• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constrained LQ Problem with a Random Jump and Application to Portfolio Selection?

    2018-10-17 10:03:36YuchaoDONG

    Yuchao DONG

    Abstract This paper deals with a constrained stochastic linear-quadratic(LQ for short)optimal control problem where the control is constrained in a closed cone.The state process is governed by a controlled SDE with random coefficients.Moreover,there is a random jump of the state process.In mathematical finance,the random jump often represents the default of a counter party.Thanks to the It?o-Tanaka formula,optimal control and optimal value can be obtained by solutions of a system of backward stochastic differential equations(BSDEs for short).The solvability of the BSDEs is obtained by solving a recursive system of BSDEs driven by the Brownian motions.The author also applies the result to the mean variance portfolio selection problem in which the stock price can be affected by the default of a counterparty.

    Keywords Backward stochastic Riccati equation,Default time,Mean-variance problem

    1 Introduction

    Linear-quadratic problem is an important optimal control problem.The feature of such a problem is that the dynamic of the system is linear in the state and control variables and the cost functional is quadratic in both of them.It was first considered by Kalman[10](for the deterministic control of ordinary differential equations,i.e.,ODEs)and then extended to various situations,for example stochastic LQ problems.One important application of stochastic LQ optimal control theory is the continuous-time version of Markowitz’s mean-variance portfolio selection problem,which is one fundamental problem in the mathematical finance.

    It is well-known that one can give in explicit forms the optimal state feedback control and the optimal value via the celebrated Riccati equation.In the deterministic case or the stochastic case with deterministic coefficients,the Riccati equation is an ODE in the space of symmetric matrixes.When the coefficients are random,the Riccati equation becomes a backward stochastic differential equation.The theory of BSDEs was pioneered by Pardoux and Peng[16].It is closely related to the optimal control theory.See Yong and Zhou[19]on this subject.For Riccati equations,the solvability is a very hard problem.Under some standard assumptions of the coefficients,it is solved by Tang[17–18]by two different approaches.For more details on this subject,see[3,7,17–18]and the references therein.

    In this paper,we consider the stochastic LQ problems with a random jump.Note that similar problems have also been considered by[8,14–15].Our problem is different from theirs from two apsects.One is that our system only has at most one jump.In mathematical finance,this random jump represents the default,so sometimes we just call it the default time.In a financial market,we know that the default of one firm has usually important influences on the others.This has been shown clearly in the financial crisis.While the controlled processes considered in those papers mentioned above are driven by a Poisson random measure,their systems can have even infinitely many jumps.The other difference is that the control in our problem is constrained in a closed cone.In the mean-variance problem,this means that there are some restrictions on the trading strategy of the investor.In this paper,we shall consider the mean-variance portfolio selection problem for an investor who invests in a risky asset exposed to a counterparty risk.The investor is also not allowed to short sell.Thus we have to solve a constraint LQ problem with a random jump.We only consider the problem for the case that the state variable is scalar-valued.How to solve it in the multi-dimensional case is still a problem,but the scalar-valued case is sufficient to cover many important practical applications especially in the financial area.

    To get the optimal control and the optimal value,we must first get the Riccati equation.Note that,due to the constraint,the value function is no longer quadratic with respect to the initial value.But one can easily show that the value function V is positive homogeneous since the control is constrained in a closed cone.That is

    where P and N satisfy the following BSDEs:

    Thus we are still able to get a system of BSDEs,sometimes called extended Riccati equation,that characterizes the optimal control and the optimal value.We can see that the BSDEs are coupled and have a random jump.Note that multi-dimensional backward Riccati equations have also been considered by K.Mitsui and Y.Tabata[15].But their equations are multidimensional because the state processes in[15]are multi-dimensional.To solve such equations,we use the method originated by Ankirchner et al[1]and further developed by Kharroubi and Lim[11].Through the decomposition of processes with respect to the progressive enlargement of filtrations,we link the BSDEs we want to solve with a family of Brownian BSDEs.By proving the solvability of the Brownian BSDEs,we are able to solve the original BSDEs.If there is no jump,the equations will be decoupled and this is the exact equation considered by Hu and Zhou[7].

    The rest of the paper is organized as follows.In Section 2,we formulate the problem.In Section 3,we derive the form of the extend Riccati equations and prove its solvability in two cases.In Section 4,we give the state feedback optimal control and the optimal value via the Riccati equations.The application to mean-variance problem is in Section 5.

    2 The Model and Assumptions

    In this paper,we assume throughout that(?,F,P)is a given probability space and that Wtis a k-dimensional standard Brownian motion defined on this space with W0=0.Let{Ft}be the augmentation of σ{Ws|0 ≤ s ≤ t}.In addition,let τ be a random time.Define

    which is the smallest filtration containing{Ft}that makes τ a stopping time and satisfies the usual condition.

