• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current

    2018-10-17 10:03:58GillesCARBOURidaJIZZINI

    Gilles CARBOU Rida JIZZINI

    Abstract The authors consider a model of ferromagnetic material subject to an electric current,and prove the local in time existence of very regular solutions for this model in the scale of Hkspaces.In particular,they describe in detail the compatibility conditions at the boundary for the initial data.

    Keywords Ferromagnetic materials,Compatibility conditions,Existence result

    1 Introduction

    Ferromagnetic materials are used in several applications:radar furtivity,electromagnets,storage of digital data.They are characterized by a spontaneous magnetization represented by the magnetic moment m defined on[0,T]×?,where ? is the ferromagnetic domain in which the material is confined.At low temperature(under the Curie temperature),the material is said to be saturated,that is,the norm of the magnetic moment is constant,so after renormalization,we have

    The magnetic moment links the magnetic field H and the magnetic induction B by the constitutive relation

    The most promising application of the ferromagnetic materials concerns the nano-electronics,and in particular the storage of digital informations with quick access.The ferromagnetic devices used for these applications are either nano wires,thin plates or really 3d components.For nano-electronic applications,one goal is to store informations by magnetic domains representing the bits,and to transmit it very rapidly along the magnetic structures via domain walls motion.A standard way to induce this motion is by applying a magnetic field on the sample.The effects of the applied magnetic field are measured by the Zeeman energy(see[5,11,15]).The problem of this solution is that the information is modified since the domains can be removed by the application of an applied field.As explained in[13–14],the good way to transport the information(to a reading head for example)without change is obtained by using of an applied electric current.This increases the access velocity to the memory without mechanical wear of the components,and preserving the data.

    In this paper,we study the following Landau-Lifschitz model describing a ferromagnetic material submitted to an applied current:

    where

    (1) ? is an open bounded set with smooth boundary and ν is the outside unit normal on??;

    (2)Heis the effective magnetic field including the demagnetizing field and the exchange field;

    (3)v is the current speed.For physical reasons,the relevant boundary condition is that v satisfies v·ν=0 on the boundary(the electric current remains in the domain),but we do not use this condition in our analysis;

    (4)?m is the exchange field;

    (5)H(m)is the demagnetizing field.It is deduced from m by the static Maxwell equations and the law of Faraday: ?

    Remark 1.1The applied current modeling by the transport term(v·?)m+m×(v·?)m is explained in[13](see also the references therein).

    We denote by Hk(?;S2)the set

    In[1,6,16],the existence of global weak solutions for the Landau-Lifschitz equation without electric current is obtained.With the same method as[1]or[6],Bonithon proved in[3]the global existence of weak solutions for(1.2).In the case of the Landau-Lifchitz equations without electric current when the effective field is reduced to?m,the weak solutions are non unique(see[1]).This non uniqueness is expected in more general cases but is totally open.In addition,the Landau-Lifschitz equation does not have regularizing effects.So the existence of strong solutions is not obvious.

    Existence of strong solutions for the Landau-Lifschitz equation without applied current is obtained in[7–8].The solutions constructed in these papers are inand are local in time.

    In the present paper,following the method of[7],we construct local in time strong solutions for(1.2)infor T0.In addition,for more regular initial data,if compatibility conditions are satisfied,we prove the existence of strong solutions with high regularity on the same maximal existence interval[0,T?[.In particular,we prove that an eventual blow up for the regular solution occurs for the H2-norm.To our knowledge,the construction of very regular solutions for the Landau-Lifschitz equation does not exist in the literature,even for models without applied current.

    Our first result is the following theorem.

    Theorem 1.1Letsatisfy the compatibility condition:

    (3)m satisfies(1.2).

    Without additional compatibility condition,we can construct solutions in H3(?).

    Theorem 1.2Letsuch that

    The key point for the proof of Theorems 1.1 and 1.2 is that the Landau-Lifschitz equation(1.2)is equivalent,for solutions satisfying the saturation constraint(1.1),to the following problem:

    In order to obtain more regularity for the solutions of(1.4),we must assume compatibility conditions on the initial data.Since(1.2)is equivalent to(1.4),and since our strategy consists in working with this last equation,we write the compatibility conditions derived from(1.4).First,we define formally the initial value ofat t=0.

    We set V0=m0.We denote

    Using Equation(1.4),if m is regular enough,we obtain the value ofby taking(1.4)at t=0 and by writing that.So,we define V1by

    We remark that,if m0∈ Hk(?)and if v is sufficiently regular,then V1∈ Hk?2(?)for k ≥ 2.

