• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biharmonic Maps from Tori into a 2-Sphere?

    2018-10-17 10:03:48ZepingWANGYeLinOUHanchunYANG

    Zeping WANGYe-Lin OUHanchun YANG

    Abstract Biharmonic maps are generalizations of harmonic maps.A well-known result on harmonic maps between surfaces shows that there exists no harmonic map from a torus into a sphere(whatever the metrics chosen)in the homotopy class of maps of Brower degree±1.It would be interesting to know if there exists any biharmonic map in that homotopy class of maps.The authors obtain some classifications on biharmonic maps from a torus into a sphere,where the torus is provided with a flat or a class of non- flat metrics whilst the sphere is provided with the standard metric.The results in this paper show that there exists no proper biharmonic maps of degree±1 in a large family of maps from a torus into a sphere.

    Keywords Biharmonic maps,Biharmonic tori,Harmonic maps,Gauss maps,Maps into a sphere

    1 Introduction

    All objects including manifolds,tensor fields,and maps studied in this paper are supposed to be smooth.

    where ? is a compact domain of M.Analytically,a harmonic map is a solution of a system of 2nd order PDEs

    where τ(?)is called the tension field of the map ?.

    Biharmonic maps are generalizations of harmonic maps,which are maps ? :(M,g) ?→(N,h)between Riemannian manifolds that are critical points of the bienergy functional defined by

    where ? is a compact domain of M.Biharmonic map equation is a system of 4-th order nonlinear PDEs(see[24])

    where RNdenotes the curvature operator of(N,h)defined by

    As a harmonic map is always a biharmonic map,we call a biharmonic map that is not harmonic a proper biharmonic map.

    Since 2000,the study of biharmonic maps has been attracting growing interest of many mathematicians and it has become a popular topic of research with many interesting results.For some recent geometric study of general biharmonic maps,we refer the readers to[3,5,8,28,32,35–36,39,43,46,50]and the references therein.For some recent progress on biharmonic submanifolds(i.e.,submanifolds whose defining isometric immersions are biharmonic maps),see a recent survey[1,7,9,11–19,22–23,25–26,30–31,34,38,41,44–45,48,51]and the references therein.For biharmonic conformal immersions and submersions,see[4,29,37,40,42,49]and the references therein.

    For harmonic maps between surfaces,a very interesting result proved by Eells and Wood in[21]states that there exists no harmonic map from a torus T2into a sphere S2(whatever the metrics chosen)in the homotopy class of maps of Brower degree±1.It would be interesting to know if there exists any proper biharmonic map from a torus T2into a sphere S2(whatever the metrics chosen)in the homotopy class of maps of Brower degree±1.Motivated by this,we study biharmonic maps from a torus into a sphere in this paper.We are able to obtain some classifications of proper biharmonic maps in a large family of maps from T2into S2which include the Gauss map of the torus T2?→R3and the compositionsof some immersions of T2into S3followed by the Hopf fibration.Here,the torus is provided with a flat or a class of non- flat metrics whilst the sphere is provided with the standard metric(see Theorem 3.1 and Theorem 4.1).

    2 Constructions of Maps from a Torus into a 2-Sphere

    In order to study biharmonic maps from a torus T2into a sphere S2,we need to have a good source of maps from a torus into a sphere.In this section,we present three ways to construct maps from T2into S2.

    (1)Construction via Hopf fibration.For any mapwe have a map from torus into 2-sphere,whereis the Hopf fibration.Here,we view the Hopf fibration as the restriction of the Hopf construction of the standard multiplication of complex numbers,i.e.,with

    (2)Construction via radial projection.For any mapwe have a map from torus into 2-sphere,wherewithis the radial projection from R3{0}onto S2.

    (3)Construction via Gauss map of a torus.It is well known that ifis an immersion of a torus into R3,then the Gauss map gives a map from the torus into a 2-sphere defined bywith n(x)being the unit normal vector at the point x∈T2.

