• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lie Triple Derivations on von Neumann Algebras?

    2018-10-17 10:03:30LeiLIU

    Lei LIU

    Abstract Let A be a von Neumann algebra with no central abelian projections.It is proved that if an additive map satisfies δ([[a,b],c])=[[δ(a),b],c]+[[a,δ(b)],c]+[[a,b],δ(c)]for any a,b,c ∈ A with ab=0(resp.ab=P,where P is a fixed nontrivial projection in A),then there exist an additive derivation d from A into itself and an additive mapvanishing at every second commutator[[a,b],c]with ab=0(resp.ab=P)such that δ(a)=d(a)+f(a)for any a ∈ A.

    Keywords Derivations,Lie triple derivations,von Neumann algebras

    1 Introduction

    Let A be an algebra over a field F.Recall that an additive(a linear)map δ from A into itself is called an additive(a linear)derivation if δ(ab)= δ(a)b+aδ(b)for all a,b ∈ A. δ is called an additive(a linear)Lie derivation if δ([a,b])=[δ(a),b]+[a,δ(b)]for all a,b ∈ A,where[a,b]=ab?ba.More generally,δ is called an additive(a linear)Lie triple derivation if δ([[a,b],c])=[[δ(a),b],c]+[[a,δ(b)],c]+[[a,b],δ(c)]for all a,b,c ∈ A.The structures of Lie triple derivations on some operator algebras were intensively studied(see[2,7,9]and references therein).Let M be a von Neumann algebra with no central abelian projections.Miers[9]proved that ifis a linear Lie triple derivation,then there exists an element T∈M and a linear mapwhich annihilates brackets such that L(a)=aT?Ta+f(a)for any a∈M.

    In recent years,the local actions of derivations have been studied intensively.One direction is to study the conditions under which derivations of operator algebras can be completely determined by the actions on some elements concerning products.We say that an additive(a linear)mapis derivable at a given point G ∈ A,if δ(ab)= δ(a)b+aδ(b)for all a,b ∈ A with ab=G.This kind of maps were discussed by several authors(see[1,3,4–5,11–12]and references therein).But,so far,there have been few papers on the study of the local actions of Lie triple derivations on operator algebras.We say that an additive(a linear)mapis Lie triple derivable at a given point G ∈ A,if δ([[a,b],c])=[[δ(a),b],c]+[[a,δ(b)],c]+[[a,b],δ(c)]for all a,b,c∈A with ab=G.It is the aim of the present article to investigate the additive(linear)Lie triple derivations on von Neumann algebras with no central abelian projections by the local actions.It is a generalization of the results in[9].

    We need some notations and preliminaries about von Neumann algebras.A von Neumann algebra A is a weakly closed,self-adjoint algebra of operators on a Hilbert space H containing the identity I.={z∈A:za=az for all a∈A}is called the center of A.A projection P is called a central abelian projection ifand PAP is abelian.We denotebe the central carrier of a,which is the smallest central projection satisfying Pa=a.It is well known thatis the projection whose range is the closed linear span of{Aa(h):h∈H}.For each self-adjoint operator r∈A,the core of r denoted byis sup{a∈ZA:a=a?,a≤r}.If P ∈A is a projection andwe call P a core-free projection.It is easy to verify thatif and only ifBy[8,Lemma 4],we can say that A is a von Neumann algebra with no central abelian projections if and only if it has a projection P∈A such thatandWe refer the reader to[6]for the theory of von Neumann algebras.

    2 Characterizing Lie Triple Derivations by Acting on Zero-Product

    In this section,we consider the question of characterizing Lie triple derivations by action at zero product on von Neumann algebras with no central abelian projections.

    Theorem 2.1Let A be a von Neumann algebra without central abelian projections.Suppose thatis an additive map satisfying

    for all a,b,c∈A with ab=0.Then there exists an additive derivation d from A into itself and an additive mapvanishing at every second commutator[[a,b],c]when ab=0 such that

    Note that every linear derivation of a von Neumann is inner(see[10]).By Theorem 2.1,the following corollary is immediate.It is a generalization of Theorem 1 in[9].