    In order to write the compatibility conditions,we recall the following formulas for the derivation of a product:

    and

    with

    (1)AK={α =(α1,α2,α3)∈ {0,···,K}3, α1+ α2+ α3=K},

    By differentiating(1.4)k times with respect to t,and by taking the obtained result at t=0,we define recursively

    Definition 1.1Let k∈ N,We say that m0satisfies the compatibility condition at order k,if

    Then,for all T

    and

    The present paper is organized as follows.

    In Section 2,we recall useful lemmas.In particular,we study the regularity properties for the operator H.

    Section 3 is devoted to the proof of Theorem 1.1.Basically,we follow the method of[7].As said above,the key point is that Equation(1.2)is equivalent to(1.4)for solutions satisfying the saturation constraint(1.1).In this new formulation,the dissipation due to the exchange field?m appears completely though it only appears m×?m in(1.2).We construct by the Galerkin method a solution of(1.4)inand we prove that this solution satisfies in addition the saturation constraint,so that it is a solution for(1.2).

    Construction of more regular solutions for(1.2)is totally new and entails several difficulties.In Section 4,in order to prove the H3regularity for the solution of(1.4),a direct energy estimate for the third order space derivatives is not possible because of the non-local term H(m)which does not satisfy the homogeneous Neumann boundary condition.Our method consists in differentiating the Galerkin approximation with respect to time and proving by this way thatWe recover the H3-regularity for m by a bootstrap argument using Equation(1.4).This operation is complicated by the non-linear term

    Section 5 is devoted to the proof of Theorem 1.3.As already said for the proof of the H3-regularity,variational estimates for high order space derivatives are not possible because of the non-local term H(m)which does not satisfy the homogeneous Neumann boundary condition.In addition,we are unable to perform H2estimates for the time derivative of mn,solution for the Galerkin approximation of(1.4).Indeed,we need for that compatibility conditions for all n which are not satisfied because of the non-local term H(mn).

    Let us explain briefly our strategy in the simplest case:k=4.We already know from Theorem 1.2 that the solution m is inWe derivate(1.4)with respect to time.By a Galerkin process,using compatibility conditions on?tm(t=0),we construct a solution for the obtained problem inNow,?tm is a solution of this problem and a uniqueness argument ensures then thatFinally,we improve the regularity of m by elliptic regularity theorems writing?m in function of?tm.

    In the general case,we proceed by induction with,roughly speaking,the same method.

    2 Preliminary Results

    2.1 Equivalent norms

    We use the following notations:

    and

    We recall the following result established in[7].

    Lemma 2.1Let ? be a bounded regular open set.There exist c1and c2such that for all u ∈ H2(?)such thaton ??,

    and for all u ∈ H3(?)such thaton ??,

    From Lemma 2.1 and using the standard interpolation inequality,we rewrite Sobolev and Gagliardo-Nirenberg inequalities on the following form.

    Lemma 2.2Let ? be a regular bounded domain of R3.There exists a constant C such that for all u ∈ H2(?)such thaton ??,

    and for all u ∈ H3(?)such thaton ??,

    The following lemma will be useful to estimate products of functions.

    Lemma 2.3If u ∈ H1(?)and v∈ H2(?),then uv∈ H1(?)and

    ProofSince ? is a smooth bounded domain of R3,by Sobolev embedding,so that uv∈ L2(?).

    2.2 Comparison lemma

    We recall without proof the following standard comparison lemma.

    Lemma 2.4Letand locally lipschtz with respect to its second variable.Letbe the maximal solution of the Cauchy problem:

    Let y:R+?→R,C1such that

    Then

    2.3 Galerkin basis

    Let us denote by Vnthe finite space spanned on the n first eigenfunctions of the operatorwithand Pn,the orthogonal projection from L2(?)onto Vn.

    Proposition 2.1There exists a constant C such that for all n,the orthogonal projection Pnsatisfies the following properties:

    ProofWe write u on the formwhere Qn(u)belongs toSincewe obtain

    Using integration by parts and the fact that?Pn(u)belongs to Vnso thaton ??,we obtain

    So

    In the same way,for the H2and the H3estimates,we remark thaton the boundary.For the H2estimate,we have

    For the H3estimate,

    Therefore,using Lemma 2.1,

    2.4 Demagnetizing field

    The operator H takes its values in the space L2(R3).We can observe thatis the orthogonal projection ofon the vector fields of gradients in L2(R3).Let us consider the restriction of H to ?.Classicaly,we have

    In the proposition below,following Ladyshenskaya[10,p.196],we can derive the following regularity result which describe the continuity of the operator H on the spaces Wk,p(?)for p∈]1,+∞[and k∈N.