    Example 2.1Letwithbe a family of immersions studied by Lawson[27].Then,the compositiongives a family of maps from a torus into a 2-sphere defined by

    If we use geodesic polar coordinates(ρ,φ)on the 2-sphere,then this family of maps can be represented as

    with

    Example 2.2Let f:S1×S1?→R4be a family of immersions of flat tori into R4defined bywith constants A,B satisfyingPostcomposing this map with the radial projectionwe have a family of map F=withIf we denotethen=sins,then the family of the maps can be written aswithApplying construction via Hopf fibration,we have a map from T2into S2:

    with

    where(ρ,φ)are the geodesic polar coordinates on S2.

    Remark 2.1As it was observed in[6,Example 3.3.18]that exceptthe family of maps Fsare embeddings of tori into S3and all these maps are harmonic maps with constant energy density called eigenmaps.

    with

    Example 2.4Letbe the standard embedding X(r,θ)=(asinr,(b+acosr)cosθ,(b+acosr)sinθ)of a torus into R3.A straightforward computation gives the induced metric and the unit normal vector field of the torus to be

    and

    respectively.If we use the geodesic polar coordinates(ρ,φ)on the unit sphere so that a generic point(x,y,z) ∈ S2is represented as(x,y,z)=(sinρ,eiφcosρ),then,the Gauss map of the torus can be written as

    with

    Example 2.5Letbe the standard embedding X(r,θ)=(asinr,(b+acosr)cosθ,(b+acosr)sinθ)of a torus into R3.Using the construction via radial projectionwithwe have a family of maps from tori into a 2-sphere given by ? =P ?X:T2?→ S2with

    where

    Again,with respect to the geodesic polar coordinates(ρ,φ)on the unit sphere so that a generic point(x,y,z)∈ S2is represented as(x,y,z)=(cosρ,eiφsinρ),then,this family of maps from tori into S2can be written as

    with

    which are rotationally symmetric maps.

    The 6 families of maps given in Examples 1–6 lead us to study the biharmonicity of the following family of maps

    Clearly,the family of maps defined by(2.8)includes families of maps defined in(2.2)–(2.3),(2.5),and parts of the families given in(2.4)and(2.7).Our main results in this paper include a complete classifications of proper biharmonic maps in the family of maps defined by(2.8),where the torus is provided with a flat or a non- flat metric whilst the sphere is provided with the standard metric(see Theorem 3.1 and Theorem 4.1).

    3 Biharmonic Maps from a Flat Torus into a 2-Sphere

    Lemma 3.1(see[43])Letbe a map between Riemannian manifolds with ?(x1,···,xm)=(?1(x),···,?n(x))with respect to local coordinates(xi)in M and(yα)in N.Then,? is biharmonic if and only if it is a solution of the following system of PDE’s:

    where τ1,···,τnare components of the tension field of the map ?, ?, ? denote the gradient and the Laplace operators defined by the metric g,andare the components of the connection and the curvature of the target manifold.

    In order to prove our classification theorem,we need the following lemma.

    Lemma 3.2Letwith ?(r,θ)=(ar+bθ+c,mr+nθ+l).Then,? is biharmonic if and only if it solves the system

    ProofOne can easily compute the connection coefficients of the domain and the target surfaces to get

    and

    A further computation gives the components of the Riemannian curvature of the target surface as

    We compute the components of tension field of the map ? to have

    and

    Substituting(3.8)–(3.19)into(3.1),we conclude that ? is biharmonic if and only if it solves the system

    which is equivalent to the system(3.2).Thus,the lemma follows.

    Now we are ready to prove the following theorem that gives a classification of all biharmonic maps in a large family that includes most examples mentioned in Section 2.

    Theorem 3.1The mapfrom a flat torus into a 2-sphere with ?(r,θ)=(ar+bθ +c,mr+nθ +l)is biharmonic if and only if one of the following cases happens:

    (B)m=n=0.In this case,the map ?(r,θ)=(ar+bθ+c,l)is actually a harmonic map,or

    ProofApplying Lemma 3.2 with σ(r)=1, λ(ρ)=sinρ,we conclude that the mapfrom a flat torus into a 2-sphere with ?(r,θ)=(ar+bθ+c,mr+nθ+l)is biharmonic if and only if

    Substituting the last two equations into the first two equations of(3.21),we see that the biharmonicity of the map ? becomes

    Noting that 0< ρ=ar+bθ+c< π (and hence)sin,we conclude that Equation(3.22)is equivalent to

    We solve Equation(3.23)by considering the following cases.

