• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strong Laws of Large Numbers for Sublinear Expectation under Controlled 1st Moment Condition?

    2018-10-17 10:03:20ChengHU

    Cheng HU

    Abstract This paper deals with strong laws of large numbers for sublinear expectation under controlled 1st moment condition.For a sequence of independent random variables,the author obtains a strong law of large numbers under conditions that there is a control random variable whose 1st moment for sublinear expectation is finite.By discussing the relation between sublinear expectation and Choquet expectation,for a sequence of i.i.d random variables,the author illustrates that only the finiteness of uniform 1st moment for sublinear expectation cannot ensure the validity of the strong law of large numbers which in turn reveals that our result does make sense.

    Keywords Sublinear expectation,Strong law of large numbers,Independence,Identical distribution,Choquet expectation

    1 Introduction

    In recent years,motivated by some problems in mathematical economics,statistics and financial mathematics,more and more researches on nonlinear expectation have appeared.People use nonlinear expectation to describe some phenomena in these fields which are difficult to be modeled exactly by classical probability theory.Choquet[5] first introduced the definition of capacity and it has been used in many fields of applied mathematics.To deal with the problems in risk measures,super-hedge pricing and modeling uncertainty in finance,Peng[12]initiated the definition of general sublinear expectation and the notion of independence and identical distribution for sublinear expectation.See more applications of nonlinear expectation for example,[3,7,11,13,15].

    The major requirement for any probability theory is to give a frequentist justification to probability numbers via limit frequencies.The classical strong laws of large numbers(SLLNs for short)as fundamental limit theorems in probability theory play an important role in the development of probability and its applications.So the question arises naturally whether the SLLNs can be maintained in nonlinear expectation framework.There has been increasing interest in the investigation of SLLNs for nonlinear expectation.Marinacci[10]proved the SLLNs for a sequence of i.i.d random variables with respect to a totally monotone and continuous capacity under a multiplicative notion of independence.Maccheroni and Marinacci[9]introduced the definition of pairwise independence and proved a SLLN for a sequence of bounded i.i.d random variables with respect to a totally monotone capacity.They both indicate that any cluster point of empirical averages lies between the upper Choquet expectation CV[X1]and the lower Choquet expectation Cv[X1]with probability one under capacity v.That is

    See more results regarding SLLNs for nonlinear expectations for example,[1–2,4,6,8].

    Moreover,the gap between the Choquet expectations CV[X1]and Cv[X1]is bigger than that of the the upper expectation E[X1]and lower expectation E[X1].Chen et al.[4]obtained a more precise SLLN for a sequence of independent random variables under conditions of finite(1+α)-th moment for upper expectation.That is

    Zhang[16]derived a SLLN of the above form for a sequence of negatively dependent identically distributed random variables under conditions of finite 1st moment for Choquet expectation.As we mentioned above,in sublinear situation,the Choquet expectation is larger than the upper expectation.And in classical probability theory,for a sequence of i.i.d random variables,the finiteness of 1st moment is the sufficient condition of the SLLNs.Our purpose in this paper is to study the SLLNs under some conditions of finite 1st moment for sublinear expectation.

    First we obtain a SLLN under the condition that there is a random variable X such that for everyq.s.where X satisfiesThis assumption looks like a control condition which is weaker than the uniform boundedness,but is stronger thanFurthermore,we discuss whether the SLLN can be maintained under conditions that the uniform 1st moment for sublinear expectation is finite.But by discussing the relation between Choquet expectation and sublinear expectation and putting forward a counterexample,we find out that the SLLN may not be valid when only the uniform 1st moment for sublinear expectation is bounded which in turn reveals the fundamental difference between classical probability and sublinear expectation.

    The rest of this paper is organized as follows.In Section 2 we recall some basic concepts of sublinear expectation and some useful lemmas.In Section 3 we give our main result,the SLLN for sublinear expectation under controlled 1st moment condition.In Section 4 we give a counterexample to illustrate that the SLLN may not be true when only uniform 1st moment for sublinear expectation is finite.

