• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    免费在线观看视频国产中文字幕亚洲| 国产乱人伦免费视频| 久久国产亚洲av麻豆专区| 精品久久久精品久久久| 欧美精品亚洲一区二区| 在线观看www视频免费| 黄网站色视频无遮挡免费观看| 亚洲av五月六月丁香网| 亚洲最大成人中文| 欧美精品啪啪一区二区三区| av免费在线观看网站| 亚洲最大成人中文| 一本大道久久a久久精品| 亚洲国产日韩欧美精品在线观看 | 男人舔女人下体高潮全视频| 不卡一级毛片| 亚洲国产高清在线一区二区三 | 制服人妻中文乱码| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区在线不卡| 国产精品免费视频内射| 欧美黑人精品巨大| 夜夜爽天天搞| www.精华液| 欧美国产精品va在线观看不卡| 日本五十路高清| 久久久久久国产a免费观看| 给我免费播放毛片高清在线观看| 在线播放国产精品三级| 又紧又爽又黄一区二区| 国产一区在线观看成人免费| 深夜精品福利| av在线播放免费不卡| avwww免费| 久久国产乱子伦精品免费另类| 一a级毛片在线观看| 国产精品香港三级国产av潘金莲| 一进一出抽搐gif免费好疼| 国产一区二区三区视频了| 欧美在线黄色| 免费搜索国产男女视频| 国内久久婷婷六月综合欲色啪| 一边摸一边抽搐一进一出视频| 国产在线观看jvid| а√天堂www在线а√下载| 欧美中文日本在线观看视频| 色婷婷久久久亚洲欧美| 午夜福利欧美成人| 国产成人精品无人区| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 免费看十八禁软件| 欧美久久黑人一区二区| 亚洲精品国产区一区二| 国产精品九九99| 别揉我奶头~嗯~啊~动态视频| 美女扒开内裤让男人捅视频| 国内久久婷婷六月综合欲色啪| 成人三级做爰电影| 日韩一卡2卡3卡4卡2021年| 国产成人啪精品午夜网站| 757午夜福利合集在线观看| 美女午夜性视频免费| 51午夜福利影视在线观看| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 搡老岳熟女国产| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 久久性视频一级片| 黄色毛片三级朝国网站| 国产三级在线视频| av视频在线观看入口| 亚洲av电影不卡..在线观看| 少妇 在线观看| 午夜免费观看网址| 国产av又大| 正在播放国产对白刺激| 免费在线观看日本一区| 伦理电影免费视频| 亚洲国产看品久久| 欧美黑人精品巨大| 中国美女看黄片| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩另类电影网站| 男女床上黄色一级片免费看| 国产精品秋霞免费鲁丝片| 波多野结衣巨乳人妻| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| e午夜精品久久久久久久| 成人永久免费在线观看视频| 精品一品国产午夜福利视频| 午夜福利视频1000在线观看 | 免费高清视频大片| 精品一区二区三区四区五区乱码| 国产精品乱码一区二三区的特点 | 久久影院123| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 97超级碰碰碰精品色视频在线观看| 香蕉久久夜色| 男女做爰动态图高潮gif福利片 | 午夜激情av网站| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 久久国产亚洲av麻豆专区| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 成人18禁在线播放| 免费在线观看影片大全网站| 久久中文字幕人妻熟女| 国产片内射在线| 亚洲欧美激情在线| 国产一区二区三区综合在线观看| 最新在线观看一区二区三区| 日韩精品中文字幕看吧| 丰满的人妻完整版| bbb黄色大片| av电影中文网址| 啦啦啦免费观看视频1| a级毛片在线看网站| xxx96com| 女人高潮潮喷娇喘18禁视频| 母亲3免费完整高清在线观看| 级片在线观看| 日本免费一区二区三区高清不卡 | av免费在线观看网站| 岛国视频午夜一区免费看| 日本一区二区免费在线视频| 不卡av一区二区三区| 精品人妻在线不人妻| 一区二区三区精品91| 丁香六月欧美| 美女午夜性视频免费| 18禁裸乳无遮挡免费网站照片 | 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 青草久久国产| 国产亚洲精品av在线| 国产不卡一卡二| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 精品久久久久久,| 日本 欧美在线| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看 | 国产成人精品在线电影| svipshipincom国产片| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲| 