    In the sequel,we shall make the following assumptions on the random time τ.For any t∈ [0,T],the conditional distribution of τ under Ftadmits a density with respect to Lebsegue measure,i.e.,there exists an-measurable positive function(ω,θ)→ αt(θ)such that

    Note that for any θ≥ 0,the process{αt(θ),0 ≤ t≤ T}is a F-martingale.Moreover we assume that the family of densities satisfy αT(t)= αt(t)for all 0 ≤ t≤ T.

    Remark 2.1In the finance,the random time τ usually represents the default of a counterparty.The density hypothesis is usually used in the theory of enlargement of filtrations.It was introduced in the notes of Jeulin and Yor[9]and recently adopted by El Karoui et al[4]for credit risk modelling.Note that we haveThis is related to the so-called immersion hypothesis meaning that any square integrable F-martingale is a square integrable G-martingale.

    Let Lt=1{τ≤t}.Then L is a{Gt}-submartingale.We shall have the following assumption.

    Assumption 2.1There exists an F-predicable bounded nonnegative process λ such that

    is a martingale with respect to{Gt}.

    Example 2.1Let β be a bounded nonnegative{Ft}-predictable process such that

    and Θ an exponential distributed random variable that is independent of the Brownian motion W.Define the random time

    Remark 2.2Let φ be a{Gt}-predictable process.Then it can be represented as

    where φ0is F-predictable and φ1is P(F)? B(R)-measurable.

    Consider the following controlled linear SDE:

    The coeifficients A,B,C,D,E,F are{Gt}-predictable processes,and x∈R is a nonrandom scalar.Precise assumptions on these coefficients will be specified below.Let Γ?Rmbe a given closed cone.A typical example of such a cone isThe class of admissible controls is the set U:=L2([0,T]×?,P(G),Γ),i.e.,the square integrable Γ-valued{Gt}-predictable processes.The cost is given by

    The optimal control problem is to minimize the cost functional over all admissible controls.Define the value function by

    We have the following assumptions on the coefficients.

    Assumption 2.2

    By Remark 2.2,we shall have the following decompositions of the processes:

    where i0is F-predictable and i1is P(F)?B(R)-measurable for i=A,B,C,D,E,F,R,Q.And

    where G0is FT-measurable and G1is FT?B(R)-measurable.

    3 Existence of Solutions for the Stochastic Riccati Equations

    3.1 The form of the Riccati equations

    In this section,we shall prove the existence of solutions for the extended stochastic Riccati equations.First of all,we shall derive the formation of the Riccati equations.Note that the admissible controls are Γ-valued and Γ is a closed cone.It means that for any u ∈ U and c ≥ 0,cu also belongs to U.Since the controlled SDE is linear and the cost functional is quadratic,it is obvious that the value function V is positive homogeneous,i.e.,V(t,cx)=c2V(t,x)for all c≥0.Hence V is of the following form:

    Assume that both P and N are semimartingales with the following decompositions:

    Given any u ∈ U,X is the associated solution of(2.4).By the It?o-Tanaka formula,we have

    Note that X only has a jump at the time τ,i.e.,

    Hence we get that

    By(3.2)and It?o formula again,

    where msis the local martingale part

    Similarly,we also have

    Combining(3.4)and(3.5)and letting s=T,

    We denote that

    and

    Since V is the value function,the integrand should always be positive.For some admissible control u,if the integrand is zero and the local martingale part is in fact a martingale,then taking conditional expectation,we have that it will be the optimal control.Hence we must have that

    Noting that Γ is a close cone,we have,thus ftshould satisfy

    With a similar discussion,we see that P and N should be the solutions of the following system of BSDEs:

    where

    and

    3.2 The solvability of the equations

    We have the following definitions on the solutions of the equations.

    Definition 3.1We say that a pair of stochastic processes([0,T]×?,P(G))×L2([0,T]×?,P(G))×L2([0,T]×?,P(G))is a solution to BSDE(3.7)if it satisfies the equation in the It?o sense as well as the terminal condition and the constraint that R+PD′D>0.A solutionis called positive(resp.nonnegative)if P>0(resp.P≥0)and called uniformly positive if P≥c>0.These definitions extent in the obvious way to the solutions of the BSDEs defined in the rest part of the paper.

    Before we solve the equation,let us emphasize some properties of h±.First,it is obvious that

    Assume that p,q2+p,q3≥0,we see that

    Moreover,if|p|,|q1|,|q2|,|q3|≤n,by(3.10),the infimum will be obtained in a bounded subset of Γ,hence is in fact a minimum and h±are continuous with respect to(p,q1,q2,q3)in this situation.