    Proposition 2.2LetThen for k∈N,if u belongs to Wk,p(?),the restriction of H(u)to ? belongs to Wk,p(?)and there exists a constant Ck,psuch that

    ProofSee[8].

    3 Proof of the H2Regularity

    In[7],Carbou and Fabrie proved the existence of local strong solutions infor the Landau-Lifschitz equation without electric current.Our proof for Theorem 1.1 is basically the same.For the convenience of the reader,we give the complete proof in the present paper,emphasizing the changes due to the electric current.

    3.1 Equivalent system

    A dissipative term of the formappears if we take the inner product in L2of(1.2)with ?m.This dissipation is not sufficient to obtain energy estimate in the space H2(?).

    We observe that,for m regular enough and|m|=1 in ?,then

    So,if m is regular enough and satisfies the saturation constraint,then m is solution for the Landau-Lifschitz equation(1.2)if and only if m satisfies the following system

    This equation has the advantage to highlight the dissipative term and is more convenient to build regular solutions for(1.2).

    3.2 Galerkin approximation for the modified Landau-Lifschitz equation

    We recall that we denote by Vnthe finite space built on the n first eigenfunctions of the operatorwithand by Pnthe orthogonal projection from L2(?)on Vn.We aim to find a solution mntaking its values in Vnfor the following Galerkin approximation of(1.4):

    Cauchy-Lipschitz theorem ensures the existence of a unique solution of(3.2)defined on[0,Tn[.

    3.2.1 L2estimate for(3.1)

    Taking the inner product in L2(?)of(3.2)by mn,we obtain

    3.2.2 H2estimate for(3.1)

    Now,we take the inner product in L2(?)of(3.2)with ?2mn,and integrate by parts to get

    where

    We bound separately each term.

    The terms I1,I2and I3are estimated in[7].For the convenience of the reader,we rewrite these estimates.Using Lemma 2.2,we have

    (1)Estimate on I1:

    (2)Estimate on I2:We remark thatso

    (3)Estimate on I3:

    (4)Estimate on I4:

    By addition of all these estimates and using Young inequality,we obtain the following inequality

    3.2.3 Uniform estimate on the Galerkin approximation

    Summing inequalities(3.3)and(3.4),we obtain that there exists a constant C such that

    where C does not depend on n.We denote

    From the assumptions about v,c∈C0(R+).

    In addition,mn(0)=Pn(m0),and since m0satisfies the compatibility condition(1.3),by Proposition 2.1,we obtain that for all n,

    We consider z the maximal solution of the O.D.E.:

    and we denote by T?the maximal existence time of z.By the comparison lemma,we have

    Therefore,for all T

    and by integration of(3.5)on the interval[0,T],we obtain

    By Equation(3.2)we conclude that

    and

    3.3 Limit when n tends to+∞

    These uniform estimates insure the existence of a subsequence(mnk)and a function m such that

    Thanks to Aubin-Simon compactness lemma(see[2,12]),we can conclude that

    and

    because H is a continuous map on Sobolev spaces Hs(?)for s=0,1,2.

    Taking the limit in(3.2),we obtain that m satisfies

    In addition,we remark that from[4,Theorem II.5.14],

    3.4 Conservation of the ponctual norm

    We prove now that the solution m constructed in the previous part satisfies the physical constraint|m|=1,so that m satisfies the Landau-Lifschitz equation.Contrary to[7],a transport term due to electric current appears in Equation(1.4).

    Using the scalar product in R3of(1.4)by m,we get

    For d≤3 and for all u∈L∞(0,T;H2(?)),we have

    Taking the inner product of this equation by a,we obtain

    Under the assumption|m|=1,the equations(1.2)and(1.4)are equivalent.Hence,we have proven the existence of a strong solution for(1.2)in the spacefor T

    3.5 Uniqueness for the strong solution of(1.2)

    Let m1and m2insatisfying(1.2).Since(1.2)preserves the saturation constraint(1.1)for the strong solutions,they satisfy(1.4).We denote w=m1?m2.Thenand is a solution to

    where

    We take the inner product of(3.9)with w.Since

    So by using the Young inequality,we obtain

    and since m1and m2are in L2(0,T;H3(?)),we conclude by the comparison lemma that for all t≥0,

    and since w(0)=0,we obtain that w=0 for all t,which concludes the proof of Theorem 1.1.

    4 Study of the Case s=3

    In order to obtain more regular solutions,it would be standard to multiply the Galerkin approximation(3.2)by?3mnto obtain a H3-estimate.Unfortunately,the non-local term H(mn)does not satisfy the homogeneous Neumann boundary condition,so that the necessary double integration by parts is not possible.Therefore,the H3regularity is obtained by derivation of(3.2)with respect to t in order to obtain a H1estimate on?tm.We conclude the proof by a bootstrap argument to obtain that?m and?tm have the same regularity.