    Case Icosρ =0.This means that cos(ar+bθ+c)=0 for any r,θ∈ R.This,together with 0< ρ =ar+bθ+c< π,implies that a=b=0,Noting that the components of the tension field of the map ? are given by the last two equations of(3.21),we conclude that the solutions?a=b=0,,m,n,l∈ R?given in this case are actually harmonic maps.From this we obtain the case(A).

    Case IIIn this case,the biharmonicity of the map ? is equivalent to

    If m=n=0,then,m=n=0,a,b,c,l∈R are solutions of(3.24)and we see from the last two equations of(3.21)that the maps given by these solutions are actually harmonic maps.This gives the case(B).

    Since the first equation of(3.26)means thatfor any r,θ∈ R,we conclude that a=b=0 and hence cos(2c)=0.Recalling that 2ρ=2c∈ (0,2π),we obtain solutionsIn these cases,It follows from the third equation of(3.21)that the first component of the tension fieldThus,the biharmonic mapsare proper biharmonic maps.From this we obtain the case(C).

    Summarizing the above results we obtain the theorem.

    As immediate consequences of Theorem 3.1,we have the following corollaries.

    Corollary 3.1Forthe mapwithis a proper biharmonic map.In particular,the compositions of the family of harmonic embeddingsfollowed by the Hopf fibration

    with

    are proper biharmonic maps if and only if

    Remark 3.1Note that Corollary 3.1 provides many new examples of proper biharmonic maps from a flat torus into a sphere,including special caseswithThese special cases,up to an isometry of the target sphere,are the same maps obtained in[39]by construction of orthogonal multiplication of complex numbers(see[39,Theorem 2.2]for details).These special cases of proper biharmonic map were also known as special solutions to the biharmonic equation for rotationally symmetric maps from a flat torus into a 2-sphere(see[33,50]).

    Corollary 3.2The map

    with

    is neither a harmonic map nor a biharmonic map.

    Corollary 3.3The Gauss map of the torus,X(r,θ)=(asinr,(b+acosr)cosθ,(b+acosr)sinθ),viewed as a mapfrom a flat torus into a sphere,is neither harmonic nor biharmonic.

    Corollary 3.4Letwithbe the family of immersions studied in[27].Then,the family of maps from a torus into a 2-sphere defined by the construction via Hopf fibration

    with

    contains no proper biharmonic map.

    4 Biharmonic Maps from a Non-Flat Torus into a 2-Sphere

    In this section,we will study biharmonic maps from a non- flat torus into a 2-sphere.The non- flat metric on the torus we consider is dr2+(k+cosr)2dθ2which is homothetic to the induced metric gT=a2dr2+(b+acosr)2dθ2(see Example 2.4 for details)from the standard embedding,X(r,θ)=(asinr,(b+acosr)cosθ,(b+acosr)sinθ).

    Theorem 4.1The map from a non- flat torus into a 2-sphere,(k>1)with ?(r,θ)=(ar+bθ+c,mr+nθ+l)is biharmonic if and only if it is harmonic.

    ProofLet(k>1)with ?(r,θ)=(ar+bθ+c,mr+nθ+l).Using Lemma 3.2 with σ(r)=k+cosr, λ(ρ)=cosρ,we see that ? is biharmonic if and only if it solves the system

    A straightforward computation using the last two equations of(4.1)yields

    Substituting(4.2)into the first equation of(4.1),we have

    We will solve Equation(4.3)by the following cases.

    Case I

    In this case,using the assumption thatand the fact that the functions 1,sin2ρ,cos2ρ and sin4ρ are linearly independent as functions of variable θ,we conclude from(4.3)that

    From the fourth and the first equation of(4.4),we have a=m=n=0.In this case,we use the last two equations in(4.1)to conclude that the components of the tension field x= τ1=0,y= τ2=0.This implies that the map ? is actually harmonic.