    Note that we get a multidimensional BSDE with quadratic growth in z.In general,there may be no solution for the system.See Hu and Tang[5]for an existence result and more details on this subject.To solve the equation,we use the approach originated by Ankirchner et al[1]and further developed by Kharroubi and Lim[11]:One can explicitly construct a solution by combining solutions of an associated family of Brownian BSDEs.Fortunately,we shall see that we can solve these equations separately.To illustrate the idea,we give a simple example taken from[11].Consider the following BSDE:(

    To solve it,we first solve a recursive system of Brownian BSDEs:

    Define the process(Y,U)by

    By It?o formula,we have

    It is also easy to see that YTalso satisfies the terminal condition.Thus(Y,U)we define is a solution to(3.11).

    Note that such a method is still valid in more complicate situations(see[11]and Theorem 3.1 below).We first decompose the BSDEs into two parts:The before default part and the after default part.Thus we have the following BSDEs:

    where

    And

    where

    Moreover

    where

    And

    where

    Note that we have

    and

    We use the following theorem from[11].

    Theorem 3.1Assume that for all θ∈ R+,the Brownian BSDEs(3.12)–(3.13)admit solutionsand that the Brownian BSDEs(3.14)–(3.15)have solutionsAssume moreover that P1(θ)and N1(θ)(resp.Z1(θ)and Λ1(θ))are F?B(R+)(resp.P(F)?B(R+))-measurable.If all these solutions satisfy

    and

    then BSDEs(3.7)–(3.8)admit solutions(P,Z,Z),(N,Λ,Λ)∈ L∞([0,T]×?,P(G))×L2([0,T]×?,P(G))×L2([0,T]×?,P(G))given by

    For the proof of this theorem,the reader can see[11,Theorem 3.1].

    Remark 3.1Below,we shall prove the existence of the solutions for any given θ.Then we can choose P1and N1(resp.Z1and Λ1)as F ? B(R+)(resp.P(F)? B(R+))-measurable processes.Indeed we know(see[12])that one can construct(P1,Z1)and(N1,Λ1)as limits of solutions to Lipschitz BSDEs.From[11,Proposition C.1],we get P1and N1(resp.Z1and Λ1)as limits of F?B(R+)(resp.P(F)?B(R+))-measurable processes,hence also measurable.

    We shall deal with the following two cases:

    Standard case.Q ≥0,R>0 with R?1∈L∞([0,T]×?,P(G),Rm×m)and G≥ 0.

    Singular case.Q ≥ 0,R≥ 0,G>0 with G?1∈L∞([0,T]×?,P(G),R)and D′D>0 with(D′D)?1∈ L∞([0,T]×?,P(G),Rm×m).

    For the BSDE(3.12)(resp.(3.13)),we have the following theorem.

    Theorem 3.2Under Assumption 2.2,given any θ,for the standard case,there exists a unique bounded,nonnegative maximal solution(P1(θ),Z1(θ))(resp.(N1(θ),Λ1(θ)))for(3.12)(resp.(3.13)).For the singular case,there exists a bounded,uniformly positive solution.Moreover,we have

    ProofFor the proof of existence of solutions for the extended backward Riccati equations,we refer to[7,Theorems 4.1–4.2].Now we prove(3.16).

    For the standard case,we know that(see[7]),there exists a constant c1which only depends on the bound of the coefficents A,B,C,D,R,G,such that

    Thus the norm is uniformly bounded in θ.By(3.10),one can find two constants C1,C2>0 such that

    By the boundness and non-negativity of P and the inequality(3.17),taking expectation,we get that

    with the constant c2independent of θ.Hence we finish the proof for the standard case.

    For the singular case,there will be a constant c3>0 independent of θ such that

    In this case,we have

    Following the same argument as above,we prove the theorem.

    Now we show the existence of the solution to(3.14)and(3.15).We only proof it for(3.14),since the proof is same for(3.15).

    Theorem 3.3Under Assumptions 2.1 and 2.2,for the standard case there exists a bounded,nonnegative solution(P0,Z0)to the BSDE(3.14).And it will be uniformly positive in the singular case.

    ProofFor the standard case,let us first consider the following BSDE:

    This is a linear BSDE with bounded coefficients and withand G0≥0.Hence there exists a unique nonnegative,bounded solution(P′,Z′).Denote by c1>0 the upper bound for P′.Now consider the following BSDE:

    where the function F is defined by

    whereas g1:R+→[0,1]is a smooth truncation function satisfying g1(x)=1 for x∈[0,c1],and g1(x)=0 for x∈[2c1,+∞).Note that F satisfies the hypothesis(H1)of[12]thanks to the role of the truncation function g1.According to[12],there is a bounded maximal solution(P,Z)to BSDE(3.19)(see[12,p.565]and Theorem 2.3 for its definition and proof).Now asand(P′,Z′)is the only,hence maximal,bounded solution to(3.18),we get that P≤P′≤c1.Moreover,noting that G≥0,Q≥0 andwe conclude that P≥0 since(0,0)is a solution to(3.19)with Q0=0,G0=0 and F(t,p,q)replaced byThis proves that(P,Z)is a bounded nonnegative solution to(3.14).