    Corollary 2.1Let A be a von Neumann algebra without central abelian projections.Suppose thatis a linear map satisfying

    for all a,b,c∈A with ab=0.Then there exists an element T∈A and a linear mapvanishing at every second commutator[[a,b],c]when ab=0 such that

    Proof of Theorem 2.1By[8,Lemma 4],there is a projection P∈A such thatandIn what follows,we denote P1=P and P2=I?P1.By the definitions of core and central carrier,P2is also a core-free projection andSet Aij=PiAPjfor i,j=1,2.Then A=A11+A12+A21+A22.For an operator aij∈A,we always mean that aij∈Aij.

    We shall organize the proof of Theorem 2.1 in a series of claims.

    Claim 2.1Let aii∈Aii,i=1,2.If a11b12=b12a22for all b12∈A12,then

    For any x11∈A11,x12∈A12,we have a11x11x12=x11x12a22=x11a11x12.Since P2=I,which means that{AP2(h):h∈H}is dense in H,we get a11x11=x11a11,that is,a11∈.By[6,Corollary 5.5.7],we knowSo there exists z1∈ZAsuch that a11=z1P1.

    Similarly,we have a22=z2P2,z2∈ZA.It follows that z1b12=a11b12=b12a22=z2b12.Then(z1?z2)P1=0,which implies(z1?z2)AP1=0.Bywe obtain z1=z2.Hence a11+a22∈ZA,the claim holds.

    Moreover,for any a12∈A12,since a12P1=0,we have

    Multiplying P1from the left side and P2from the right side of the above equation,we arrive at P1δ(P1)a12=a12δ(P1)P2.It follows from Claim 2.1 that P1δ(P1)P1+P2δ(P1)P2∈ ZA.Let E=P1δ(P1)P2? P2δ(P1)P1,and ? = δ? δE,where δEis the inner derivation given by δE(x)=xE?Ex for all x∈A.It is not difficult to verify

    and

    for any a,b,c∈A with ab=0.

    Claim 2.2

    Since P2P1=0 and,we have

    For any a12∈A12,since P2a12=0,we get

    Multiplying the above equation by P1from the left and by P2from the right,we obtain

    Claim 2.3

    Since a12P1=0 and ?(P1)∈ ZA,we get

    Now it suffices to show that P2?(a12)P1=0.Indeed,for any b12∈ A12,x ∈ A,it is easy to check that

    This together with P1?(a12)P1=P2?(a12)P2=0 entails thatThis leads toThen P2?(a12)b12=0.Sincewe have P2?(a12)P1=0.Consequently,

    Claim 2.4There exist mapssuch that ?(aii)? fi(aii) ∈ Aiifor any aii∈Aii,i=1,2.

    Since a11P2=0 and from Claim 2.2,we have

    Moreover,for any b22∈A22and x∈A,it is easy to check that

    and

    Therefore,for any a11∈A11,we have

    Similarly,we can define a mapsuch that ?(a22)? f2(a22) ∈ A22for any a22∈A22.So Claim 2.4 is true.

    By the definition of d and Claim 2.4,we haveand d(aij)=?(aij)for all

    In the following we shall show that d is an additive derivation.

    Claim 2.5d is an additive map.

    Since d=??f and f=f1+f2,we only need to show that f1and f2are additive maps.

    For any a11,b11∈A11,it follows from(2.1)that

    and

    By(2.3)–(2.5),we get

    Similarly,f2is an additive map.

    Claim 2.6d(aiibij)=aiid(bij)+d(aii)bijfor any aii∈Aii,bij∈Aij,

    Due to bijaii=0,the following equations hold:

    With the similar argument in Claim 2.6,we have the following claim.

    Claim 2.7d(aijbjj)=aijd(bjj)+d(aij)bjjfor any

    Claim 2.8d(aiibii)=aiid(bii)+d(aii)biifor any aii,bii∈Aii,i=1,2.

    For any bij∈Aij,we have,from Claim 2.6,that

    At the same time,

    Comparing the above two equations,we get

    Note Pj=I.It follows from the fact that{APj(h):h∈H}is dense in H that d(aiibii)=aiid(bii)+d(aii)bii.

