康妮妮
摘要:當(dāng)前,培養(yǎng)學(xué)生數(shù)學(xué)思維能力的工作越來(lái)越引起廣大數(shù)學(xué)教育工作者的重視。要培育數(shù)學(xué)思維能力,其關(guān)鍵就在于創(chuàng)造性思維能力的培養(yǎng)。實(shí)踐證明,培養(yǎng)高中數(shù)學(xué)創(chuàng)造性思維是開發(fā)中學(xué)生思維能力的一個(gè)突破點(diǎn),是提高教學(xué)質(zhì)量的重要途徑。而創(chuàng)造性思維能力的提升,對(duì)于學(xué)生提高學(xué)習(xí)效率,拓寬解題思路都有著巨大的幫助。本文簡(jiǎn)要分析高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)造性思維的重要意義以及具體的培養(yǎng)措施,希望能夠?yàn)閺V大數(shù)學(xué)教育工作者提供一點(diǎn)有用的建議。
關(guān)鍵詞:高中數(shù)學(xué);創(chuàng)造性思維;能力的培養(yǎng)
中圖分類號(hào):633.6 文獻(xiàn)標(biāo)識(shí)碼:B 文章編號(hào):1672-1578(2018)22-0015-02
伴隨著我國(guó)新課程改革的深入推進(jìn),有關(guān)創(chuàng)新性思維的培養(yǎng)的課題,也日益引起各教育工作者的重視。我們都知道,數(shù)學(xué)是一門抽象性很強(qiáng)的學(xué)科,對(duì)學(xué)生創(chuàng)造性思維能力的培養(yǎng)有著其他學(xué)科難以比擬的優(yōu)勢(shì)。特別是高中數(shù)學(xué)的教學(xué)過(guò)程中,教師更應(yīng)該注重學(xué)生創(chuàng)造性思維能力的培養(yǎng),為學(xué)生以后的學(xué)習(xí)打下良好的基礎(chǔ)。本文主要從數(shù)學(xué)教育的現(xiàn)狀及培養(yǎng)學(xué)生創(chuàng)造性思維能力的具體措施等兩個(gè)方面來(lái)探討高中數(shù)學(xué)教學(xué)中創(chuàng)造性思維能力的培養(yǎng)。
1.我國(guó)高中數(shù)學(xué)教育的現(xiàn)狀
1.1 注重知識(shí)教學(xué),忽視創(chuàng)新性思維教學(xué)。高中數(shù)學(xué)教學(xué)過(guò)程中,最顯著的現(xiàn)象之一便是教師過(guò)于注重傳授理論知識(shí),而忽略了培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)造性思維能力。教師只負(fù)責(zé)把課本上的“死知識(shí)”傳授給學(xué)生,不善于培養(yǎng)學(xué)生“活思維”。這表現(xiàn)在,學(xué)生不會(huì)舉一反三,碰見教師講過(guò)的題型就會(huì)做,題型稍有變化就不知所措了。高中數(shù)學(xué)是一門邏輯性很強(qiáng)的學(xué)科,對(duì)學(xué)生的邏輯思維能力要求很高。因此在教學(xué)過(guò)程中,教師應(yīng)該注意培養(yǎng)學(xué)生的創(chuàng)新性思維能力和數(shù)學(xué)邏輯能力,激活其數(shù)學(xué)思維,這樣既可以增強(qiáng)學(xué)生的學(xué)習(xí)興趣,也可以以不變應(yīng)萬(wàn)變。然而在當(dāng)下,許多教師在教學(xué)過(guò)程中卻忽視了這一重要的方法。只注重教學(xué)結(jié)果,不注重教學(xué)方法和過(guò)程。學(xué)生只能死記硬背公式、題型,導(dǎo)致教學(xué)效率低下。