    2 Basic Concepts and Lemmas

    We use the notations similar to that of Peng[14].Let(?,F)be a given measurable space.Let H be a subset of all random variables on(?,F)such that all IA∈H,where A ∈F and if X1,X2,···,Xn∈ H,then ?(X1,X2,···,Xn)∈ H for each ? ∈ Cl,Lip(Rn),where Cl,Lip(Rn)denotes the linear space of(local Lipschitz)function ? satisfying for some C>0,m ∈ N depending on ?.We consider H as the space of random variables.

    Definition 2.1A sublinear expectation E on H is a functionalsatisfying the following properties:for all X,Y∈H,we have

    (a)Monotonicity:If X≥Y,then E[X]≥E[Y].

    Remark 2.1By combining(b)and(d)in Definition 2.1,we can easily obtain a basic property of sublinear expectation

    The triple(?,H,E)is called a sublinear expectation space.Given a sublinear expectation E,let us denote the conjugate expectation E of E by

    It is evident that for all X∈H,E[X]≤E[X].

    Definition 2.2A set functionis called a capacity if it satisfies

    A capacity V is said to be sub-additive if it satisfies

    In this paper we only consider the capacity generated by sublinear expectation.Given a sublinear expectation space(?,H,E),we define a capacity:and also define the conjugate capacity:.It is clear that V is a sub-additive capacity and v(A)=E[IA].

    The corresponding Choquet expectation(Choquet integral)CVis defined by

    Respectively if we change V to v,we can obtain the definition of Cv.Obviously,if V(or v)is the classical probability,then the Choquet expectation CV[X](or Cv[X])coincides with the classical expectation.

    Definition 2.3A sublinear expectationis said to be continuous if it satisfies

    Now we give the following continuity properties of E and V and the proofs can be referred to Zhang[16].

    Proposition 2.1(1)If E is lower-continuous,then it is countably sub-additive,i.e.,

    (3)If E is lower-continuous,then V induced by E is lower-continuous.

    Example 2.1Let P be a family of probability measures defined on(?,F).For any random variable X,we define a upper expectation by

    Next we show the representation theorem of sublinear expectation introduced by Peng[14]and the proof can be found there.

    Proposition 2.2Let(?,H,E)be a sublinear expectation space.

    (1)(see[14,Theorem 2.4])There exists a family of finitely additive probability measuresdefined on(?,F)such that for each X ∈ H,

    (2)(see[14,Lemma 3.4])For any fixed random variable X∈H,there exists a family of probability measures{μθ}θ∈Θdefined on(R,B(R))such that for each ? ∈ Cl,Lip(R),

    Definition 2.4Given a capacity V,a set A is said to be a polar set if V(A)=0.And we call a property holds “quasi-surely” (q.s.)if it holds outside a polar set.

    We adopt the following notion of independence and identical distribution for sublinear expectation which is initiated by Peng[14].

    Definition 2.5(Independence)Let X=(X1,···,Xm),Xi∈ H and Y=(Y1,···,Yn),Yi∈ H be two random variables on(?,H,E).Y is said to be independent of X,if for each test functionwe havewheneverfor all x andis said to be a sequence of independent random variables,if Xn+1is independent of(X1,···,Xn)for each n ≥ 1.

    Definition 2.6(Identical Distribution)Let X1,X2be two n-dimensional random variables defined respectively on sublinear expectation spaces(?1,H1,E1)and(?2,H2,E2).They are called identically distributed if

    whenever the sublinear expectations are finite.

    Definition 2.7(IID Random Variables)A sequence of random variablesis said to be independent and identically distributed,if Xn+1is independent of(X1,···,Xn)and Xnand X1are identically distributed for each n≥1.

    To prove our main results,we need the following basic lemmas for sublinear expectation.The proofs of Lemmas 2.1–2.2 can be found in[4].