    Claim 2.9d(aijbji)=aijd(bji)+d(aij)bjifor any

    Since P2a12=0 andwe have

    Since d(a)= ?(a)?f(a),?a∈ A,

    We shall show f(b21a12?a12b21)=0.Multiplying the above equation by a12to the left side and right side respectively,we obtain the following two equations:

    and

    Computing(2.7)–(2.8),we get

    It follows from Claims 2.6–2.7 that

    which combining with the above equation impliesUsing polar decomposition of a12,we havewhich yieldsThis leads toand so

    Similarly,we have b21f(b21a12?a12b21)?=0.

    Then multiplying(2.6)by f(b21a12?a12b21)?to the right side,we arrive at

    Due to Claim 2.8,the following equations hold:

    Putting the above two equations into(2.9),we have

    Multiplying the equation by f(b21a12?a12b21)?to the left side,we get

    which implies f(b21a12?a12b21)=0.So we arrive at

    This is equivalent to d(a12b21)=d(a12)b21+a12d(b21)and d(b21a12)=d(b21)a12+b21d(a12),as desired.

    By Claims 2.5–2.9,we can conclude that d is an additive derivation.Hence we have δ(a)=?(a)+δE(a)=d(a)+f(a)+δE(a),?a ∈ A.Denote φ(a)=d(a)+δE(a),then δ(a)= φ(a)+f(a),?a∈A.Clearly,φ is an additive derivation on A and f is an additive map from A to

    For ab=0,it follows that

    3 Characterizing Lie Triple Derivations by Acting on Projection-Product

    In this section,we consider the question of characterizing Lie triple derivations by acting at projection-product on von Neumann algebras without central abelian projections.The proof of the following theorem shares the similar outline as that of Theorem 2.1,but it needs different techniques.

    Theorem 3.1Let A be a von Neumann algebra without central abelian projections and P be a projection in A withandSuppose thatis an additive map satisfying

    for all a,b,c ∈ A with ab=P.Then there exists an additive derivation φ from A into itself and an additive mapvanishing at every second commutator[[a,b],c]when ab=P such that

    Note that all linear derivations of von Neumann algebras are inner(see[10]).We have the following corollary.It is a generalization of Theorem 1 in[9].

    Corollary 3.1Let A be a von Neumann algebra without central abelian projections and P be a projection in A withandSuppose thatis a linear map satisfying for all a,b,c∈A with ab=P.Then there exists an element T∈A and a linear mapvanishing at every second commutator[[a,b],c]when ab=P such that

    Proof of Theorem 3.1We shall use the same symbols with that in Section 2.

    For any a12∈A12,sincewe obtain

    Multiplying P1from the left side and P2from the right side of the above equation,we arrive at P1δ(P1)a12=a12δ(P1)P2.It follows from Claim 2.1 that P1δ(P1)P1+P2δ(P1)P2∈ ZA.Let E=P1δ(P1)P2?P2δ(P1)P1,and ? = δ?δE,where δEis the inner derivation.It is not difficult to verify that

    and

    for any a,b∈A with ab=P1.

    Now we organize the proof in a series of claims.

    Claim 3.1

    Since(P1+P2)P1=P1andwe have

    For any a12∈A12,since(P1+a12)(P1+P2?a12)=P1,we get

    Multiplying the above equation by P1from the left and by P2from the right,we obtain

    It follows from Claim 2.1 thatHence

    Claim 3.2

    Since(P1+a12)P1=P1and,we get

    Now,for any b12∈A12,we have

    Multiplying the above equation from both side by P2,we arrive at P2?(b12)b12=0.Moreover,it follows that

    Multiplying the equation by b12from the right and for the fact P2?(b12)b12=0,we obtain b12?(a12)b12=0.By linearizing,we get b12?(a12)d12+d12?(a12)b12=0 for any b12,d12∈ A12.It is not difficult to check

    that is,

    As von Neumann algebras are semiprime,we see P2?(a12)b12?(a12)P1=0.Then P2?(a12)P1=0.Consequently,.

    Claim 3.3There exists a map f1on A11such that ?(a11)?f1(a11)∈ A11for all a11∈ A11.