    For the singular case,we consider the following BSDE:

    where

    This is the BSDE studied in[6,13].By[6,Lemma 4.1],there exists a unique bounded,uniformly positive solutionDenote by c2the lower bound foreP.Now,let us consider the following BSDE:

    This means that(P,Z)is actually a bounded,uniformly positive solution to the BSDE(3.14).

    Combining Theorems 3.1–3.3,we show that there exist bounded solutions for the system of BSDE(3.7)(resp.(3.8)).

    Theorem 3.4Under Assumptions 2.1 and 2.2,either in the standard case or the singular case,there exists a bounded,nonnegative solution(resp.for the BSDE(3.7)(resp.(3.8)).The solution will be uniformly positive in the singular case. Furthermore,we have that

    and

    4 Solve the Constrained LQ Problem

    In this section we give the optimal control for the LQ problem by the solutions to the system of BSDEs for both standard and singular case.Define

    Note that the minimizers are achievable due to the discussion in the above section and Γ is closed.By the definition,ξ+and ξ?also have the following decompositions:

    Theorem 4.1In both the standard and singular cases,let?,P(G))×L2([0,T]×?,P(G))×L∞([0,T]×?,P(G))be the bounded,nonnegative solutions to BSDEs(3.7)and(3.8)(uniformly positive in singular case).Then the following state feedback control

    is the optimal control for the LQ problem.Moreover,the value function is

    ProofNow consider the state feedback control:

    By the lemma that follows,this equation has a c`adl`ag(left limit right continuous)solution.Let(u,X)be any admissible control and the corresponding state process and(u?,X?)the state feedback control(4.1)and the state process.Following the discussion in Section 3,we see that the Lebesgue integrands in(3.6)are always positive.Define the following stopping time κn:

    Obviously,κnis an increasing sequence of stopping time and converging to T almost surely.Hence taking integration from t to κnand then taking conditional expectation in(3.6),we have

    Letting n→∞and noting that the processes P and N are quasi-left continuous,from the dominated convergence theorem,we have

    We are now going to prove that u?∈ L2([0,T]×?,P(G)).Once we prove this,the analysis above shows that

    because the Lebesgue integrand in(3.6)is identically zero.

    In the standard case,denote by c the constant such that R≥cIn.Then we have

    This implies that u?∈ L2([0,T]× ?,P(G)).For the singular case,construct a sequence of stopping time as follows

    We rewrite the equation(4.2)as a kind of BSDE with a random terminal time:

    Denote by

    Then as in the standard estimation for the BSDE,we have

    Appealing to Fatou’s lemma,we conclude that X?,z ∈ L2([0,T]× ?,P(G)).This in turn implies that u?∈ L2([0,T]×?,P(G)).

    Lemma 4.1The equation(4.2)has a c`adl`ag solution.

    ProofBefore the proof,let us illustrate the meaning of such a SDE.First,the dynamic of X is governed by a Brownian SDE.Then at the random τ= θ,a jump of X is induced.The size of the jump is related to X and θ the time that the jump happens.After the jump,X still evolves according to a Brownian SDE,but the coefficients of the SDE may be changed based on the jump time.So we can solve the SDE by decomposing it into two parts:The before default part and the after default part.We shall rewrite the SDE(4.2)into the following form:

    where the coefficients are

    with some F-predictable processand P(F)×B(R+)-measurable processThis is also true for the other coefficients.We shall use similar notations for the decompositions.

    Now consider the following SDEs:

    and

    Each SDE has a unique continuous F-adapted solution(see[7,Lemma 5.1]).Then it is obvious that the processis a solution to(4.3),hence a solution to(4.2).

    5 Application to Portfolio Selection

    For simplicity,we consider a financial market consisting of a bank account and one stock.We suppose that the Brownian motion W is one dimensional and F is the filtration generated by it and satisfying the usual condition.The value of the bank count,S0(t),satisfies an ordinary differential equation:

    where rtis deterministic.The dynamic of the risky asset is affected by other firms,the counterparties,which may default at some random time denoted by τ.When the default happens,it may induce a jump in the asset price and change the dynamic of the stock.But this asset still exists and can be traded after the default of the counterparties.More precisely,let the process Ltand the filtration G be what we defined in Section 2.Before the default,the stock price is governed by the following SDE:

    where the coefficients are F-measurable.We denote bythe price of the stock after the default if the default time is at time θ.At the default time τ,the price has a jump