1.2 教學(xué)設(shè)計(jì)與方法不當(dāng)。這一問(wèn)題主要是新教師由于經(jīng)驗(yàn)不足,出現(xiàn)得多。年輕教師由于從業(yè)經(jīng)驗(yàn)不足,知識(shí)不夠完善等,很容易造成教學(xué)設(shè)計(jì)和方法不當(dāng)。我們可能會(huì)有這樣的情況,學(xué)生學(xué)習(xí)興趣很高,但由于教師的問(wèn)題,教師在教學(xué)設(shè)計(jì)上出現(xiàn)問(wèn)題,設(shè)計(jì)不明白,缺乏邏輯性等,導(dǎo)致學(xué)生學(xué)得莫名其妙,學(xué)習(xí)興趣下降,課堂教學(xué)效率自然降低。我們都知道數(shù)學(xué)和理科的答案比較標(biāo)準(zhǔn),比文科的答案更加唯一。但數(shù)學(xué)由于其邏輯性強(qiáng),在解答問(wèn)題時(shí),經(jīng)常會(huì)出現(xiàn)一題多解。如果學(xué)生用了與教師不同的解法,教師應(yīng)該鼓勵(lì)而不是強(qiáng)調(diào)學(xué)生用教師的解法。
1.3 教材難度偏大,不具有選擇性。隨著新課改的推進(jìn),新版教材也順勢(shì)而生。新教材在內(nèi)容上做了一些變動(dòng)。這些內(nèi)容對(duì)于處在高中階段的青少年,具有一定的難度。除了年齡上,還有地域上,經(jīng)濟(jì)不發(fā)達(dá)地區(qū)由于物質(zhì)基礎(chǔ)不完善、教學(xué)質(zhì)量不夠好,難以完成如此繁重的教學(xué)任務(wù),學(xué)生不能得到較好的數(shù)學(xué)教育。與此同時(shí),教材沒有分層性。我國(guó)幅員遼闊,各地區(qū)的情況千差萬(wàn)別,教育條件也是如此。對(duì)于這種情況,實(shí)施一套教材顯然是不能滿足不同的需求。
以上三點(diǎn)便是我國(guó)高中數(shù)學(xué)教育的主要現(xiàn)狀和問(wèn)題。這也反映了我們的數(shù)學(xué)教育還存在諸多問(wèn)題?,F(xiàn)在的數(shù)學(xué)教育環(huán)境不利于培養(yǎng)學(xué)生創(chuàng)造性思維能力。所以我們要解決這些問(wèn)題,這樣我們的數(shù)學(xué)教育才能真正的邁入新的發(fā)展階段,為更好的培養(yǎng)學(xué)生創(chuàng)造性思維能力,為更好地培養(yǎng)人才提供良好的環(huán)境。我們的教學(xué)質(zhì)量才能進(jìn)一步提高。
2.高中數(shù)學(xué)教育創(chuàng)造性思維能力培養(yǎng)的措施
2.1 教師需要轉(zhuǎn)變教育理念,重視教學(xué)方式的創(chuàng)新。大量的經(jīng)驗(yàn)表明,在高中數(shù)學(xué)教育中,教師在培養(yǎng)學(xué)生創(chuàng)造性思維能力方面,發(fā)揮著重要的作用。教師的教學(xué)理念和方式,對(duì)學(xué)生的思維有著至關(guān)重要的影響。首先,教師要具有創(chuàng)新性的思維。要培養(yǎng)學(xué)生創(chuàng)造性思維能力,教師應(yīng)該先具備這一能力。在這一點(diǎn)上,教師要培養(yǎng)學(xué)生多想多問(wèn)的習(xí)慣,還要培養(yǎng)學(xué)生打破砂鍋問(wèn)到底的精神。這兩點(diǎn)對(duì)于培養(yǎng)學(xué)生創(chuàng)造性思維有著重要作用。多想多問(wèn)的習(xí)慣養(yǎng)成,學(xué)生就會(huì)自己去思考去探索,這樣他會(huì)形成不同于別人的看法或解題思路,日積月累,學(xué)生的創(chuàng)造性思維自然就提高了。