    First suppose that a11is invertible in A11,i.e.,there existssuch thatSince,we have

    Moreover,for any b22∈ A22and x∈A,sinceit is easy to check that

    If a11is not invertible in A11,we may find a sufficiently big number n such that nP1?a11is invertible in A11.It follows from the preceding case that P1?(nP1?a11)P2+P2?(nP1?a11)P1=0,and P2?(nP1?a11)P2=ZP2.Since ?(P1)∈ ZA,we also have P1?(a11)P2+P2?(a11)P1=0 and P2?(a11)P2∈ ZAP2.Without loss of generality,we still denote P2?(a11)P2=ZP2.

    We define f1:M11→ZMby f1(a11)=Z for all a11∈A11.With the similarly argument as in Claim 2.4,we know f1is well defined.Hence

    Claim 3.4There exists a map f2on A22such that ?(a22)?f2(a22)∈ A22for any a22∈ A22.

    For any a22∈A22,since(P1+a22)P1=P1,we have

    The rest step is similar to the proof of Claim 3.3.

    Now,we define two maps f:A→ZAand d:A→A respectively by

    and

    By the definition of d and Claim 3.4,we have d(P1)=d(P2)=0,d(Aij)?Aij,1≤i,j≤2 and d(aij)=?(aij)for all

    In the following we shall show that d is an additive derivation.

    Claim 3.5d is an additive map.

    The proof is similar to that of Claim 2.5.

    Claim 3.6d(a11b12)=a11d(b12)+d(a11)b12for any a11∈A11,b12∈A12.

    If a11is invertible in A11,then for any x12∈ A12,we haveIt follows that

    Replacing b12withwe have d(a11b12)=a11d(b12)+d(a11)b12.

    If a11is not invertible in A11,we may find a sufficiently big number n such that nP1?a11is invertible in A11.Then d((nP1?a11)a12)=(nP1?a11)d(a12)+d(nP1?a11)a12.Clearly,P1is invertible in A11,so we get d(a11b12)=a11d(b12)+d(a11)b12from the above equation.

    Claim 3.7d(a21b11)=a21d(b11)+d(a21)b11for any a21∈A21,b11∈A11.

    Claim 3.8d(a22b21)=a22d(b21)+d(a22)b21for any a22∈A22,b21∈A21.

    Due to(P1+a22?a22b21)(P1+b21)=P1,we compute

    that is,d(a22b21)=a22d(b21)+d(a22)b21.

    Considering(P1+a12)(P1?b22+a12b22)=P1,we arrive at the following claim.

    Claim 3.9d(a12b22)=a12d(b22)+d(a12)b22for any a12∈A12,b22∈A22.

    Claim 3.10d(aiibii)=aiid(bii)+d(aii)bii,i=1,2.

    It is similar to Claim 2.8.

    Claim 3.11d(aijbji)=aijd(bji)+d(aij)bjifor any

    Since(a12+P1)P1=P1,we have

    Since d(a)=?(a)?f(a),?a∈A,

    With the same approach as in Claim 2.9,we can get f(b21a12?a12b21)=0.So we arrive at

    This is equivalent to d(b21a12)=d(b21)a12+b21d(a12)and d(a12b21)=d(a12)b21+a12(.b21).Consequently,Claim 3.11 is true.

    So we can conclude that d is an additive derivation by Claims 3.5–3.11.Hence we have δ(a)= ?(a)+ δE(a)=d(a)+f(a)+ δE(a), ?a ∈ A.Denote φ(a)=d(a)+ δE(a),then δ(a)= φ(a)+f(a),?a ∈ A.Clearly,φ is an additive derivation on A and f is an additive map from A to ZA.

    With the similar argument as in the proof of Theorem 2.1,we can verify the additive map f:A→ZAvanishing at every second commutator[[a,b],c]when ab=P.

    AcknowledgementThe author wish to give his thanks to the referees and the editor for their helpful comments and suggestions.