    Case IIb=0 and a=0.

    In this case,substituting a=b=0 and(4.2)into the second equation of(4.1),we obtain

    If c=0,then sinρ=0 and(4.5)reduces to m(k2?1)=0 which implies m=0 since k>1 by assumption.In this case,the last two equations in(4.1)imply that τ(?)=0 and hence ? is harmonic.

    Note that k>1 and the functions 1,cosr,cos2r are linearly independent,then Equation(4.7)implies that sin2ρ=0 and reduces to k2?1=0,a contradiction.

    If otherwise,i.e.,m=0,substituting a=b=m=0 and(4.2)into the first equation of(4.1),we have

    The above equation implies that n2sin2ρ =0,i.e.,n=0.It follows that x= τ1=0,y= τ2=0,meaning that the map ? is harmonic in this case.

    Case IIIb=0,We will show that Equation(4.3)has no solution in this case.

    Multiplying(k+cosr)4to both sides of Equation(4.3)and simplifying the resulting equation by using the product-to-sum formulas,we have

    or,equivalently

    where

    We observe that the 40 trigonometric functions appearing in the linear combination on the left hand side of Equation(4.9)are linearly independent for the values of a that produce no like terms among them.Note also that even in the case the values of a produce like terms,we can collect the like terms so that the resulting set of functions are linearly independent.

    Case AFor those values of a that do not turn any of sin(2ar),sin(2a±i)r,sin(4ar),sin(4a±i)r(i=1,2,3,4)into a like term of sinr,sin2r,sin3r,sin4r.In this case,we have all coefficients vanish,including d1=d4=0,which imply a=0,a contradiction.

    Case BFor those values of a that turn one of sin(2ar),sin(2a±i)r,sin(4ar),sin(4a±i)r(i=1,2,3,4)into a like term to one of sinr,sin2r,sin3r,sin4r.We can check that the only values of a that turn one of sin(2ar),sin(2a±i)r,sin(4ar),sin(4a±i)r(i=1,2,3,4)into a like term to one of sinr,sin2r,sin3r,sin4r are the following:

    It is not difficult to check that none of positive values of a given in(4.22)can produce like term of sin(4a+4)r and none of the negative values of a given in(4.22)can produce like term of sin(4a?4)r.It follows that for each value of a given in(4.22),we can,after a possible collecting of like terms in(4.9),use the linear independence of the resulting set of functions to conclude thatThis implies that m=0 for any values of a given in(4.22).Substituting m=0 into Equation(4.9),we have

    where

    We can check that the only values of a that turn sin(2ar)into a like term to one of sin(2a±i)r(i=1,2),sin(4ar),sinr,sin2r are

    Summarizing the results in Cases A and B we conclude that for the case b=0,a 6=0,the biharmonic map equations have no solution.

    Combining the results proved in Cases I–III,we obtain the theorem.

    From the proof of Theorem 4.1 we have seen the following corollary.

    Corollary 4.1Forthere exists no biharmonic map in the family of the maps from a non- flat torus into a 2-sphere,(k>1)with ?(r,θ)=(ar+bθ+c,mr+nθ+l).

    Corollary 4.2The composition of the family of immersions

    followed by the Hopf fiberation

    with

    is neither a harmonic map nor a biharmonic map.

    Corollary 4.3The composition of the mapwith

    given in[39]followed by the construction via Hopf fibration

    with

    is neither a harmonic map nor a biharmonic map.

    Corollary 4.4Letwith

    be the family of immersions studied in[27].Then,the family of maps from a torus into a 2-sphere defined by the construction via Hopf fibration

    with

    is neither a harmonic map nor a biharmonic map.

    Corollary 4.5Letbe an embedding with

    with b>a>0.Then,the Gauss map

    with ?(r,θ)=(r,θ)is neither harmonic nor biharmonic.