    After the default,there is a change of regime in the coefficients depending on the default.For example,if a downward jump on the stock price is induced at default time τ= θ,the rate of the return b1(θ)should be smaller than the rate of return b0before the default,and this gap should be increasing when the default occurs early.The stock price is still governed by an SDE for default time τ= θ:

    Denoting by b and σ the G-predictable processesandwe rewrite the price process S as

    Consider now an invest strategy that can trade continuously in this market.This is mathematically quantified by a G-predictable process π called self- financed trading strategy.It represents the money invested in the stock at time t.By Remark 2.2,we know that it has the formThen the wealth process X is given by

    where X0is the wealth process in the default-free market,governed by

    and X1(θ)is the wealth process after the default at time τ= θ,governed by

    Thus we can rewrite the wealth process as follows:

    We assume that the coefficients satisfies Assumption 2.2 and the admissible control is the set of all square-integrable Γ-valued G-predictable processes with Γ =R+.Note that we only allow Γ-valued processes,which means that the investor cannot short sell the stock.

    Mathematically,it can be formulated as the following problem parameterized by z:

    ProofWe first prove the “if” part.Define

    Condition(5.2)implies that the measure of M is non-zero.Consider the following control:

    Taking expectation,we have

    To handle the constraint E[XT]=z,we apply Lagrange multiplier technique.Define

    We first solve the following unconstrainted problem:

    where P and N is the solutions of the following BSDEs:

    Thus we get a contradiction which implies that

    Thus

    This implies that

    AcknowledgementsThe author would like to thank his advisor,Prof.Shanjian Tang from Fudan University,for the helpful comments and discussions.The author would also thank the referees of this paper for helpful comments.