    Lemma 2.1(Borel-Cantelli Lemma)Letbe a sequence of events in F and V be a capacity induced by lower-continuous sublinear expectation E.Ifthen

    Lemma 2.2(Chebyshev’s Inequality)Let f(x)>0 be a nondecreasing function on R.Then for any x,

    As we all know,in classical probability theory,and E[|X|]<∞are equivalent.But in sublinear situation,this property may not be true.The next lemma reveals the essential difference and the relation between sublinear expectation and Choquet expectation.

    Lemma 2.3Given a sublinear expectation space(?,H,E),E is lower-continuous and V is the induced capacity.Then

    Proof(1)By the definition of CV,we have

    By Proposition 2.2(2)and noticing thatwe have

    For any t≥n,let gtbe a function satisfying that its derivatives of each order are bounded,ififand 0≤gt(x)≤1 for all x.Then we have

    Hence

    It follows that

    (2)By the sub-additivity of E,we have

    Taking n large sufficiently,there exists some K such that E[|X|I(|X|>n)]≤K and for this n,there holds nV(|X|≤n)<∞.So we have E[|X|]<∞.

    (3)Also by the sub-additivity of E,we have

    Lemma 2.4If E[|X|]<∞,then|X|<∞q.s.,i.e.,V(|X|=∞)=0.

    Proof

    Due to the finiteness of E[|X|],letting i→∞,we have V(|X|=∞)=0.

    3 The Strong Law of Large Numbers under Controlled 1st Moment Condition

    This section is devoted to state and prove the SLLN for sublinear expectation under controlled 1st moment condition.Before we state the main theorem,we need to prove some lemmas.The next lemma is initiated by Cozman[6].

    Lemma 3.1If X satisfies a≤X≤b and E[X]≤0,then for any s>0,

    ProofThe result is trivial if a=b or if b<0.Now we consider the case a≤0≤b.By convexity of the exponential function,we have

    Replacing x with X and taking integral on both sides of the above inequality,we have

    Since(esb?esa)(b?a)>0 and E[X]≤0,we have

    By some ordinary calculations,we can obtain

    So we have ?(0)= ?′(0)=0 and

    Then by Taylor’s theorem,we can obtain

    Lemma 3.2Given a sublinear expectation space(?,H,E),E is lower-continuous and V is the induced capacity.Letbe a sequence of independent random variables satisfyingfor each n∈N?andfor someLetThen

    ProofBy the lower-continuity of V,we only need to prove that for any ε>0,

    By Lemma 2.2 and the independence ofwe have for any λ >0,

    By Lemma 3.1 and the fact thatandfor each i≥ 1,we have

    By Lemma 2.1 we obtain the result.

    Remark 3.1By the method in Lemma 3.2,we can also obtain the SLLN for sublinear expectation for a sequence of uniformly bounded random variables.

    The following theorem is the main result of this paper.

    Theorem 3.1Given a sublinear expectation space(?,H,E),E is lower-continuous and V is the induced capacity.Letbe a sequence of independent random variable withandfor each n∈N?.Suppose that there is a random variable X satisfyingq.s.for each n∈N?andLet

    Then

    and

    ProofBy the monotonicity and sub-additivity of V,we only need to prove

    Then by Lemma 3.2,we have

    In addition we have

    It follows

    By the subadditivity and translation invariance of E,we have

    Therefore

    So we have

    Furthermore by Proposition 2.1,Lemma 2.2 and Lemma 2.4,we have

    So we have

    Combining this with(3.4),we have

    Similarly,considering the sequencewithwe have the following equality

    This is equivalent to

    Remark 3.2If E coincides with the classical expectation,i.e.,V=v=P andEP[X1],where P is the classical probability,our SLLN reduces to the classical SLLN

    Corollary 3.1Given a sublinear expectation space(?,H,E),E is lower-continuous and V is the induced capacity.Letbe a sequence of independent random variables withandfor each n ∈ N?.Suppose that there is a random variable X satisfying|q.s.for any n∈N?and

    Then

    and

    ProofTake.Then Ynsatisfies the conditions of Theorem 3.1 with E[Yn]=0.Then we have

    This implies

    Similarly taking

    we can also obtain

    4 The Strong Law of Large Numbers under Uniform 1st Moment Condition

    In this section we discuss whether the SLLN is valid under conditions of the finiteness of uniform 1st moments for sublinear expectation.