    欧美+日韩+精品| 99热网站在线观看| 久久热在线av| 亚洲欧美中文字幕日韩二区| 久久精品国产鲁丝片午夜精品| 亚洲,欧美精品.| 精品福利永久在线观看| 亚洲国产精品专区欧美| 啦啦啦中文免费视频观看日本| 9热在线视频观看99| 日本91视频免费播放| videosex国产| 哪个播放器可以免费观看大片| 大片电影免费在线观看免费| 国精品久久久久久国模美| 欧美日韩国产mv在线观看视频| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 999精品在线视频| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 韩国精品一区二区三区 | 日韩一本色道免费dvd| 蜜臀久久99精品久久宅男| 中文字幕人妻熟女乱码| 美女主播在线视频| 香蕉国产在线看| 精品国产乱码久久久久久小说| 精品国产一区二区久久| 亚洲美女黄色视频免费看| 最黄视频免费看| av福利片在线| 视频区图区小说| 日韩三级伦理在线观看| 欧美少妇被猛烈插入视频| 黑人欧美特级aaaaaa片| 天堂8中文在线网| 91在线精品国自产拍蜜月| 日本爱情动作片www.在线观看| 青春草亚洲视频在线观看| www.熟女人妻精品国产 | 日韩成人伦理影院| 人人妻人人澡人人爽人人夜夜| 大香蕉久久网| 亚洲人成77777在线视频| 亚洲一区二区三区欧美精品| 一本—道久久a久久精品蜜桃钙片| 黄色怎么调成土黄色| 18禁在线无遮挡免费观看视频| 久久精品久久久久久久性| 一区二区日韩欧美中文字幕 | 成人国产麻豆网| 成人漫画全彩无遮挡| 嫩草影院入口| 国产精品一二三区在线看| 亚洲国产成人一精品久久久| 久久久精品免费免费高清| 99视频精品全部免费 在线| 亚洲美女黄色视频免费看| 一级毛片电影观看| 国语对白做爰xxxⅹ性视频网站| 在线免费观看不下载黄p国产| 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看 | 最近中文字幕高清免费大全6| 美国免费a级毛片| 黄网站色视频无遮挡免费观看| 高清在线视频一区二区三区| 久久久欧美国产精品| 久久国产精品大桥未久av| 亚洲精品自拍成人| 亚洲伊人久久精品综合| 久久久久久人妻| 日本欧美视频一区| 老司机影院毛片| 久久99蜜桃精品久久| 午夜激情久久久久久久| 精品第一国产精品| 9191精品国产免费久久| 成年人午夜在线观看视频| 青春草国产在线视频| 亚洲精品中文字幕在线视频| 久久精品国产鲁丝片午夜精品| h视频一区二区三区| 高清视频免费观看一区二区| 少妇高潮的动态图| 最近最新中文字幕大全免费视频 | 在线观看三级黄色| 国产成人av激情在线播放| 久久久久精品性色| 国产不卡av网站在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美性感艳星| 午夜精品国产一区二区电影| 免费高清在线观看日韩| 少妇的丰满在线观看| 99久国产av精品国产电影| 国产又爽黄色视频| 亚洲精品乱码久久久久久按摩| 成人漫画全彩无遮挡| 欧美亚洲日本最大视频资源| 亚洲成色77777| 国产成人免费观看mmmm| 午夜老司机福利剧场| 欧美精品高潮呻吟av久久| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 国产精品三级大全| 一区二区三区乱码不卡18| 成人二区视频| videosex国产| 黑人高潮一二区| 国产精品一区www在线观看| 80岁老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 91精品国产国语对白视频| 十八禁高潮呻吟视频| 国产av精品麻豆| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| kizo精华| 99热国产这里只有精品6| videossex国产| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| 精品一区在线观看国产| 黄色 视频免费看| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| 国产色婷婷99| 国产精品偷伦视频观看了| 一区二区三区四区激情视频| 精品亚洲成国产av| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 天天躁夜夜躁狠狠躁躁| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 国产精品蜜桃在线观看| 欧美日韩一区二区视频在线观看视频在线| 男女高潮啪啪啪动态图| 中文字幕制服av| 大陆偷拍与自拍| 