    日韩一区二区视频免费看| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 日本 欧美在线| 日本撒尿小便嘘嘘汇集6| 尤物成人国产欧美一区二区三区| netflix在线观看网站| 亚洲专区国产一区二区| 久久久成人免费电影| 免费观看人在逋| 99在线视频只有这里精品首页| 国内久久婷婷六月综合欲色啪| 亚洲,欧美,日韩| 成人av一区二区三区在线看| 久久这里只有精品中国| videossex国产| 成人亚洲精品av一区二区| 久久久精品大字幕| 日本黄大片高清| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6 | 尾随美女入室| 国产一区二区三区av在线 | 久久久久久伊人网av| 狠狠狠狠99中文字幕| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添小说| 干丝袜人妻中文字幕| 午夜精品一区二区三区免费看| 欧美日韩综合久久久久久 | 成年免费大片在线观看| 成人永久免费在线观看视频| 精品久久久久久,| 中文字幕熟女人妻在线| 一进一出抽搐动态| 可以在线观看毛片的网站| 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 精品人妻熟女av久视频| 在线观看舔阴道视频| 波多野结衣高清无吗| 精品久久国产蜜桃| x7x7x7水蜜桃| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 99热只有精品国产| 男人的好看免费观看在线视频| 国产久久久一区二区三区| 黄色一级大片看看| 久久久成人免费电影| 久久午夜福利片| 亚洲不卡免费看| 国产精品98久久久久久宅男小说| 我的女老师完整版在线观看| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| 91久久精品电影网| 亚州av有码| 国内毛片毛片毛片毛片毛片| 日本一二三区视频观看| 成人二区视频| 免费一级毛片在线播放高清视频| 国产精品99久久久久久久久| 在线观看66精品国产| 国产精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 亚洲一区二区三区色噜噜| 又粗又爽又猛毛片免费看| 亚洲美女黄片视频| www日本黄色视频网| 99久久中文字幕三级久久日本| 日本精品一区二区三区蜜桃| 狂野欧美激情性xxxx在线观看| 日韩av在线大香蕉| 99热6这里只有精品| 国产久久久一区二区三区| 国产精品人妻久久久久久| 女同久久另类99精品国产91| 免费看a级黄色片| 国产av不卡久久| 国内毛片毛片毛片毛片毛片| 天天躁日日操中文字幕| 一本一本综合久久| 国产日本99.免费观看| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 日韩国内少妇激情av| 日韩中文字幕欧美一区二区| 神马国产精品三级电影在线观看| 久久精品国产自在天天线| 精品午夜福利在线看| 少妇裸体淫交视频免费看高清| 国模一区二区三区四区视频| 久久久国产成人精品二区| 一本精品99久久精品77| 国产aⅴ精品一区二区三区波| 日韩在线高清观看一区二区三区 | 欧美日韩精品成人综合77777| 长腿黑丝高跟| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 性欧美人与动物交配| 联通29元200g的流量卡| 国产免费男女视频| 亚洲一区二区三区色噜噜| 久久精品国产自在天天线| 乱人视频在线观看| 日本三级黄在线观看| 欧美日韩综合久久久久久 | 高清在线国产一区| 国产三级中文精品| 少妇裸体淫交视频免费看高清| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 色吧在线观看| 三级毛片av免费| 99久久成人亚洲精品观看| 亚洲中文日韩欧美视频| 日韩精品有码人妻一区| 亚洲欧美日韩高清专用| 国产伦在线观看视频一区| 美女免费视频网站| 国模一区二区三区四区视频| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 国产视频一区二区在线看| 亚洲18禁久久av| 午夜爱爱视频在线播放| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av香蕉五月| 亚洲最大成人手机在线| 欧美激情国产日韩精品一区| 免费电影在线观看免费观看| aaaaa片日本免费| 日本熟妇午夜| 国产男人的电影天堂91| 老司机福利观看| 小说图片视频综合网站| 婷婷六月久久综合丁香| 超碰av人人做人人爽久久| 日韩欧美精品免费久久| 99久久精品国产国产毛片| 婷婷丁香在线五月| 久久久精品大字幕| 国产精品国产高清国产av| 