    Zhang[16]proved a SLLN for negatively dependent identically distributed random variables under conditions of finite 1st moment for Choquet expectation.By Lemma 2.3(1)and(3)and Theorem 3.1 in Zhang[16],we can obtain the following theorem.

    Theorem 4.1Given a sublinear expectation space(?,H,E),E is lower-continuous and V is the induced capacity.Letbe a sequence of i.i.d random variable withand

    (2)Suppose that V is continuous.If

    By Lemma 2.3(1)and(2),there holds thatimpliesBut the inverse result may not always be true.In some special cases,the finiteness of sublinear expectation can deduce the finiteness of Choquet expectation.For instance,if P only contains finite elements in it,we define a sublinear expectation

    Next we give an example to reveal that there does exist a sequence of random variables satisfying the conditions of Theorem 4.1(2)for some certain constructed sublinear expectation such that the SLLN is not true.

    Example 4.1Let

    be a family of full spaces,Fibe a family of sets each one of which contains all subsets of ?iand

    be countable families of countable probability measures,where P1,P2,···,Pn,···defined on each ?iby

    for any n ∈ N?.Thensatisfies that for any i,j ≥ 1,

    Define the full space

    Define the product σ-algebra on ?

    Define the set P of probabilities on measure space(?,F)by

    We consider the sublinear expectation defined by upper expectation

    Then we have

    But

    then by Theorem 4.1(2)the SLLN is not valid in this example.