久久人人爽人人爽人人片va| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧洲精品一区二区精品久久久 | 两个人免费观看高清视频| 久久99蜜桃精品久久| 嫩草影院入口| 日韩一区二区视频免费看| 91国产中文字幕| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| 一级爰片在线观看| 这个男人来自地球电影免费观看 | 免费av中文字幕在线| 国产亚洲一区二区精品| 老司机影院毛片| 国产精品免费大片| 啦啦啦啦在线视频资源| videosex国产| 97在线视频观看| 超碰97精品在线观看| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 欧美成人精品欧美一级黄| 99国产综合亚洲精品| 欧美另类一区| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线| 国产日韩一区二区三区精品不卡| 亚洲国产精品国产精品| 久久久亚洲精品成人影院| 黄色怎么调成土黄色| 丁香六月天网| 久久99蜜桃精品久久| 丰满少妇做爰视频| 国产不卡av网站在线观看| 人人妻人人澡人人看| 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 精品久久国产蜜桃| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 国产综合精华液| 国产乱人偷精品视频| 母亲3免费完整高清在线观看 | 一本大道久久a久久精品| 国产不卡av网站在线观看| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 色网站视频免费| 日韩三级伦理在线观看| 国产精品久久久久久久久免| 寂寞人妻少妇视频99o| 成人18禁高潮啪啪吃奶动态图| 国产在线一区二区三区精| 国产女主播在线喷水免费视频网站| 观看美女的网站| 少妇精品久久久久久久| 如日韩欧美国产精品一区二区三区| 最后的刺客免费高清国语| 亚洲精华国产精华液的使用体验| av片东京热男人的天堂| 97精品久久久久久久久久精品| 岛国毛片在线播放| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 天天操日日干夜夜撸| 免费观看性生交大片5| 国产又爽黄色视频| 久久久久精品久久久久真实原创| 日韩 亚洲 欧美在线| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 亚洲精品美女久久av网站| 精品午夜福利在线看| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 在线观看免费高清a一片| 两个人免费观看高清视频| 国产精品秋霞免费鲁丝片| 亚洲人与动物交配视频| 色网站视频免费| 久久热在线av| 亚洲国产看品久久| 人人妻人人澡人人看| 少妇人妻精品综合一区二区| 免费高清在线观看日韩| 人人澡人人妻人| 又黄又爽又刺激的免费视频.| 国产一区二区三区av在线| www日本在线高清视频| 十八禁网站网址无遮挡| 色哟哟·www| 老熟女久久久| 午夜av观看不卡| 国产精品久久久久久精品电影小说| 伦理电影大哥的女人| 黑人猛操日本美女一级片| 亚洲av在线观看美女高潮| 亚洲精品视频女| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 亚洲综合色网址| 中文字幕免费在线视频6| 久久免费观看电影| 亚洲精品国产av成人精品| 精品人妻熟女毛片av久久网站| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 日韩中字成人| 少妇熟女欧美另类| 亚洲欧美一区二区三区黑人 | 久久人人97超碰香蕉20202| 亚洲av国产av综合av卡| 久久久久网色| 人体艺术视频欧美日本| 久久99热这里只频精品6学生| 秋霞伦理黄片| 亚洲精品乱久久久久久| 亚洲图色成人| 两性夫妻黄色片 | 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 高清av免费在线| av黄色大香蕉| 免费在线观看黄色视频的| 少妇熟女欧美另类| 国产女主播在线喷水免费视频网站| 亚洲婷婷狠狠爱综合网| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 久久久a久久爽久久v久久| 最黄视频免费看| 韩国av在线不卡| 高清黄色对白视频在线免费看| 男男h啪啪无遮挡| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美| av在线观看视频网站免费| 美女国产高潮福利片在线看| 国产精品久久久久久久电影| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 