精品人妻偷拍中文字幕| 国产蜜桃级精品一区二区三区| 91久久精品国产一区二区三区| 国产成人影院久久av| 精品久久久久久久久亚洲 | 少妇的逼水好多| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 九九爱精品视频在线观看| 一区二区三区激情视频| 深爱激情五月婷婷| 国产精品久久电影中文字幕| 欧美一区二区精品小视频在线| 99九九线精品视频在线观看视频| 亚洲天堂国产精品一区在线| 久久国产乱子免费精品| 人妻少妇偷人精品九色| 亚洲专区国产一区二区| 我要搜黄色片| 性欧美人与动物交配| 91狼人影院| 欧美又色又爽又黄视频| 性色avwww在线观看| 天堂av国产一区二区熟女人妻| 欧美日韩黄片免| 五月伊人婷婷丁香| 成人特级av手机在线观看| 性插视频无遮挡在线免费观看| 国产精品一区www在线观看 | 少妇被粗大猛烈的视频| 日日干狠狠操夜夜爽| 国产又黄又爽又无遮挡在线| 亚洲精品在线观看二区| 午夜精品在线福利| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 久久99热6这里只有精品| 麻豆成人av在线观看| a级毛片a级免费在线| 成人亚洲精品av一区二区| 我的老师免费观看完整版| 欧美一区二区亚洲| 国内精品久久久久精免费| 精品人妻视频免费看| 美女cb高潮喷水在线观看| 在线观看舔阴道视频| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 午夜免费成人在线视频| 久久九九热精品免费| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄 | ponron亚洲| 嫩草影院新地址| 欧美一级a爱片免费观看看| 国产三级在线视频| 最近在线观看免费完整版| 韩国av一区二区三区四区| 草草在线视频免费看| 久久久色成人| 精品福利观看| 午夜亚洲福利在线播放| 少妇的逼水好多| 丰满的人妻完整版| 女人被狂操c到高潮| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| 色噜噜av男人的天堂激情| 国产真实乱freesex| 亚洲色图av天堂| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 久久国产乱子免费精品| 国内精品久久久久久久电影| 国内精品美女久久久久久| 校园人妻丝袜中文字幕| 看片在线看免费视频| 成人国产麻豆网| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看| 亚洲av一区综合| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| 欧美性猛交╳xxx乱大交人| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 成人特级黄色片久久久久久久| 草草在线视频免费看| 午夜老司机福利剧场| 日本三级黄在线观看| 99视频精品全部免费 在线| 18禁黄网站禁片免费观看直播| 天堂√8在线中文| 毛片女人毛片| 精品国内亚洲2022精品成人| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 日本成人三级电影网站| 亚洲av熟女| 色综合婷婷激情| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 热99在线观看视频| 人妻久久中文字幕网| 久久热精品热| 好男人在线观看高清免费视频| 又黄又爽又免费观看的视频| 欧美性感艳星| 亚洲午夜理论影院| 变态另类丝袜制服| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| 中国美女看黄片| 搞女人的毛片| 18禁在线播放成人免费| 18+在线观看网站| 88av欧美| av黄色大香蕉| 久久亚洲精品不卡| 亚洲av不卡在线观看| 又粗又爽又猛毛片免费看| 春色校园在线视频观看| av天堂中文字幕网| 亚洲aⅴ乱码一区二区在线播放| 欧美日本视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品电影一区二区三区| 88av欧美| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 麻豆av噜噜一区二区三区| av在线蜜桃| 最近最新免费中文字幕在线| 看免费成人av毛片| 日韩欧美免费精品| 在线播放无遮挡| 亚洲内射少妇av| 十八禁国产超污无遮挡网站| 91麻豆精品激情在线观看国产| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 可以在线观看的亚洲视频| 亚洲第一区二区三区不卡| 