    4.1 H1regularity for?tm

    We differentiate the Galerkin approximation(3.2)with respect to t.Denoting by w1,n=?tmnthe time derivative of mn,we obtain

    with

    We multiply(4.1)by??w1,nand we integrate on ?.Sincewe obtain

    Using the continuity of the operator H on Hk(?)for k=0,1,2,we estimate each term:

    Since v is sufficiently regular,by absorbing,we obtain

    where

    and

    Let us now estimate the initial value of?tmn.By Equation(3.2)taken at t=0,we have

    Here we recall that v0(x)=v(0,x).

    Using Proposition 2.1,we can estimate the H1norm of w1,n(0)without compatibility condition on the following way:

    using the compatibility condition(1.3)and Proposition 2.1.

    Let ξnbe the solution of

    We have

    From Estimates(3.6)–(3.7),we obtain that for all T

    so we infer that

    Therefore,by the comparison Lemma 2.4,we obtain that for every T

    and by integration of(4.2)on the interval[0,T],we obtain

    From these inequalities,we can conclude that there exists a subsequence(w1,nk)such that

    Therefore we obtain that?tm is bounded in the spacefor all T

    4.2 Regularity of?m

    In this paragraph,we prove

    so that

    By the equation,we have

    Let us consider gmthe map defined byThis map is linear bijective which inverseis given by

    where W=m×(m×H(m))?m×(v·?)m.

    Lemma 4.1For all

    ProofWe recall that

    In the previous section,we have proven thatandSo by Lemma 2.3,

    Now,H2(?)is an algebra.Since m ∈ L∞(0,T;H2(?))andwe obtain

    Lemma 4.2For all

    ProofWe know that m ∈ L∞(0,T;H2(?)).From Proposition 2.1,the same holds for H(m).Since L∞(0,T;H2(?))is an algebra,

    So a fortiori this term belongs to

    Concerning the other term,m and v are bounded in L∞(0;T;H2(?))and?m is bounded in L∞(0,T;H1(?)).So by Lemma 2.3,

    On the other hand,m and v are bounded in L∞(0;T;H2(?))and?m is bounded in L2(0,T;H2(?)),thus,since H2(?)is an algebra,

    We aim to deduce from(4.4)more regularity for m.We have

    so

    Using Lemmas 4.1–4.2,we obtain from(4.4)that

    By using Lemmas 4.1–4.2,we obtain

    and so

    By[4,Theorem II.5.14],since ?tm ∈ L2(0,T;H2(?)),we obtain

    This concludes the proof of Theorem 1.2.

    5 Very Regular Solutions

    It is not possible to obtain H2estimates on w1,n=?tmnusing Equation(4.1).Indeed,we would need a uniform estimate on the initial value w1,n(0)in the H2norm,and using Proposition 2.1,it would be necessary to check a compatibility condition of the form:

    Because of the non-local term H(mn(0)),this condition can not be satisfied for all n.

    We assume that m0∈ H4(?;S2)and satisfies the compatibility condition at order one(see Definition 1.1).In order to obtain more regular solutions,our strategy is the following:

    (1)We compute the equation(5.2)(see below)satisfied by the time derivative?tm.

    (2)We construct a solution w1for this equation inAt this step we need a compatibility condition at the boundary for?tm(t=0).

    (4)Writing?m in function of?tm,we proveso that

    If m0∈ H5(?;S2)satisfies the compatibility condition at order one,we obtain the desired regularity by differentiating the Galerkin approximation of(5.2)with respect to time(in the same spirit we obtained the H3regularity for m in the previous part).

    This strategy will be used at any order to obtain very regular solutions for the Landau-Lifschitz equation.

    We detail this process at any order by proving by induction the following property P(k):

    This property is proven for k=1 in Sections 3–4.

    Let k≥1.Let us assume that P(k)is true,and let us establish P(k+1).

    Let m0∈ H2(k+1)(?;S2)satisfy the compatibility condition at order k.By the property P(k),we already know that

    where

    with

    and

    We aim to construct a more regular solution for(5.2).We establish the following estimates.

    Lemma 5.1For all j ∈ {1,···,k},and for all T

    ProofWe fix j ≤ k.From the property P(k),for all i∈ {0,···,j?1},

    and a fortiori this quantity is in

    In the same way,

    5.1 Construction of more regular solution for(5.3)

    We consider the following Cauchy problem:

    We aim to construct a solution for(5.3)in

    We recall that,from the compatibility condition at order k,Vk∈ H2(?)andon??.