老熟女久久久| 久久久久精品久久久久真实原创| 国产成人欧美| av在线观看视频网站免费| 久久久久精品性色| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 人妻一区二区av| 男女边吃奶边做爰视频| 欧美97在线视频| 女人精品久久久久毛片| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 香蕉国产在线看| 亚洲精品成人av观看孕妇| 制服丝袜香蕉在线| 一本久久精品| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 免费在线观看完整版高清| 多毛熟女@视频| 天天影视国产精品| 各种免费的搞黄视频| 亚洲伊人色综图| 日本色播在线视频| 99热6这里只有精品| 美女大奶头黄色视频| 一本大道久久a久久精品| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 99国产精品免费福利视频| 成人影院久久| 少妇的逼水好多| 国产国拍精品亚洲av在线观看| tube8黄色片| 桃花免费在线播放| 涩涩av久久男人的天堂| 亚洲av男天堂| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 日产精品乱码卡一卡2卡三| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 人妻少妇偷人精品九色| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 香蕉丝袜av| 好男人视频免费观看在线| 亚洲中文av在线| 看免费av毛片| 国产一区二区激情短视频 | 久热久热在线精品观看| 观看av在线不卡| 免费看av在线观看网站| 免费观看a级毛片全部| 亚洲成人一二三区av| 超色免费av| 少妇熟女欧美另类| 大香蕉久久成人网| 亚洲成人一二三区av| 久久99蜜桃精品久久| 久久99热6这里只有精品| 亚洲成色77777| 亚洲成人手机| 黑丝袜美女国产一区| 久久午夜福利片| 欧美最新免费一区二区三区| 日韩免费高清中文字幕av| 久久国产精品大桥未久av| 久久午夜福利片| 久久国产精品大桥未久av| 精品国产国语对白av| 波野结衣二区三区在线| 午夜91福利影院| 国产在线免费精品| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 99久久综合免费| 看十八女毛片水多多多| 人妻人人澡人人爽人人| 免费观看av网站的网址| 男人爽女人下面视频在线观看| 在线看a的网站| a级毛片黄视频| 母亲3免费完整高清在线观看 | 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 午夜福利视频在线观看免费| 国产国拍精品亚洲av在线观看| 久久婷婷青草| 激情五月婷婷亚洲| 久久久久久久久久成人| 日本av手机在线免费观看| 在线精品无人区一区二区三| 高清不卡的av网站| 久久精品人人爽人人爽视色| 春色校园在线视频观看| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 妹子高潮喷水视频| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 欧美97在线视频| 色哟哟·www| 国产精品国产av在线观看| 狂野欧美激情性xxxx在线观看| 亚洲国产精品999| 免费大片18禁| 欧美激情极品国产一区二区三区 | 欧美精品人与动牲交sv欧美| 韩国av在线不卡| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| 女人精品久久久久毛片| 亚洲丝袜综合中文字幕| 免费大片18禁| 看十八女毛片水多多多| 最后的刺客免费高清国语| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 毛片一级片免费看久久久久| 九九在线视频观看精品| 老司机影院成人| 成人亚洲精品一区在线观看| 久久青草综合色| 欧美激情极品国产一区二区三区 | 国产精品 国内视频| 日韩一区二区三区影片| 最黄视频免费看| 日日啪夜夜爽| 国产精品免费大片| 高清视频免费观看一区二区| 美女内射精品一级片tv| 亚洲欧美一区二区三区黑人 | 国产又色又爽无遮挡免| 久久久久久久精品精品| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 国产av一区二区精品久久| 国产精品女同一区二区软件| 成人免费观看视频高清| 欧美人与性动交α欧美软件 | 久久久久久久国产电影| 一本色道久久久久久精品综合| 亚洲丝袜综合中文字幕| 