy lithium-ion batteries[J]. Journal of Power Sources, 2001, 97: 557-560.
[43] GNANARAJ J, ZINIGRAD E, ASRAF L, et al. On the use of LiPF3(CF2CF3)3(LiFAP) solutions for Li-ion batteries. Electrochemical and thermal studies[J]. Electrochemistry Communications, 2003, 5(11): 946-951.
[44] XU M, XIAO A, LI W, et al. Investigation of lithium tetrafluorooxalatophosphate as a lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2009, 12(8): A155-A158.
[45] QIN Y, CHEN Z, LIU J, et al. Lithium tetrafluoro oxalato phosphate as electrolyte additive for lithium-ion cells[J]. Electrochemical and Solid-State Letters, 2010, 13(2): A11-A14.
[46] HAN J G, PARK I, CHA J, et al. Interfacial architectures derived by lithium difluoro (bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability[J]. ChemElectroChem, 2017, 4(1): 56-65.
[47] KIM K E, JANG J Y, PARK I, et al. A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates[J]. Electrochemistry Communications, 2015, 61: 121-124.
[48] YANG L, ZHANG H, DRISCOLL P F, et al. Six-membered-ring malonatoborate-based lithium salts as electrolytes for lithium ion batteries[J]. ECS Transactions, 2011, 33(39): 57-69.
[49] ZHANG S S. An unique lithium salt for the improved electrolyte of Li-ion battery[J]. Electrochemistry Communications, 2006, 8(9): 1423-1428.
[50] XU K, LEE U, ZHANG S, et al. Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes[J]. Electrochemical and Solid-State Letters, 2003, 6(7): A144-A148.
[51] UE M, FUJII T, ZHOU Z-B, et al. Electrochemical properties of Li [CnF2n+1BF3] as electrolyte salts for lithium-ion cells[J]. Solid State Ionics, 2006, 177(3/4): 323-331.
[52] DONG Y, DEMEAUX J, ZHANG Y, et al. Improving the performance at elevated temperature of high voltage graphite/LiNi0.5Mn1.5O4cells with added lithium catechol dimethyl borate[J]. Journal of the Electrochemical Society, 2017, 164(2): A128-A136.
[53] LI Y, WAN S, VEITH G M, et al. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V[J]. Advanced Energy Materials, 2017, 7(4): 1601397.
[54] YOUNESI R, VEITH G M, JOHANSSON P, et al. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S[J]. Energy & Environmental Science, 2015, 8(7): 1905-1922.
[55] 胡鋒波, 張慶華, 詹曉力, 等. 雙(氟代磺酰)亞胺及其鹽的制備, 性能與應(yīng)用進(jìn)展[J]. 化工進(jìn)展, 2011, 30(10): 2097-2105.
HU F B, ZHANG Q H, ZHAN X L, et al. Sythesis, performance and application process of bis(fluoro-based sulfonyl) imides and their salts[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2097-2105.
[56] HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl) imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632.
[57] KITA F, KAWAKAMI A, NIE J, et al. On the characteristics of electrolytes with new lithium imide salts[J]. Journal of Power Sources, 1997, 68(2): 307-310.
[58] GRANZOW A. Flame retardation by phosphorus compounds[J]. Accounts of Chemical Research, 1978, 11(5): 177-183.
[59] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148(10): A1058-A1065.
[60] XIANG H, XU H, WANG Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1): 562-564.
[61] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode[J]. Journal of the Electrochemical Society, 2001, 148(10): A1066-A1071.
[62] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149(5): A622-A666.
[63] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119: 383-387.
[64] XU H, XIE S, WANG Q, et al. Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2cathode[J]. Electrochimica Acta, 2006, 52(2): 636-642.
[65] ZHOU D, LI W, TAN C, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 589-592.
[66] FENG J, CAO Y, AI X, et al. Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries[J]. Electrochimica Acta, 2008, 53(28): 8265-8268.
[67] WANG Q, SUN J, YAO X, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8(9): A467-A470.
[68] NAM T H, SHIM E G, KIM J G, et al. Diphenyloctyl phosphate and tris (2, 2, 2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature[J]. Journal of Power Sources, 2008, 180(1): 561-567.
[69] TU W, XIA P, ZHENG X, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356.
[70] SONG Y M, HAN J G, PARK S, et al. A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4cathodes with superior electrochemical performance[J]. Journal of Materials Chemistry A, 2014, 2(25): 9506-9513.