    We consider the following Galerkin approximation for(5.3):

    Since the coefficients of this ordinary differential equation are continuous on[0,T?[,since the equation is linear,the maximal existence time Tnequals T?.Let us obtain uniform estimates on wn.

    Bound for the initial dataUsing the compatibility condition at order k,we know that Vk∈ H2(?)and thaton ??,so we can apply Proposition 2.1 and obtain

    L2estimateWe multiply(5.4)by wnand obtain

    where

    H2estimateWe multiply(5.4)byand obtain

    where

    By adding up the previous L2and H2estimates,after absorbingwe obtain that

    where

    We already know that for allsofor all T

    By Equation(5.4),we obtain in addition the following estimate on the time derivatives

    By standard arguments(see Subsection 3.3),we obtain by extracting subsequences that there exists w satisfying(5.3)such that

    5.2 Uniqueness for(5.3)

    Let w1and w2be two solutions of(5.3)inWe denote W=w1?w2,and we remark that w satisfies the following problem:

    We multiply Equation(5.9)by??W and integrate on[0,T]×? for all T

    We have

    and

    We integrate the L2estimate from 0 to T.Adding up with the H1estimate and using Young formula,we obtain

    where

    By properties of m and v,g ∈ L1(0,T)for all T

    5.3 Regularity for m

    From the property P(k),we know that

    In addition,we proved in the previous subsection that

    Let us establish by induction the following claim.

    Claim 5.1For all T

    ProofThis property is true for j=0 by(5.10).

    Let j ∈ {1,···,k ?1}.Let us assume that the property is true at the rank j?1.Then,from Equation(5.1),replacing j by k?j,we have

    where ψmis defined on page 904.We have

    On the one hand,we recall that

    Since 2j≤ 2k,?m,?wk?j,v and m are in L∞(0,T;H2j(?)),which is an algebra(since j≥1),we have

    Since 2j+1≤ 2k,?m,v and m are inand since

    we have

    On the other hand,we recall that

    From Proposition 2.2,H(wk?j)and wk?jhave the same regularity,i.e.,they are in L∞(0,T;H2j+1(?)).We remark that j≤k?1 so that 2j+1≤2k?1.So?m,H(m),m and?m are in.The same holds for v.Since this space is an algebra,we obtain

    From Lemma 5.1,

    From the property at rank j?1,

    and by elliptic regularity results,

    This concludes the proof of the claim.

    In particular,we have proven that

    Now,we have

    5.4 Regularity for in the case

    We assume now in addition thatand satisfies the compatibility condition at order k.From the previous case,we already know that

    We derivate(5.4)with respect to time.Denoting by αn:= ?twn,we obtain

    where

    We multiply(5.11)by ?αn.After integration on ? and using Young formula,we obtain

    We have

    for all T

    for all T

    In addition,

    by(5.7).

    So,

    for all t≤ T

    Using Proposition 2.2,(5.7)and the known bounds on?tm,we obtain

    Now from Proposition 2.1,we have

    From the compatibility condition at orderon ??,so from Proposition 2.1,

    for all n.Therefore,there exists a constant C such that for all n,

    Estimates(5.12)and(5.13)coupled with Lemma 2.4 yield

    5.5 Regularity for m in the case m0∈ H2k+3(?)

    We know from Subsection 5.3 that

    So coupling this estimate with(5.14),we gain one rank for the regularity of each wj,and exactly with the same method as in Subsection 5.3,we prove

    so that the proof of the property P(k+1)is complete.