人人妻人人添人人爽欧美一区卜| 色网站视频免费| av女优亚洲男人天堂| 国产极品天堂在线| 三上悠亚av全集在线观看| 日日撸夜夜添| 赤兔流量卡办理| xxxhd国产人妻xxx| 色网站视频免费| 下体分泌物呈黄色| 亚洲天堂av无毛| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 人妻一区二区av| 国产成人a∨麻豆精品| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| 黑人欧美特级aaaaaa片| 国产高清三级在线| 亚洲国产欧美在线一区| 人妻一区二区av| 亚洲成人手机| 伊人亚洲综合成人网| 超碰97精品在线观看| 国产麻豆69| 日韩电影二区| 久久青草综合色| 国产有黄有色有爽视频| 51国产日韩欧美| 日韩中字成人| 夜夜爽夜夜爽视频| 视频中文字幕在线观看| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 日韩中字成人| 国产免费又黄又爽又色| 色视频在线一区二区三区| 99国产综合亚洲精品| 国产成人aa在线观看| 男人操女人黄网站| 涩涩av久久男人的天堂| 中文字幕最新亚洲高清| 久久久国产精品麻豆| 成年人午夜在线观看视频| 国产精品无大码| 亚洲av在线观看美女高潮| 日本猛色少妇xxxxx猛交久久| 捣出白浆h1v1| 老司机亚洲免费影院| 街头女战士在线观看网站| 高清在线视频一区二区三区| 91久久精品国产一区二区三区| av有码第一页| av女优亚洲男人天堂| 欧美日韩视频精品一区| 天天影视国产精品| 黄色怎么调成土黄色| 中文字幕另类日韩欧美亚洲嫩草| 麻豆乱淫一区二区| www.色视频.com| 日韩欧美一区视频在线观看| 免费观看无遮挡的男女| 精品福利永久在线观看| 18禁观看日本| 午夜久久久在线观看| 看免费成人av毛片| 亚洲国产色片| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 日本爱情动作片www.在线观看| av.在线天堂| 在线观看www视频免费| 亚洲av.av天堂| 日韩欧美一区视频在线观看| 午夜福利视频精品| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 高清av免费在线| 黄色配什么色好看| 国产老妇伦熟女老妇高清| 波多野结衣一区麻豆| 国产色爽女视频免费观看| 久久影院123| 成人亚洲欧美一区二区av| 久久久久国产精品人妻一区二区| 又大又黄又爽视频免费| 久久精品aⅴ一区二区三区四区 | 美国免费a级毛片| 一区二区三区精品91| 国产乱人偷精品视频| 欧美精品av麻豆av| 人体艺术视频欧美日本| 国产69精品久久久久777片| 一本色道久久久久久精品综合| 人人妻人人爽人人添夜夜欢视频| 春色校园在线视频观看| 亚洲熟女精品中文字幕| 免费人成在线观看视频色| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠久久av| 黑人巨大精品欧美一区二区蜜桃 | 国产精品.久久久| 亚洲欧美一区二区三区国产| 极品人妻少妇av视频| 日韩在线高清观看一区二区三区| 午夜福利影视在线免费观看| 日本av免费视频播放| 夜夜爽夜夜爽视频| 国产免费视频播放在线视频| 1024视频免费在线观看| 精品亚洲成a人片在线观看| 久久人人爽av亚洲精品天堂| 日本黄大片高清| 纯流量卡能插随身wifi吗| 国国产精品蜜臀av免费| 免费av不卡在线播放| 青春草国产在线视频| 久久久久视频综合| 不卡视频在线观看欧美| a 毛片基地| 亚洲国产av新网站| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 五月伊人婷婷丁香| 人妻 亚洲 视频| 咕卡用的链子| 一级爰片在线观看| 久久 成人 亚洲| 亚洲激情五月婷婷啪啪| videos熟女内射| 天堂8中文在线网| 日本黄大片高清| 成年av动漫网址| 制服人妻中文乱码| 天堂中文最新版在线下载| 国产欧美日韩一区二区三区在线| 黑人猛操日本美女一级片| 美女脱内裤让男人舔精品视频| 亚洲av综合色区一区| 亚洲内射少妇av| 久久久久久久久久人人人人人人| 热re99久久精品国产66热6| 高清av免费在线| 久久国产精品大桥未久av| 热re99久久精品国产66热6| 九色成人免费人妻av| 国产免费现黄频在线看| 性色av一级| 日本猛色少妇xxxxx猛交久久| 久久国产精品大桥未久av| 婷婷成人精品国产| 精品久久国产蜜桃| 熟女电影av网| 国产欧美日韩一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | av国产久精品久网站免费入址| 中文欧美无线码| 日韩精品免费视频一区二区三区 |