    在线亚洲精品国产二区图片欧美 | 国产中年淑女户外野战色| 亚洲av.av天堂| 精品熟女少妇av免费看| 日韩,欧美,国产一区二区三区| 国产深夜福利视频在线观看| 特大巨黑吊av在线直播| 麻豆乱淫一区二区| 国产片特级美女逼逼视频| 五月天丁香电影| 少妇猛男粗大的猛烈进出视频| 视频中文字幕在线观看| 美女xxoo啪啪120秒动态图| 欧美另类一区| 亚洲国产欧美在线一区| 国产精品一及| 国产伦精品一区二区三区视频9| 亚洲欧洲国产日韩| av在线观看视频网站免费| 久久久午夜欧美精品| 免费观看在线日韩| 你懂的网址亚洲精品在线观看| 国产精品.久久久| 国产精品一区二区三区四区免费观看| 国产精品人妻久久久久久| 黄色欧美视频在线观看| 欧美97在线视频| 国产日韩欧美亚洲二区| 国产乱来视频区| 人妻系列 视频| 国产精品99久久99久久久不卡 | 在线观看一区二区三区| 亚洲欧美成人精品一区二区| 联通29元200g的流量卡| 在线免费观看不下载黄p国产| 国产视频首页在线观看| 永久免费av网站大全| 91久久精品电影网| 大又大粗又爽又黄少妇毛片口| 亚洲av不卡在线观看| 国产成人aa在线观看| 少妇猛男粗大的猛烈进出视频| 大码成人一级视频| 免费播放大片免费观看视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 看十八女毛片水多多多| 大陆偷拍与自拍| av免费在线看不卡| 内射极品少妇av片p| 一边亲一边摸免费视频| 嫩草影院入口| 久久人人爽人人爽人人片va| 3wmmmm亚洲av在线观看| 亚洲激情五月婷婷啪啪| 欧美激情极品国产一区二区三区 | 午夜福利视频精品| 高清av免费在线| 美女国产视频在线观看| videossex国产| 欧美成人午夜免费资源| 亚洲精品日韩av片在线观看| 日韩国内少妇激情av| 亚洲精品国产色婷婷电影| 久久影院123| 午夜激情福利司机影院| 久久av网站| 久久久午夜欧美精品| 黑人猛操日本美女一级片| 久久久久网色| 久久久欧美国产精品| 男的添女的下面高潮视频| 777米奇影视久久| 久久久色成人| 另类亚洲欧美激情| 成人黄色视频免费在线看| 欧美性感艳星| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 黑人高潮一二区| 99久久精品国产国产毛片| 在线观看一区二区三区激情| 22中文网久久字幕| 久久久久人妻精品一区果冻| 女的被弄到高潮叫床怎么办| 色网站视频免费| 色婷婷av一区二区三区视频| 在现免费观看毛片| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 国产黄片视频在线免费观看| 精品人妻一区二区三区麻豆| 国产精品一区二区性色av| 亚洲av福利一区| 日韩亚洲欧美综合| 熟妇人妻不卡中文字幕| 国产精品久久久久久久久免| 免费观看的影片在线观看| 嫩草影院新地址| 欧美zozozo另类| 国产综合精华液| 久久久国产一区二区| 国产精品福利在线免费观看| 亚洲天堂av无毛| 中文欧美无线码| 国产 一区精品| 少妇人妻 视频| 亚洲精品亚洲一区二区| 欧美日韩国产mv在线观看视频 | 欧美激情国产日韩精品一区| 免费黄频网站在线观看国产| 国产在线男女| 97超碰精品成人国产| 女人久久www免费人成看片| 黑丝袜美女国产一区| 欧美精品人与动牲交sv欧美| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 在线观看人妻少妇| 18+在线观看网站| 简卡轻食公司| 日韩制服骚丝袜av| 汤姆久久久久久久影院中文字幕| 最黄视频免费看| 久久青草综合色| 狂野欧美白嫩少妇大欣赏| 国产深夜福利视频在线观看| 精品国产一区二区三区久久久樱花 | 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 丰满迷人的少妇在线观看| 99热6这里只有精品| av专区在线播放| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 26uuu在线亚洲综合色| 国产黄色免费在线视频| 免费人成在线观看视频色| 欧美高清性xxxxhd video| 中文在线观看免费www的网站| 色网站视频免费| 午夜福利在线观看免费完整高清在| 亚洲成色77777| 99国产精品免费福利视频| 在线 av 中文字幕| 99久国产av精品国产电影| 性色avwww在线观看| av免费在线看不卡| 国产一区二区在线观看日韩| 国产午夜精品久久久久久一区二区三区| 国产精品成人在线| 日韩人妻高清精品专区| 亚洲精品一二三| 不卡视频在线观看欧美| 成年美女黄网站色视频大全免费 | 麻豆成人午夜福利视频| 国精品久久久久久国模美| 丰满乱子伦码专区| 观看美女的网站| 国产欧美日韩一区二区三区在线 | kizo精华| 久久久久久伊人网av| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区国产| 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 嘟嘟电影网在线观看| 少妇人妻久久综合中文| 欧美日韩视频精品一区| 国产国拍精品亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 精品酒店卫生间| 久久久久久九九精品二区国产| 成人国产麻豆网| 一级毛片电影观看| 久久久久久久精品精品| 日韩免费高清中文字幕av| 直男gayav资源| 永久网站在线| 日本av手机在线免费观看| 久久久久久久国产电影| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 91精品一卡2卡3卡4卡| 精品久久久久久久久亚洲| 少妇裸体淫交视频免费看高清| 老熟女久久久| 蜜臀久久99精品久久宅男| 一二三四中文在线观看免费高清| 成人美女网站在线观看视频| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 最近的中文字幕免费完整| 亚洲精品乱码久久久v下载方式| 99热全是精品| 免费观看性生交大片5| 一区二区三区免费毛片| 成年av动漫网址| 亚洲中文av在线| 国产精品人妻久久久影院| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 九色成人免费人妻av| 美女视频免费永久观看网站| 永久网站在线| 亚洲高清免费不卡视频| 日韩在线高清观看一区二区三区| 