    亚洲欧美精品自产自拍| 亚洲人与动物交配视频| 亚洲av不卡在线观看| 精品视频人人做人人爽| 成人免费观看视频高清| 国产永久视频网站| eeuss影院久久| 国产精品久久久久久精品电影| 又大又黄又爽视频免费| 亚洲一区二区三区欧美精品 | 又大又黄又爽视频免费| 国产成人91sexporn| 亚洲欧美精品专区久久| av免费观看日本| 午夜日本视频在线| 免费观看a级毛片全部| 日韩制服骚丝袜av| 少妇被粗大猛烈的视频| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡动漫免费视频 | 中文字幕人妻熟人妻熟丝袜美| 亚洲在线观看片| 亚洲人成网站高清观看| 国产视频内射| 欧美性感艳星| 又粗又硬又长又爽又黄的视频| 久久国产乱子免费精品| 欧美激情久久久久久爽电影| 只有这里有精品99| 亚洲精品自拍成人| av网站免费在线观看视频| 国产精品一区二区性色av| 国产精品福利在线免费观看| 午夜福利在线在线| 国产精品一区二区三区四区免费观看| 午夜福利视频精品| 亚洲精品aⅴ在线观看| 国产精品人妻久久久久久| 免费黄网站久久成人精品| 韩国高清视频一区二区三区| 国产中年淑女户外野战色| 免费在线观看成人毛片| 色视频在线一区二区三区| 成人美女网站在线观看视频| 97精品久久久久久久久久精品| 2021少妇久久久久久久久久久| 日韩成人av中文字幕在线观看| 日本av手机在线免费观看| 一级毛片 在线播放| 街头女战士在线观看网站| 亚洲av成人精品一二三区| 亚洲精品色激情综合| 身体一侧抽搐| av在线蜜桃| 亚洲国产日韩一区二区| 欧美老熟妇乱子伦牲交| eeuss影院久久| 国产精品一区二区三区四区免费观看| 搞女人的毛片| 在线a可以看的网站| 亚洲精品自拍成人| 免费电影在线观看免费观看| 亚洲精品色激情综合| 久久久久久国产a免费观看| 国产午夜精品久久久久久一区二区三区| 国产高清不卡午夜福利| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜添av毛片| 内射极品少妇av片p| .国产精品久久| 国产高潮美女av| 国产一区二区三区av在线| 男女下面进入的视频免费午夜| 国产精品国产三级国产av玫瑰| 搡老乐熟女国产| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 亚洲精品第二区| 男女无遮挡免费网站观看| 精品熟女少妇av免费看| 免费电影在线观看免费观看| 国产亚洲av嫩草精品影院| 国产综合懂色| av网站免费在线观看视频| 国产男女内射视频| 国产淫片久久久久久久久| 国产日韩欧美在线精品| 国产精品一区二区性色av| 又粗又硬又长又爽又黄的视频| 好男人在线观看高清免费视频| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| 草草在线视频免费看| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 国产精品.久久久| 久久精品国产自在天天线| 69人妻影院| 一级av片app| 亚洲无线观看免费| 久久99蜜桃精品久久| 国产精品女同一区二区软件| 成年av动漫网址| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 欧美xxⅹ黑人| 噜噜噜噜噜久久久久久91| 99热这里只有是精品在线观看| 日韩成人伦理影院| 久久99精品国语久久久| 欧美一区二区亚洲| 亚洲成人一二三区av| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 色视频在线一区二区三区| 国产精品蜜桃在线观看| 成年版毛片免费区| 日韩制服骚丝袜av| 日本一二三区视频观看| 欧美一级a爱片免费观看看| 亚洲欧美精品自产自拍| 国产一区二区亚洲精品在线观看| 国产精品久久久久久精品古装| 国产探花极品一区二区| 男女下面进入的视频免费午夜| 亚洲高清免费不卡视频| av黄色大香蕉| 22中文网久久字幕| 激情五月婷婷亚洲| 性色av一级| 不卡视频在线观看欧美| 亚洲欧美成人综合另类久久久| videossex国产| 又黄又爽又刺激的免费视频.| 日本黄大片高清| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久| 成人毛片60女人毛片免费| 精品久久国产蜜桃| 99热这里只有是精品在线观看| 伊人久久精品亚洲午夜| 99热国产这里只有精品6| 久久午夜福利片| 一级爰片在线观看| 特大巨黑吊av在线直播| av在线亚洲专区| 街头女战士在线观看网站| 免费观看性生交大片5| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 亚洲精品成人久久久久久| 男男h啪啪无遮挡| av在线app专区| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 久久99热6这里只有精品| 欧美激情久久久久久爽电影| 有码 亚洲区| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 男人爽女人下面视频在线观看| 18+在线观看网站| 国产精品无大码| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 色视频www国产| 99久久九九国产精品国产免费| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| www.av在线官网国产| 丰满人妻一区二区三区视频av| 亚洲欧美中文字幕日韩二区| 国产精品一区二区三区四区免费观看| 欧美国产精品一级二级三级 | 日本猛色少妇xxxxx猛交久久| 99热全是精品| 国产成人一区二区在线| 精品久久久久久电影网| 男人和女人高潮做爰伦理| 国产精品国产av在线观看| av免费观看日本| 春色校园在线视频观看| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 久久精品熟女亚洲av麻豆精品| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品 | 国产午夜福利久久久久久| 久久久久久久午夜电影| 成年av动漫网址| 永久免费av网站大全| 国产精品女同一区二区软件| 免费少妇av软件| 国产精品偷伦视频观看了| 大片免费播放器 马上看| 亚洲在线观看片| 国产免费福利视频在线观看| 