[71] MCMILLAN R, SLEGR H, SHU Z, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81: 20-26.
[72] XIA L, XIA Y, WANG C, et al. 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2(11): 1707-1712.
[73] LEE Y M, NAM K M, HWANG E H, et al. Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2battery cathodes[J]. The Journal of Physical Chemistry C, 2014, 118(20): 10631-10639.
[74] ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 246: 184-191.
[75] TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. Characteristics of lithium-ion battery with non-flammable electrolyte[J]. Journal of Power Sources, 2009, 189(1): 429-434.
[76] KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials &Interfaces, 2014, 6(11): 8913-8920.
[77] ABU-LEBDEH Y, DAVIDSON I. High-voltage electrolytes based on adiponitrile for Li-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156(1): A60-A65.
[78] ISKEN P, DIPPEL C, SCHMITZ R, et al. High flash point electrolyte for use in lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(22): 7530-7535.
[79] DI CENSO D, EXNAR I, GRAETZEL M. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries[J]. Electrochemistry Communications, 2005, 7(10): 1000-1006.
[80] ZHANG S, XU K, JOW T. Tris (2, 2, 2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 166-172.
[81] TAN S, ZHANG Z, LI Y, et al. Tris (hexafluoro-iso-propyl) phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2cathode material[J]. Journal of the Electrochemical Society, 2013, 160(2): A285-A292.
[82] CAO X, LI Y, LI X, et al. Novel phosphamide additive to improve
thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries[J]. ACS Applied Materials &Interfaces, 2013, 5(22): 11494-11497.
[83] ZHANG Q, NOGUCHI H, WANG H, et al. Improved thermal stability of LiCoO2by cyclotriphosphazene additives in lithium-ion batteries[J]. Chemistry Letters, 2005, 34(7): 1012-1013.
[84] 陳仕玉, 王兆翔, 趙海雷, 等. 鋰離子電池安全性添加劑[J]. 化學(xué)進(jìn)展, 2009, 21(4): 629-636.
CHEN S Y, WANG Z X, ZHAO H L, et al. Safety-enhangcing addtives for lithium ion batteries[J]. Progress in Chemistry, 2009, 21(4): 629-636.
[85] WATANABE Y, MORIMOTO H, TOBISHIMA S I. Electrochemical properties of aryladamantanes as new overcharge protection compounds for lithium cells[J]. Journal of Power Sources, 2006, 154(1): 246-254.
[86] BALAKRISHNAN P, RAMESH R, KUMAR T P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414.
[87] 唐致遠(yuǎn), 陳玉紅, 汪亮. 鋰離子電池過充保護(hù)添加劑研究進(jìn)展[J]. 化工進(jìn)展, 2005, 24(12): 1368-1372.
TANG Z Y, CHEN Y H, WANG L. Research on overcharge protection additives for lithium ion battery[J]. Chemical Industry and Engineering Progress, 2005, 24(12): 1368-1372.
[88] 熊琳強(qiáng), 張英杰, 董鵬, 等. 鋰離子電池電解液防過充添加劑研究進(jìn)展[J]. 化工進(jìn)展, 2011, 30(6): 1198-1204.
XIONG L Q, ZHANG Y J, DONG P, et al. Development of overcharge protection additives for lithium ion secondary battery[J].Chemical Industry and Engineering Progress, 2011, 30(6): 1198-1204.
[89] GOLOVIN M N, WILKINSON D P, DUDLEY J T, et al. Application of metallocenes in rechargeable lithium batteries for overcharge protection[J]. Journal of the Electrochemical Society, 1992, 139(1): 5-9.
[90] FENG J K, AI X P, CAO Y L, et al. A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries[J]. Electrochemistry Communications, 2007, 9(1): 25-30.
[91] 任春燕, 盧海, 賈明, 等. 過充保護(hù)添加劑1,2-二甲氧基-4-硝基苯和1,4-二甲氧基-2-硝基苯在鋰離子電池中的應(yīng)用[J]. 物理化學(xué)學(xué)報, 2012, 28(9): 2091-2096.
REN C Y, LU H, JIA M, et al. Application of 1,2-dimethoxy- 4-nitro-benzene and 1,4-dimethoxy-2-nitro-benzene as overcharge protection additives in lithium-ion batteries[J]. Acta Phys.-Chim. Sin., 2012, 28(9): 2091-2096.