777米奇影视久久| 如何舔出高潮| 永久网站在线| 美女内射精品一级片tv| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 一级av片app| 亚洲电影在线观看av| 欧美性感艳星| 国产成人精品一,二区| 久久国产乱子免费精品| 人人妻人人看人人澡| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 波野结衣二区三区在线| 日本wwww免费看| 春色校园在线视频观看| 国产成人a区在线观看| 久久国产精品大桥未久av | 国产爱豆传媒在线观看| 国产精品人妻久久久久久| 老女人水多毛片| www.av在线官网国产| 哪个播放器可以免费观看大片| 人人妻人人添人人爽欧美一区卜 | 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩卡通动漫| 80岁老熟妇乱子伦牲交| 最近最新中文字幕免费大全7| 三级国产精品片| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜 | 亚洲第一区二区三区不卡| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 亚洲国产色片| 成年女人在线观看亚洲视频| 亚洲久久久国产精品| 久久久久久九九精品二区国产| 黑人猛操日本美女一级片| 色视频www国产| 女性生殖器流出的白浆| 一本—道久久a久久精品蜜桃钙片| 欧美xxxx黑人xx丫x性爽| 干丝袜人妻中文字幕| 国产伦理片在线播放av一区| 免费观看在线日韩| 99久久精品热视频| 精品一区二区三区视频在线| 亚洲av二区三区四区| 国产精品一区二区在线不卡| 亚洲丝袜综合中文字幕| 日日撸夜夜添| 99久久人妻综合| 免费人妻精品一区二区三区视频| 麻豆成人午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 熟女av电影| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频 | 亚洲综合精品二区| 亚洲成色77777| 一级毛片久久久久久久久女| 另类亚洲欧美激情| 欧美另类一区| 99久久精品一区二区三区| 久久久久久久久大av| 一级黄片播放器| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 久久久欧美国产精品| xxx大片免费视频| 亚洲精品一区蜜桃| 日本wwww免费看| 国产精品伦人一区二区| 国产高潮美女av| 久久综合国产亚洲精品| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 中文欧美无线码| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 日本黄色日本黄色录像| 日韩不卡一区二区三区视频在线| 少妇裸体淫交视频免费看高清| 亚洲不卡免费看| 插逼视频在线观看| 国产精品免费大片| 久久久久性生活片| 国产精品一区二区在线观看99| 精品午夜福利在线看| 我要看黄色一级片免费的| av线在线观看网站| 在线观看一区二区三区激情| 在线观看av片永久免费下载| 国产精品免费大片| 超碰97精品在线观看| 国产精品一区二区三区四区免费观看| 国产精品一及| 久久久色成人| 日韩在线高清观看一区二区三区| 看非洲黑人一级黄片| 大香蕉97超碰在线| 人体艺术视频欧美日本| 亚洲婷婷狠狠爱综合网| 久久久久久久久久人人人人人人| 天天躁日日操中文字幕| 免费av不卡在线播放| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 激情 狠狠 欧美| 国产日韩欧美亚洲二区| av网站免费在线观看视频| 美女中出高潮动态图| 欧美xxxx性猛交bbbb| 成年人午夜在线观看视频| 国产亚洲av片在线观看秒播厂| 九九在线视频观看精品| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 欧美97在线视频| 一本—道久久a久久精品蜜桃钙片| 亚洲图色成人| 亚洲美女视频黄频| 又爽又黄a免费视频| 日韩伦理黄色片| 国产乱来视频区| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的 | 两个人的视频大全免费| 亚洲四区av| 亚洲成人av在线免费| 在线观看免费高清a一片| 国产伦理片在线播放av一区| 偷拍熟女少妇极品色| 日韩成人伦理影院| 99九九线精品视频在线观看视频| 少妇的逼水好多| 色哟哟·www| 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 18禁动态无遮挡网站| 亚洲精品日韩av片在线观看| 欧美极品一区二区三区四区| 久久久久精品久久久久真实原创| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 日韩不卡一区二区三区视频在线| 日日啪夜夜爽| 十分钟在线观看高清视频www | 中文在线观看免费www的网站| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 草草在线视频免费看| 国产久久久一区二区三区| 少妇被粗大猛烈的视频| 久久久久久人妻| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| 亚洲欧美日韩无卡精品| 国产精品久久久久久久久免| 亚洲av成人精品一二三区| 成年av动漫网址| 哪个播放器可以免费观看大片| 女性被躁到高潮视频| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 女人久久www免费人成看片| 精品一区二区免费观看| 能在线免费看毛片的网站| 大又大粗又爽又黄少妇毛片口| 国产 一区精品| 日韩欧美精品免费久久| 熟女av电影| 日韩伦理黄色片| 色婷婷久久久亚洲欧美| 亚洲色图av天堂| 久久久精品94久久精品| 久久精品国产a三级三级三级| 亚洲精品视频女| 91在线精品国自产拍蜜月| 丝袜喷水一区| 国产亚洲5aaaaa淫片| 免费观看无遮挡的男女| 一级毛片久久久久久久久女| 国产在线视频一区二区| 一二三四中文在线观看免费高清| 黑丝袜美女国产一区| 一区二区三区乱码不卡18| 亚洲成色77777| 少妇猛男粗大的猛烈进出视频| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 