国产亚洲精品久久久com| 久久久精品欧美日韩精品| 啦啦啦中文免费视频观看日本| 熟女人妻精品中文字幕| 久久久久久久国产电影| 亚洲最大成人中文| 男人舔奶头视频| 最新中文字幕久久久久| 久久久久久久午夜电影| 成人无遮挡网站| 黄色视频在线播放观看不卡| 伊人久久国产一区二区| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 一级毛片电影观看| 乱系列少妇在线播放| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 黄片wwwwww| 国产高清有码在线观看视频| 女的被弄到高潮叫床怎么办| 十八禁网站网址无遮挡 | 高清欧美精品videossex| 国产日韩欧美亚洲二区| 黄色日韩在线| 亚洲国产精品专区欧美| 毛片女人毛片| av黄色大香蕉| 日本色播在线视频| 日本欧美国产在线视频| 日韩成人伦理影院| 亚洲精品乱久久久久久| 嘟嘟电影网在线观看| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 国产色婷婷99| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 亚洲不卡免费看| freevideosex欧美| 97热精品久久久久久| 日韩成人伦理影院| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 1000部很黄的大片| 色播亚洲综合网| 国产午夜精品一二区理论片| 国产成年人精品一区二区| 亚洲成人一二三区av| 大话2 男鬼变身卡| 少妇猛男粗大的猛烈进出视频 | 久久6这里有精品| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 晚上一个人看的免费电影| av网站免费在线观看视频| 一区二区三区免费毛片| 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 午夜福利在线在线| 久久久色成人| 99精国产麻豆久久婷婷| 国产黄片视频在线免费观看| 国产精品人妻久久久久久| 丰满人妻一区二区三区视频av| 极品教师在线视频| 亚洲精品视频女| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 成人特级av手机在线观看| 老女人水多毛片| eeuss影院久久| 下体分泌物呈黄色| 亚洲色图av天堂| 精品久久久久久久久av| 国产乱人偷精品视频| 亚洲欧美精品专区久久| 亚洲成人久久爱视频| 美女脱内裤让男人舔精品视频| 91在线精品国自产拍蜜月| 另类亚洲欧美激情| 日韩制服骚丝袜av| 春色校园在线视频观看| 欧美激情国产日韩精品一区| 夫妻午夜视频| 天堂网av新在线| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 国产中年淑女户外野战色| 免费观看av网站的网址| 69av精品久久久久久| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 97在线人人人人妻| 在线观看一区二区三区| 成人鲁丝片一二三区免费| 22中文网久久字幕| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 嫩草影院新地址| 久久久精品免费免费高清| 色吧在线观看| 特大巨黑吊av在线直播| 免费看a级黄色片| 人妻少妇偷人精品九色| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 久久久久国产网址| 亚洲av一区综合| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂| 黄片wwwwww| 麻豆乱淫一区二区| 国产高潮美女av| 亚洲欧美清纯卡通| 国产黄片美女视频| 国产av国产精品国产| kizo精华| 舔av片在线| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 亚洲国产精品国产精品| 精品国产三级普通话版| 女的被弄到高潮叫床怎么办| 少妇人妻一区二区三区视频| 成年免费大片在线观看| 婷婷色麻豆天堂久久| 日韩亚洲欧美综合| 高清午夜精品一区二区三区| 大片免费播放器 马上看| 欧美激情久久久久久爽电影| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 久久99热这里只有精品18| 性色av一级| 日韩av不卡免费在线播放| 日本欧美国产在线视频| av天堂中文字幕网| 好男人视频免费观看在线| 国产成人freesex在线| 超碰av人人做人人爽久久| 男人添女人高潮全过程视频| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 日韩中字成人| 婷婷色av中文字幕| 午夜福利在线在线| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 日韩亚洲欧美综合| 寂寞人妻少妇视频99o| 美女cb高潮喷水在线观看| 三级男女做爰猛烈吃奶摸视频| 男男h啪啪无遮挡| 大香蕉久久网| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 久久午夜福利片| .国产精品久久| 欧美成人a在线观看| 美女被艹到高潮喷水动态| 日韩伦理黄色片| 精品久久久久久久久av| 精品国产乱码久久久久久小说| 亚洲精品久久午夜乱码| 真实男女啪啪啪动态图| 国产精品国产三级专区第一集| 好男人视频免费观看在线| 91精品一卡2卡3卡4卡| 99热网站在线观看| 亚洲人与动物交配视频| 美女脱内裤让男人舔精品视频| 亚洲精品国产成人久久av| 亚洲成人一二三区av| 国产高潮美女av| 欧美成人一区二区免费高清观看| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 国产成人精品婷婷| 午夜爱爱视频在线播放| 成年版毛片免费区| 国产精品爽爽va在线观看网站| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 久久人人爽av亚洲精品天堂 | 色播亚洲综合网| 男女无遮挡免费网站观看| 亚洲欧美日韩无卡精品| 日韩免费高清中文字幕av| 免费人成在线观看视频色| 男人舔奶头视频| 91久久精品国产一区二区成人| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区| 