    亚洲av电影在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区欧美精品| 国产福利在线免费观看视频| 中文字幕人妻丝袜制服| 国产有黄有色有爽视频| 国产伦人伦偷精品视频| 欧美精品人与动牲交sv欧美| 美女大奶头黄色视频| 国产精品亚洲av一区麻豆| av天堂久久9| 9色porny在线观看| 免费久久久久久久精品成人欧美视频| 国产成人免费观看mmmm| 99热网站在线观看| av网站在线播放免费| 夫妻午夜视频| 欧美少妇被猛烈插入视频| 在线av久久热| 亚洲国产中文字幕在线视频| 久久综合国产亚洲精品| 日日夜夜操网爽| 99久久综合免费| 欧美精品亚洲一区二区| 欧美亚洲日本最大视频资源| 国产在线一区二区三区精| 飞空精品影院首页| 中文字幕亚洲精品专区| 黑人巨大精品欧美一区二区蜜桃| 亚洲第一av免费看| 亚洲国产看品久久| 亚洲av美国av| 中文字幕人妻丝袜一区二区| 亚洲成色77777| 国产福利在线免费观看视频| 亚洲精品日韩在线中文字幕| av福利片在线| av又黄又爽大尺度在线免费看| 搡老乐熟女国产| 亚洲欧美日韩高清在线视频 | 热99久久久久精品小说推荐| 国产在线免费精品| 久久人妻福利社区极品人妻图片 | 男人爽女人下面视频在线观看| 狂野欧美激情性bbbbbb| 午夜视频精品福利| 少妇精品久久久久久久| 久久毛片免费看一区二区三区| 亚洲国产日韩一区二区| 大陆偷拍与自拍| 欧美精品一区二区大全| 亚洲天堂av无毛| 精品欧美一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看 | 免费不卡黄色视频| 精品一区在线观看国产| 国产免费视频播放在线视频| 丝袜脚勾引网站| 男人舔女人的私密视频| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区| 免费女性裸体啪啪无遮挡网站| 十八禁人妻一区二区| 亚洲av男天堂| 伦理电影免费视频| 一本综合久久免费| 在线观看www视频免费| 久久精品国产a三级三级三级| 两个人免费观看高清视频| 国产在线免费精品| 亚洲国产欧美一区二区综合| 国产极品粉嫩免费观看在线| 建设人人有责人人尽责人人享有的| 欧美乱码精品一区二区三区| 亚洲午夜精品一区,二区,三区| 免费看av在线观看网站| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 成在线人永久免费视频| 日韩av不卡免费在线播放| 后天国语完整版免费观看| 女人精品久久久久毛片| 女警被强在线播放| 久久久精品94久久精品| 亚洲欧美一区二区三区久久| 秋霞在线观看毛片| 在线观看人妻少妇| 国产一区二区三区综合在线观看| 男女下面插进去视频免费观看| 99香蕉大伊视频| 亚洲精品国产一区二区精华液| 亚洲,一卡二卡三卡| 亚洲精品日本国产第一区| 亚洲国产欧美日韩在线播放| 久久亚洲精品不卡| 精品少妇黑人巨大在线播放| 狠狠婷婷综合久久久久久88av| 国产成人精品久久二区二区91| 中文欧美无线码| 亚洲成国产人片在线观看| 脱女人内裤的视频| 中文乱码字字幕精品一区二区三区| 午夜两性在线视频| 伊人久久大香线蕉亚洲五| 日韩视频在线欧美| 午夜免费男女啪啪视频观看| 国产精品.久久久| 免费女性裸体啪啪无遮挡网站| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性xxxx| 高潮久久久久久久久久久不卡| 亚洲一区中文字幕在线| 亚洲国产成人一精品久久久| 午夜福利一区二区在线看| 亚洲av电影在线进入| 伊人亚洲综合成人网| 一区二区av电影网| 亚洲欧洲精品一区二区精品久久久| 免费在线观看视频国产中文字幕亚洲 | 日韩欧美一区视频在线观看| 亚洲第一青青草原| 人成视频在线观看免费观看| 亚洲熟女精品中文字幕| 男女边吃奶边做爰视频| 欧美日韩国产mv在线观看视频| 国产亚洲av高清不卡| 国产在线一区二区三区精| 欧美黄色片欧美黄色片| 日本a在线网址| 久久这里只有精品19| 50天的宝宝边吃奶边哭怎么回事| 黄色视频在线播放观看不卡| 男女午夜视频在线观看| 一二三四社区在线视频社区8| 国产女主播在线喷水免费视频网站| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| av不卡在线播放| 久久久久久久国产电影| 亚洲人成网站在线观看播放| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 欧美精品av麻豆av| 中文乱码字字幕精品一区二区三区| 99久久人妻综合| 亚洲精品美女久久久久99蜜臀 | 一级黄色大片毛片| 国产淫语在线视频| 亚洲九九香蕉| 中文欧美无线码| 国产视频首页在线观看| 免费日韩欧美在线观看| 人人妻,人人澡人人爽秒播 | 国产麻豆69| 欧美大码av| 男人爽女人下面视频在线观看| av在线app专区| 国产精品九九99| 亚洲一区二区三区欧美精品| 婷婷丁香在线五月| 一本久久精品| 亚洲av成人不卡在线观看播放网 | 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩一区二区三区精品不卡| 美女国产高潮福利片在线看| 国产日韩欧美亚洲二区| 国产精品.