其次,教師還要在教學(xué)方式上有所創(chuàng)新。在引入新課時(shí),傳統(tǒng)的教學(xué)方法就是用一道道例題來(lái)導(dǎo)入新課。這樣做學(xué)生會(huì)產(chǎn)生一種疲憊的感覺,思維自然不能調(diào)動(dòng)起來(lái)。這時(shí)教師可以創(chuàng)新教學(xué)方式,來(lái)達(dá)到調(diào)動(dòng)學(xué)生思考積極性的目的。比如,教師在教學(xué)函數(shù)時(shí),可以這樣設(shè)計(jì)教學(xué):上課開始,先用多媒體放映一張姚明投球的圖片。學(xué)生一看激起了他們的興趣。然后教師在簡(jiǎn)單詢問(wèn)學(xué)生有關(guān)姚明的信息等,再一次激發(fā)學(xué)生的熱情。然后問(wèn)姚明投球時(shí),球在空中的運(yùn)行軌道是什么。學(xué)生自然會(huì)回答是拋物線。這樣教師就引入新課。通過(guò)這樣一個(gè)簡(jiǎn)單的例子,就可以看出教師創(chuàng)新教學(xué)方式的作用了。
2.2 培養(yǎng)學(xué)生發(fā)散性思維的能力。發(fā)散性思維是創(chuàng)造性思維的中心,是培養(yǎng)學(xué)生創(chuàng)造能力的重要環(huán)節(jié)。所謂發(fā)散性思維是指善于從不同的角度去思考問(wèn)題,尋求多樣性解答的思維方式。美國(guó)心理學(xué)家吉爾福特認(rèn)為,發(fā)散性思維主要有三個(gè)特征:流暢性、變通性、獨(dú)特性。流暢性就是指學(xué)生能在短時(shí)間內(nèi)表達(dá)較多的概念;變通性是指思維活動(dòng)能隨機(jī)應(yīng)變、觸類旁通,不受某種思維定式的束縛,能夠產(chǎn)生獨(dú)特的見解;獨(dú)特性是指用前所未有的新角度、新觀點(diǎn)去認(rèn)識(shí)問(wèn)題、分析問(wèn)題,從而產(chǎn)生獨(dú)特的見解。
在數(shù)學(xué)教學(xué)中,結(jié)合教材特點(diǎn),打開學(xué)生思路,培養(yǎng)學(xué)生聯(lián)想能力,有利于培養(yǎng)學(xué)生的創(chuàng)造性思維能力。比如在幾何教學(xué)中,我們可以鼓勵(lì)學(xué)生一題多解。從不同方法來(lái)解答題目。還可以讓學(xué)生根據(jù)答案來(lái)逆推過(guò)程,這也是培養(yǎng)學(xué)生創(chuàng)造性思維的能力。
以上兩點(diǎn)便是如何培養(yǎng)高中數(shù)學(xué)教學(xué)中創(chuàng)造性思維能力的具體措施。當(dāng)然,要培養(yǎng)學(xué)生的創(chuàng)造性思維有很多方法。這需要廣大教育工作者的努力探尋。
3.結(jié)束語(yǔ)
簡(jiǎn)而言之,培養(yǎng)高中學(xué)生數(shù)學(xué)創(chuàng)造性思維能力是一件任重而道遠(yuǎn)的事,也是一件偉大而光榮的事。高中數(shù)學(xué)教師教學(xué)期間應(yīng)該注意轉(zhuǎn)變自己的理念和教學(xué)方式,做到與時(shí)俱進(jìn);同時(shí),教師還應(yīng)該注意培養(yǎng)學(xué)生發(fā)散性思維的能力,通過(guò)這兩種方法,來(lái)提高學(xué)生創(chuàng)造性思維能力,為學(xué)生更好的發(fā)展做好準(zhǔn)備。
參考文獻(xiàn):
[1] 齊峰.對(duì)高中數(shù)學(xué)創(chuàng)造性思維的激發(fā)與培養(yǎng)的幾點(diǎn)認(rèn)識(shí)[J].數(shù)學(xué)學(xué)生與研究,2010(05).
[2] 王佳.淺談高中數(shù)學(xué)教學(xué)中創(chuàng)造性思維能力的培養(yǎng)[J].數(shù)學(xué)學(xué)習(xí)與研究,2016(20).
[3] 林濟(jì)春.深度探討高中數(shù)學(xué)教學(xué)中創(chuàng)造性思維的培養(yǎng)[J].中學(xué)生數(shù)理化,2014(05).