[92] SHIMA K, SHIZUKA K, UE M, et al. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells[J]. Journal of Power Sources, 2006, 161(2): 1264-1274.
[93] XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863.
[94] XU M Q, XING L D, LI W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. Journal of Power Sources, 2008, 184(2): 427-431.
[95] XIAO L, AI X, CAO Y, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochimica Acta, 2004, 49(24): 4189-4196.
[96] EPELBOIN I, FROMENT M, GARREAU M, et al. Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate[J]. Journal of the Electrochemical Society, 1980, 127(10): 2100-2104.
[97] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[98] CHANG C H, CHUNG S H, MANTHIRAM A. Dendrite-free lithium anode via a homogenous Li-ion distribution enabled by a kimwipe paper[J]. Advanced Sustainable Systems, 2017, 1(1/2): 1600034.
[99] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: doi: http://doi.org/10.1038/ncomms7362.
[100] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
[101] AURBACH D, POLLAK E, ELAZARI R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of the Electrochemical Society, 2009, 156(8): A694-A702.
[102] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[103] ZHANG Y, QIAN J, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896.
[104] SHI P, ZHANG L, XIANG H, et al. Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries[J]. ACS Applied Materials &Interfaces, 2018: doi: 10.1021/acsami.8b05185.
[105] MOGI R, INABA M, JEONG S K, et al. Effects of some organic additives on lithium deposition in propylene carbonate[J]. Journal of the Electrochemical Society, 2002, 149(12): A1578-A1583.
[106] IHARA M, HANG B T, SATO K, et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte[J]. Journal of the Electrochemical Society, 2003, 150(11): A1476-A1483.
[107] SATO K, ZHAO L, OKADA S, et al. LiPF6/methyl difluoroacetate electrolyte with vinylene carbonate additive for Li-ion batteries[J]. Journal of Power Sources, 2011, 196(13): 5617-5622.
[108] MATSUDA Y, NAKAJIMA T, OHZAWA Y, et al. Safety improvement of lithium ion batteries by organo-fluorine compounds[J]. Journal of Fluorine Chemistry, 2011, 132(12): 1174-1181.
[109] LI Z, ZHANG Y, XIANG H, et al. Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013, 240: 471-475.
High safety electrolyte for lithium-ion battery
SHEN Min, JIANG Zhimin, LI Nan, CHEN Huichuang, DONG Jingbo, MA Guoqiang
(Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, Zhejiang, China)
The essence of the safety problem of lithium-ion battery is the internal thermal runway. Inside the battery, the heat is continuously accumulated, causing the sustaining rise of temperature. Its external performances are combustion and explosion. Therefore, the safety of lithium-ion battery has certain contradictions with specific energy, operating temperature and rate performance. Higher energy density, higher rate performance and harsher operating environment are usually the causes to a more violent energy release, leading to the greater impact on the battery system and more serious safety problems. In general, the electrolyte of lithium-ion battery consists of carbonates with low flash point, lithium salt LiPF6with high sensitivity to H2O and temperature, and other additives at present. Besides, the destruction of the interface film between the electrolyte and the electrode is considered to be the starting point of the battery thermal runway. Thus, electrolyte modification is a significant method to promote battery safety. In this paper, the enhancing effects of modified solvents such as ionic liquid and fluorinated solvent on the safety of electrolyte were analyzed. The positive impacts of various lithium salts on the safety of electrolyte were compared. The safety improvements by the electrolyte additives such as flame retardant, overcharge protector, lithium dendrite inhibitor and solid-electrolyte interface stabilizer were introduced. At last, from the perspective of the overall application performance of the battery, the further research and development directions of high-safety lithium-ion battery electrolyte were discussed.
safety electrolyte; lithium-ion battery; solvent; lithium salt; additive
10.12028/j.issn.2095-4239.2018.0166
TM 911
A
2095-4239(2018)06-1069-13
2018-09-02;
2018-09-27。
沈旻(1993—),碩士,主要研究方向為鋰離子電池電解液,E-mail:shenmin02@sinochem.com;
馬國強(qiáng),高級工程師,主要研究方向為鋰硫二次電池關(guān)鍵材料、金屬鋰負(fù)極、高性能鋰離子電池電解液等,E-mail:erguo87@163.com, maguoqiang@sinochem.com。