身体一侧抽搐| 麻豆乱淫一区二区| 日本色播在线视频| 亚洲不卡免费看| 亚洲国产精品专区欧美| 欧美一级a爱片免费观看看| 有码 亚洲区| 免费看不卡的av| 国产综合精华液| 黄色一级大片看看| 97热精品久久久久久| 亚洲第一区二区三区不卡| 久久久久精品性色| av播播在线观看一区| 特大巨黑吊av在线直播| 国产精品一及| 日韩欧美一区视频在线观看 | 啦啦啦中文免费视频观看日本| 大香蕉久久网| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 成人二区视频| 国产精品av视频在线免费观看| 观看免费一级毛片| 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| 久久人人爽人人爽人人片va| 中国美白少妇内射xxxbb| 91在线精品国自产拍蜜月| 久久女婷五月综合色啪小说| 大香蕉97超碰在线| 国产极品天堂在线| 美女视频免费永久观看网站| 日本vs欧美在线观看视频 | 能在线免费看毛片的网站| 亚洲av日韩在线播放| 亚洲精品第二区| 国产真实伦视频高清在线观看| 欧美极品一区二区三区四区| 亚州av有码| 小蜜桃在线观看免费完整版高清| 日本爱情动作片www.在线观看| av福利片在线观看| 亚洲国产色片| 国产精品无大码| 欧美高清性xxxxhd video| 18禁裸乳无遮挡动漫免费视频| 日韩欧美一区视频在线观看 | 国产一级毛片在线| 久久99热这里只有精品18| 亚洲av成人精品一二三区| 高清欧美精品videossex| 九草在线视频观看| 我要看日韩黄色一级片| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 中文字幕免费在线视频6| 国产黄频视频在线观看| 亚洲av不卡在线观看| av免费在线看不卡| 午夜免费男女啪啪视频观看| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲 | av播播在线观看一区| 高清欧美精品videossex| 国产精品.久久久| 菩萨蛮人人尽说江南好唐韦庄| 18禁动态无遮挡网站| 我的女老师完整版在线观看| 精品一品国产午夜福利视频| 国产综合精华液| 久久久久久久久久人人人人人人| 下体分泌物呈黄色| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 日韩免费高清中文字幕av| 日韩av在线免费看完整版不卡| 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看| 久热这里只有精品99| 免费观看性生交大片5| 你懂的网址亚洲精品在线观看| 国产亚洲精品久久久com| 日本-黄色视频高清免费观看| 日本免费在线观看一区| 亚洲精品国产成人久久av| 高清在线视频一区二区三区| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 夜夜看夜夜爽夜夜摸| 卡戴珊不雅视频在线播放| 亚洲中文av在线| 日韩亚洲欧美综合| 亚洲欧美日韩无卡精品| 国产高清三级在线| 丰满迷人的少妇在线观看| 国产高清不卡午夜福利| 久久精品夜色国产| 搡女人真爽免费视频火全软件| 免费人成在线观看视频色| 黄色怎么调成土黄色| 美女脱内裤让男人舔精品视频| 狂野欧美激情性bbbbbb| 欧美bdsm另类| 黄色欧美视频在线观看| 色视频在线一区二区三区| 精品国产露脸久久av麻豆| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 国产精品国产av在线观看| 少妇猛男粗大的猛烈进出视频| 久热久热在线精品观看| 欧美日韩精品成人综合77777| 亚洲精品国产av蜜桃| 99久久精品热视频| 国产高清三级在线| 日本猛色少妇xxxxx猛交久久| 成人一区二区视频在线观看| 国产精品欧美亚洲77777| 97超碰精品成人国产| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 能在线免费看毛片的网站| 制服丝袜香蕉在线| 国产黄色视频一区二区在线观看| 这个男人来自地球电影免费观看 | 五月开心婷婷网| 久久6这里有精品| 欧美激情极品国产一区二区三区 | 高清毛片免费看| www.色视频.com| 久久久久久久亚洲中文字幕| 十分钟在线观看高清视频www | 国产精品蜜桃在线观看| 国产一区二区在线观看日韩| 亚洲av在线观看美女高潮| 中国三级夫妇交换| 国产色婷婷99| 免费久久久久久久精品成人欧美视频 | 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 亚洲综合精品二区| 大话2 男鬼变身卡| 男人爽女人下面视频在线观看| 91久久精品电影网| 亚洲欧美日韩另类电影网站 | 一级毛片久久久久久久久女| 内射极品少妇av片p| 亚洲精品久久午夜乱码| 欧美+日韩+精品| 久久青草综合色| 看十八女毛片水多多多| 97热精品久久久久久| 一级毛片黄色毛片免费观看视频| 大香蕉97超碰在线| 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看| 中文欧美无线码| 熟妇人妻不卡中文字幕| 国产精品无大码| 少妇精品久久久久久久| 校园人妻丝袜中文字幕| 男的添女的下面高潮视频| 亚洲图色成人| 欧美一区二区亚洲| 在线看a的网站| 亚洲人成网站在线播| 国国产精品蜜臀av免费| 亚洲成色77777| 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频 | 日韩成人伦理影院| 久久青草综合色| 国产av精品麻豆| 久久久久精品性色| 亚洲精品视频女| 香蕉精品网在线| 一级毛片 在线播放| 日韩电影二区| 舔av片在线| 欧美激情极品国产一区二区三区 | 精品亚洲乱码少妇综合久久| 欧美性感艳星| 两个人的视频大全免费| 精品亚洲乱码少妇综合久久| 日韩成人av中文字幕在线观看| 男的添女的下面高潮视频| 尤物成人国产欧美一区二区三区| 免费大片18禁| 国内少妇人妻偷人精品xxx网站| av在线app专区| 国产黄片视频在线免费观看| 久久精品人妻少妇| 国产大屁股一区二区在线视频| 亚洲色图综合在线观看| 亚洲精品日韩在线中文字幕| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 岛国毛片在线播放| 日本欧美国产在线视频| 亚洲av日韩在线播放| 久久人人爽人人片av| 只有这里有精品99|