久久久| 精品熟女少妇八av免费久了| 一区二区三区四区激情视频| 天天躁日日躁夜夜躁夜夜| 啦啦啦在线观看免费高清www| 欧美中文综合在线视频| 不卡av一区二区三区| 亚洲少妇的诱惑av| 久久鲁丝午夜福利片| 人人妻人人澡人人看| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠躁躁| 美女高潮到喷水免费观看| 久久精品久久久久久噜噜老黄| 久久青草综合色| 久久久久久久国产电影| 人体艺术视频欧美日本| 女人精品久久久久毛片| 在线 av 中文字幕| 欧美97在线视频| 亚洲av欧美aⅴ国产| 男女边吃奶边做爰视频| 老司机在亚洲福利影院| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠久久av| 国产欧美日韩综合在线一区二区| 少妇人妻 视频| 搡老乐熟女国产| 亚洲三区欧美一区| 午夜影院在线不卡| 午夜福利免费观看在线| 99香蕉大伊视频| 亚洲精品国产一区二区精华液| 99国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 一边亲一边摸免费视频| 下体分泌物呈黄色| 精品一区二区三卡| 母亲3免费完整高清在线观看| 久久久久视频综合| 国产成人精品久久二区二区免费| 免费黄频网站在线观看国产| 丝袜美腿诱惑在线| 亚洲av男天堂| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 欧美人与善性xxx| 超色免费av| 亚洲精品国产色婷婷电影| 一级a爱视频在线免费观看| 久久鲁丝午夜福利片| 又大又黄又爽视频免费| 国产成人精品久久二区二区免费| 久久精品国产a三级三级三级| 深夜精品福利| 十分钟在线观看高清视频www| 王馨瑶露胸无遮挡在线观看| www.自偷自拍.com| 国产成人一区二区在线| 一级,二级,三级黄色视频| 99精国产麻豆久久婷婷| 欧美成人午夜精品| 亚洲人成网站在线观看播放| 国产成人精品久久久久久| 日韩中文字幕视频在线看片| 精品久久久精品久久久| 国产野战对白在线观看| 大陆偷拍与自拍| 亚洲免费av在线视频| 美国免费a级毛片| 精品视频人人做人人爽| 男女下面插进去视频免费观看| 成人国语在线视频| 国产免费视频播放在线视频| 99久久人妻综合| 你懂的网址亚洲精品在线观看| 国产精品一国产av| 天天躁日日躁夜夜躁夜夜| 国产亚洲精品第一综合不卡| 国产成人精品久久久久久| 99热国产这里只有精品6| 五月天丁香电影| 欧美97在线视频| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 免费观看人在逋| 精品欧美一区二区三区在线| 又紧又爽又黄一区二区| 日韩视频在线欧美| 亚洲人成77777在线视频| 纯流量卡能插随身wifi吗| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 国产伦理片在线播放av一区| 黄色片一级片一级黄色片| 亚洲,欧美精品.| 中文字幕人妻丝袜一区二区| 亚洲熟女精品中文字幕| 亚洲欧美日韩高清在线视频 | 又大又黄又爽视频免费| 国产在视频线精品| 午夜福利视频在线观看免费| 国产成人精品无人区| 欧美大码av| 老汉色∧v一级毛片| av欧美777| 丰满饥渴人妻一区二区三| 99热全是精品| avwww免费| 交换朋友夫妻互换小说| 日本猛色少妇xxxxx猛交久久| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 久久精品成人免费网站| 精品人妻熟女毛片av久久网站| 男女下面插进去视频免费观看| 久久ye,这里只有精品| 精品人妻1区二区| 国产精品久久久久久人妻精品电影 | 国产一区亚洲一区在线观看| 中文字幕精品免费在线观看视频| 欧美精品高潮呻吟av久久| 亚洲九九香蕉| xxx大片免费视频| 精品少妇一区二区三区视频日本电影| 亚洲男人天堂网一区| 国产成人一区二区三区免费视频网站 | av在线播放精品| videos熟女内射| 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 亚洲专区国产一区二区| 久热爱精品视频在线9| 男女之事视频高清在线观看 | 免费在线观看完整版高清| 亚洲欧洲日产国产| 