亚洲精华国产精华精| 国产精品亚洲美女久久久| 少妇的逼好多水| 日韩欧美国产在线观看| 久久精品国产亚洲av香蕉五月| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 国产精品一及| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 成人综合一区亚洲| 香蕉av资源在线| 日韩欧美在线二视频| 日本色播在线视频| 91麻豆av在线| 国产不卡一卡二| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 久久精品国产亚洲网站| 波多野结衣高清无吗| 能在线免费观看的黄片| 日韩人妻高清精品专区| 午夜激情福利司机影院| 亚洲 国产 在线| 在线免费十八禁| 永久网站在线| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 午夜福利视频1000在线观看| 久久香蕉精品热| 亚洲精华国产精华精| 少妇高潮的动态图| 丝袜美腿在线中文| 国产黄片美女视频| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| 桃红色精品国产亚洲av| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 欧美最新免费一区二区三区| 99riav亚洲国产免费| 一个人看的www免费观看视频| 国产伦人伦偷精品视频| 一个人看视频在线观看www免费| 国内毛片毛片毛片毛片毛片| netflix在线观看网站| a级毛片免费高清观看在线播放| 美女被艹到高潮喷水动态| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| av国产免费在线观看| 色视频www国产| 久久久午夜欧美精品| 国产成人av教育| 91午夜精品亚洲一区二区三区 | 午夜影院日韩av| 久久99热6这里只有精品| 精品人妻1区二区| 亚洲人与动物交配视频| 欧美+亚洲+日韩+国产| 狂野欧美白嫩少妇大欣赏| 中文字幕av成人在线电影| 亚洲国产色片| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 美女高潮的动态| 国产精品无大码| 日本黄色片子视频| 五月伊人婷婷丁香| 亚洲图色成人| 亚洲精品色激情综合| 国产精品久久久久久久久免| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 99久久成人亚洲精品观看| 成人国产一区最新在线观看| 亚洲精华国产精华精| 欧美最黄视频在线播放免费| 一级a爱片免费观看的视频| 一本一本综合久久| 色哟哟哟哟哟哟| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 18禁黄网站禁片午夜丰满| 男人舔奶头视频| 国产日本99.免费观看| 国产精品福利在线免费观看| 人妻久久中文字幕网| 日本 av在线| 免费黄网站久久成人精品| 草草在线视频免费看| 国产在视频线在精品| 在线免费观看的www视频| 亚洲av成人精品一区久久| 波多野结衣高清作品| 可以在线观看毛片的网站| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 乱人视频在线观看| 日韩精品中文字幕看吧| 99riav亚洲国产免费| 999久久久精品免费观看国产| av女优亚洲男人天堂| 嫩草影视91久久| 色视频www国产| av国产免费在线观看| 亚洲美女搞黄在线观看 | videossex国产| 夜夜看夜夜爽夜夜摸| 久9热在线精品视频| 久久精品人妻少妇| 成年免费大片在线观看| 婷婷色综合大香蕉| 久久精品国产鲁丝片午夜精品 | 中国美白少妇内射xxxbb| 国产黄色小视频在线观看| 国产精品国产高清国产av| 中国美女看黄片| 欧美精品啪啪一区二区三区| 我要看日韩黄色一级片| 免费观看精品视频网站| 久久亚洲精品不卡| 亚洲欧美激情综合另类| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx在线观看| 免费看日本二区| 国产精品综合久久久久久久免费| 春色校园在线视频观看| 国产v大片淫在线免费观看| 老师上课跳d突然被开到最大视频| 久久精品国产自在天天线| 在线免费观看不下载黄p国产 | 草草在线视频免费看| 欧美成人免费av一区二区三区| 亚洲真实伦在线观看| videossex国产| 国产亚洲精品av在线| 久久久久久久久大av| 男人狂女人下面高潮的视频| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 欧美bdsm另类| 麻豆av噜噜一区二区三区| 22中文网久久字幕| 欧美激情在线99| 亚洲成av人片在线播放无| 国产亚洲91精品色在线| 