一本一本综合久久| 国产探花极品一区二区| 久久精品综合一区二区三区| 尤物成人国产欧美一区二区三区| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 国产91av在线免费观看| 亚洲精品,欧美精品| av女优亚洲男人天堂| 免费av不卡在线播放| 久久综合国产亚洲精品| 亚洲丝袜综合中文字幕| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品影视一区二区三区av| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 亚洲精品aⅴ在线观看| 插阴视频在线观看视频| 国产一区有黄有色的免费视频| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 偷拍熟女少妇极品色| av专区在线播放| 国产伦精品一区二区三区视频9| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 一级毛片aaaaaa免费看小| 亚洲综合色惰| 久久影院123| 免费少妇av软件| 久久99热这里只有精品18| 免费看av在线观看网站| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 免费大片黄手机在线观看| 欧美少妇被猛烈插入视频| 国产 一区 欧美 日韩| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说 | av在线播放精品| 亚洲精品一二三| 国产一区二区亚洲精品在线观看| 国产成人精品一,二区| 久久久久久久久大av| 极品教师在线视频| 亚洲精品视频女| 国产精品99久久99久久久不卡 | av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| 97在线人人人人妻| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 亚洲精品乱码久久久久久按摩| 午夜福利视频1000在线观看| 国产精品一区二区三区四区免费观看| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| 欧美潮喷喷水| 国产一区二区三区av在线| 国产成人免费无遮挡视频| 国产淫语在线视频| 亚洲精品色激情综合| 久久精品久久久久久久性| 天堂中文最新版在线下载 | 最后的刺客免费高清国语| 成人综合一区亚洲| 日韩伦理黄色片| 熟女人妻精品中文字幕| 国产有黄有色有爽视频| 六月丁香七月| 十八禁网站网址无遮挡 | 99热这里只有是精品50| 欧美日韩在线观看h| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 嫩草影院入口| 久久女婷五月综合色啪小说 | 国产乱人偷精品视频| 国产伦精品一区二区三区视频9| 狠狠精品人妻久久久久久综合| 久久99蜜桃精品久久| 久久久久精品性色| 人妻一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄色视频一区二区在线观看| 肉色欧美久久久久久久蜜桃 | 99视频精品全部免费 在线| 亚洲,一卡二卡三卡| 小蜜桃在线观看免费完整版高清| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 亚洲精品第二区| 成年版毛片免费区| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 国产av不卡久久| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 国产精品一二三区在线看| 国产真实伦视频高清在线观看| 国产v大片淫在线免费观看| 五月伊人婷婷丁香| 欧美成人精品欧美一级黄| 成人黄色视频免费在线看| 天堂俺去俺来也www色官网| 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 国产亚洲一区二区精品| 国产精品无大码| 18禁动态无遮挡网站| 成人国产麻豆网| 久久久久久久久久久丰满| 亚洲av免费在线观看| 国产淫语在线视频| 在线观看三级黄色| 国产成人a区在线观看| 亚洲国产欧美人成| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 极品教师在线视频| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 日本wwww免费看| 中文字幕人妻熟人妻熟丝袜美| 免费电影在线观看免费观看| 又黄又爽又刺激的免费视频.| 啦啦啦在线观看免费高清www| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品 | 国产男女超爽视频在线观看| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 国产极品天堂在线| 人妻系列 视频| av播播在线观看一区| 特大巨黑吊av在线直播| 日本色播在线视频| 丝瓜视频免费看黄片| 视频区图区小说| 欧美极品一区二区三区四区| 国产成人91sexporn| 久久久a久久爽久久v久久| 日韩av免费高清视频| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 少妇 在线观看| 只有这里有精品99| 欧美成人精品欧美一级黄| 亚洲欧美精品专区久久| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 99久久中文字幕三级久久日本| 亚洲在线观看片| 26uuu在线亚洲综合色| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 国产在线一区二区三区精| 日韩伦理黄色片| 蜜桃久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 精品一区二区三卡| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 欧美高清成人免费视频www| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 亚洲av福利一区| 午夜免费观看性视频| av在线天堂中文字幕| 欧美老熟妇乱子伦牲交| 嫩草影院新地址|