成年动漫av网址| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 99久久精品国产亚洲精品| 午夜精品国产一区二区电影| 中文字幕人妻熟女乱码| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 日韩 亚洲 欧美在线| 亚洲一码二码三码区别大吗| 一本久久精品| 国产熟女欧美一区二区| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 成人18禁高潮啪啪吃奶动态图| 成人午夜精彩视频在线观看| 黑人猛操日本美女一级片| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆| 丝瓜视频免费看黄片| 日韩伦理黄色片| 老司机靠b影院| 欧美成狂野欧美在线观看| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 国产亚洲av高清不卡| 亚洲精品自拍成人| 久久人人爽人人片av| 麻豆av在线久日| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| a 毛片基地| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 交换朋友夫妻互换小说| 国产黄色视频一区二区在线观看| 这个男人来自地球电影免费观看| 天堂俺去俺来也www色官网| 国产精品国产三级专区第一集| 久久久久国产精品人妻一区二区| 麻豆av在线久日| 久热爱精品视频在线9| 色精品久久人妻99蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩福利视频一区二区| 自线自在国产av| 国产成人av教育| 伊人久久大香线蕉亚洲五| 中文字幕人妻熟女乱码| 国产深夜福利视频在线观看| 日韩制服骚丝袜av| 少妇精品久久久久久久| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 各种免费的搞黄视频| 丝袜喷水一区| 熟女少妇亚洲综合色aaa.| 国产精品香港三级国产av潘金莲 | 欧美日本中文国产一区发布| 亚洲精品av麻豆狂野| 国产三级黄色录像| 久久精品国产综合久久久| 久久女婷五月综合色啪小说| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 女性生殖器流出的白浆| 亚洲av电影在线进入| 成人国产av品久久久| 久久人妻福利社区极品人妻图片 | 在线精品无人区一区二区三| 少妇的丰满在线观看| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 国产成人系列免费观看| 国产免费福利视频在线观看| 一级毛片电影观看| 一个人免费看片子| 精品熟女少妇八av免费久了| 午夜两性在线视频| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 婷婷色综合大香蕉| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 久久久久久久精品精品| 久久亚洲精品不卡| 女人精品久久久久毛片| 老司机靠b影院| 国产精品久久久久久人妻精品电影 | 国产一区二区三区av在线| 黄色 视频免费看| bbb黄色大片| 涩涩av久久男人的天堂| 两人在一起打扑克的视频| 女人被躁到高潮嗷嗷叫费观| a级毛片在线看网站| 高清不卡的av网站| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色免费在线视频| 老司机影院成人| 波野结衣二区三区在线| 脱女人内裤的视频| 免费在线观看完整版高清| 黑人猛操日本美女一级片| 日本欧美视频一区| 操美女的视频在线观看| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 97人妻天天添夜夜摸| avwww免费| 性少妇av在线| 激情视频va一区二区三区| 欧美在线一区亚洲| 超碰成人久久| 精品国产乱码久久久久久男人| 中文字幕av电影在线播放| 日本黄色日本黄色录像| 欧美日韩国产mv在线观看视频| 国产免费福利视频在线观看| 一边摸一边做爽爽视频免费| 日本午夜av视频| 精品亚洲乱码少妇综合久久| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 真人做人爱边吃奶动态| 男女之事视频高清在线观看 | 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 性色av乱码一区二区三区2| 亚洲国产精品成人久久小说| 两性夫妻黄色片| 日韩制服丝袜自拍偷拍| 久久久久国产一级毛片高清牌| 久久久精品免费免费高清| 天堂8中文在线网| 女性生殖器流出的白浆| 