亚洲一区高清亚洲精品| 中文字幕av成人在线电影| 国产淫片久久久久久久久| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 特级一级黄色大片| 色哟哟·www| 午夜精品一区二区三区免费看| 我的女老师完整版在线观看| 久久精品国产99精品国产亚洲性色| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品人妻蜜桃| 少妇丰满av| 直男gayav资源| 十八禁网站免费在线| 韩国av一区二区三区四区| 夜夜爽天天搞| 91久久精品电影网| 91麻豆av在线| 国产精品一区二区三区四区久久| 91狼人影院| 午夜福利在线观看吧| 国产高清视频在线播放一区| 女人被狂操c到高潮| 99热网站在线观看| 欧美最黄视频在线播放免费| 长腿黑丝高跟| 久久久精品大字幕| 午夜福利18| av在线蜜桃| 欧美色视频一区免费| 日韩人妻高清精品专区| 欧美日韩亚洲国产一区二区在线观看| 精品乱码久久久久久99久播| 国产精品不卡视频一区二区| 久久天躁狠狠躁夜夜2o2o| 国内精品美女久久久久久| 日本黄色片子视频| 色吧在线观看| 搡老熟女国产l中国老女人| 最近最新免费中文字幕在线| 成人毛片a级毛片在线播放| 最新在线观看一区二区三区| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 日韩欧美精品免费久久| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av天美| 欧美精品国产亚洲| 天天一区二区日本电影三级| 真人一进一出gif抽搐免费| 中文字幕av成人在线电影| 亚洲avbb在线观看| 色哟哟·www| 国产伦一二天堂av在线观看| 乱人视频在线观看| 色5月婷婷丁香| 欧美在线一区亚洲| 国产精品亚洲一级av第二区| 亚洲欧美清纯卡通| 欧美日韩黄片免| 在线免费观看不下载黄p国产 | 美女高潮的动态| 最新中文字幕久久久久| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 免费在线观看日本一区| 舔av片在线| 老司机深夜福利视频在线观看| 嫩草影院入口| 日本成人三级电影网站| 国产精品嫩草影院av在线观看 | 少妇的逼好多水| 18+在线观看网站| 69人妻影院| 国产熟女欧美一区二区| 欧美色视频一区免费| 日韩人妻高清精品专区| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| 色吧在线观看| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 99热精品在线国产| a级毛片a级免费在线| 成人永久免费在线观看视频| av视频在线观看入口| 变态另类成人亚洲欧美熟女| 午夜福利视频1000在线观看| 我的老师免费观看完整版| 无人区码免费观看不卡| 无遮挡黄片免费观看| 欧美高清性xxxxhd video| 丰满乱子伦码专区| 欧美日韩综合久久久久久 | 两个人的视频大全免费| 老司机午夜福利在线观看视频| 亚洲av成人av| 看十八女毛片水多多多| x7x7x7水蜜桃| 免费不卡的大黄色大毛片视频在线观看 | 男女啪啪激烈高潮av片| 美女高潮的动态| 一a级毛片在线观看| 欧美色欧美亚洲另类二区| 亚洲成人精品中文字幕电影| 人妻久久中文字幕网| 亚洲综合色惰| 国产高清三级在线| 欧美精品国产亚洲| 午夜日韩欧美国产| 最近中文字幕高清免费大全6 | 少妇的逼好多水| 欧美日韩瑟瑟在线播放| 国产麻豆成人av免费视频| 一进一出好大好爽视频| 久久久久久久久久成人| 国产人妻一区二区三区在| 九九久久精品国产亚洲av麻豆| 韩国av一区二区三区四区| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 亚洲欧美日韩高清在线视频| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 亚洲欧美日韩高清在线视频| 久久亚洲真实| 波多野结衣高清无吗| 又黄又爽又刺激的免费视频.| 一区二区三区四区激情视频 | 国产视频一区二区在线看| 国产精品伦人一区二区| 亚洲av成人av| 波野结衣二区三区在线| 成人鲁丝片一二三区免费| 床上黄色一级片| 女同久久另类99精品国产91| 亚洲精品456在线播放app | 伊人久久精品亚洲午夜| 精品人妻熟女av久视频| 国产91精品成人一区二区三区| 日韩国内少妇激情av| 国产成人av教育| 亚洲av美国av| 中国美白少妇内射xxxbb| 久久久国产成人免费| 日韩精品有码人妻一区| av在线亚洲专区| 人妻少妇偷人精品九色| 色吧在线观看| 少妇高潮的动态图| 97超级碰碰碰精品色视频在线观看| 国产亚洲91精品色在线| 一级黄色大片毛片| 在线看三级毛片|