老司机亚洲免费影院| 丝袜人妻中文字幕| 成年av动漫网址| 国产97色在线日韩免费| 国产精品国产av在线观看| 久久人人爽人人片av| videosex国产| 国产av精品麻豆| 久久ye,这里只有精品| 91字幕亚洲| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 夫妻性生交免费视频一级片| 多毛熟女@视频| 国产主播在线观看一区二区 | 韩国精品一区二区三区| 在线观看免费午夜福利视频| 飞空精品影院首页| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线| 亚洲欧洲国产日韩| 狠狠精品人妻久久久久久综合| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 亚洲国产av影院在线观看| 亚洲精品一区蜜桃| 中文字幕人妻熟女乱码| 飞空精品影院首页| 91国产中文字幕| 精品福利观看| 肉色欧美久久久久久久蜜桃| 免费一级毛片在线播放高清视频 | 国产一区二区三区av在线| 亚洲精品第二区| 精品福利永久在线观看| 一本大道久久a久久精品| 欧美日本中文国产一区发布| 搡老乐熟女国产| 国产精品国产av在线观看| 国产男女内射视频| 搡老岳熟女国产| e午夜精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 久久精品久久久久久噜噜老黄| 飞空精品影院首页| 青草久久国产| 妹子高潮喷水视频| 欧美日韩福利视频一区二区| 中文字幕亚洲精品专区| 亚洲国产av影院在线观看| 精品国产一区二区三区四区第35| xxxhd国产人妻xxx| 男女免费视频国产| 啦啦啦啦在线视频资源| 国产成人欧美在线观看 | 亚洲国产最新在线播放| 视频在线观看一区二区三区| 亚洲av在线观看美女高潮| 欧美国产精品一级二级三级| av有码第一页| 水蜜桃什么品种好| 少妇人妻 视频| 在线观看免费视频网站a站| 亚洲色图综合在线观看| 纵有疾风起免费观看全集完整版| 晚上一个人看的免费电影| 亚洲国产欧美在线一区| 亚洲精品一二三| 午夜日韩欧美国产| 视频在线观看一区二区三区| 1024香蕉在线观看| 在线观看国产h片| 色播在线永久视频| 国产精品九九99| 99久久99久久久精品蜜桃| 国产av精品麻豆| 亚洲欧美清纯卡通| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 天堂中文最新版在线下载| av不卡在线播放| 一级,二级,三级黄色视频| 亚洲精品中文字幕在线视频| 老司机午夜十八禁免费视频| 天天影视国产精品| av一本久久久久| 亚洲精品美女久久av网站| 一级毛片我不卡| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91| 男女无遮挡免费网站观看| 男女国产视频网站| 99re6热这里在线精品视频| 91精品国产国语对白视频| 国产免费现黄频在线看| av不卡在线播放| 中国美女看黄片| 在现免费观看毛片| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 视频区图区小说| 91成人精品电影| 成人三级做爰电影| 国产av一区二区精品久久| 午夜免费鲁丝| 黄色视频不卡| 一本综合久久免费| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 美女大奶头黄色视频| 亚洲欧美激情在线| 美女主播在线视频| 亚洲少妇的诱惑av| 又粗又硬又长又爽又黄的视频| 久久久精品免费免费高清| 国产成人av激情在线播放| 色94色欧美一区二区| av不卡在线播放| 中国美女看黄片| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区三区免费视频网站 | 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 一区二区三区乱码不卡18| 国产成人精品无人区| 一边摸一边做爽爽视频免费| 99精品久久久久人妻精品| videos熟女内射| 美女扒开内裤让男人捅视频| kizo精华| 中文字幕av电影在线播放| 99国产精品一区二区蜜桃av | 男的添女的下面高潮视频| 乱人伦中国视频| 国产精品一区二区免费欧美 | 精品一区在线观看国产| 狠狠婷婷综合久久久久久88av| 老汉色∧v一级毛片| 日韩av免费高清视频| 人人妻人人澡人人爽人人夜夜| 激情视频va一区二区三区| 亚洲精品国产一区二区精华液| 黑丝袜美女国产一区| 国产一级毛片在线| 精品一区在线观看国产| 国产伦人伦偷精品视频| 伊人久久大香线蕉亚洲五| 黄片播放在线免费| 伊人亚洲综合成人网| 日本91视频免费播放| 丁香六月欧美| 久久性视频一级片| 精品视频人人做人人爽| 人妻人人澡人人爽人人|