国产精品 欧美亚洲| 亚洲精品中文字幕在线视频| 免费看美女性在线毛片视频| 9色porny在线观看| 日本五十路高清| 一级片免费观看大全| 精品第一国产精品| 91字幕亚洲| 一夜夜www| 高清在线国产一区| 日本五十路高清| a级毛片在线看网站| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 一本大道久久a久久精品| av视频免费观看在线观看| 69精品国产乱码久久久| 国产精品乱码一区二三区的特点 | 欧美日本视频| 他把我摸到了高潮在线观看| 日本撒尿小便嘘嘘汇集6| av免费在线观看网站| 变态另类丝袜制服| 午夜成年电影在线免费观看| 大型黄色视频在线免费观看| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 中文字幕人成人乱码亚洲影| 亚洲色图 男人天堂 中文字幕| 在线国产一区二区在线| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 久久久久久大精品| 午夜成年电影在线免费观看| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 国产成人啪精品午夜网站| 亚洲成人久久性| 搡老妇女老女人老熟妇| 亚洲精品av麻豆狂野| 国产xxxxx性猛交| 欧美乱妇无乱码| 亚洲一区二区三区不卡视频| 久久天堂一区二区三区四区| 在线av久久热| 国产亚洲精品久久久久久毛片| 色综合站精品国产| 伦理电影免费视频| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 精品国产乱码久久久久久男人| 桃色一区二区三区在线观看| 欧美亚洲日本最大视频资源| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 欧美老熟妇乱子伦牲交| 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| av视频在线观看入口| 国产激情欧美一区二区| 精品一品国产午夜福利视频| 亚洲免费av在线视频| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 国内精品久久久久精免费| 国产一区在线观看成人免费| 国内精品久久久久久久电影| 欧美午夜高清在线| 亚洲一卡2卡3卡4卡5卡精品中文| av免费在线观看网站| 99在线人妻在线中文字幕| 欧美一级毛片孕妇| 国产精品综合久久久久久久免费 | 在线观看舔阴道视频| 欧美午夜高清在线| 午夜福利成人在线免费观看| 国产av在哪里看| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 亚洲久久久国产精品| 亚洲av电影不卡..在线观看| 国产三级在线视频| 女警被强在线播放| 成人特级黄色片久久久久久久| 日韩欧美免费精品| 热re99久久国产66热| av视频免费观看在线观看| 免费不卡黄色视频| 老熟妇仑乱视频hdxx| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 国产精品自产拍在线观看55亚洲| 亚洲 欧美一区二区三区| 婷婷六月久久综合丁香| 性欧美人与动物交配| 国产成人欧美| 免费人成视频x8x8入口观看| 看片在线看免费视频| 国产精品,欧美在线| 久久草成人影院| 纯流量卡能插随身wifi吗| 日本 欧美在线| 国产伦一二天堂av在线观看| 久久久久久国产a免费观看| 亚洲天堂国产精品一区在线| 亚洲精品久久成人aⅴ小说| 亚洲五月婷婷丁香| 波多野结衣巨乳人妻| 91成人精品电影| 18禁美女被吸乳视频| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 国产精品香港三级国产av潘金莲| 十分钟在线观看高清视频www| 成人特级黄色片久久久久久久| 国产成人精品无人区| 看黄色毛片网站| 欧美老熟妇乱子伦牲交| 国产片内射在线| 亚洲第一av免费看| 十分钟在线观看高清视频www| 一进一出抽搐gif免费好疼| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 欧美日韩乱码在线| 国产成人免费无遮挡视频| 在线永久观看黄色视频| 久久草成人影院| 日韩欧美国产一区二区入口| 久9热在线精品视频| 亚洲人成网站在线播放欧美日韩| 免费女性裸体啪啪无遮挡网站| 窝窝影院91人妻| 1024香蕉在线观看| 丰满人妻熟妇乱又伦精品不卡| 97人妻精品一区二区三区麻豆 | 老司机福利观看| 国产男靠女视频免费网站| 99香蕉大伊视频| 久久香蕉精品热| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 亚洲熟妇中文字幕五十中出| xxx96com| 岛国视频午夜一区免费看| 多毛熟女@视频| 日本欧美视频一区| 可以免费在线观看a视频的电影网站| 精品电影一区二区在线| 久久久国产成人免费| 中文亚洲av片在线观看爽| 久久久久久久久久久久大奶| 欧美激情久久久久久爽电影 | 国产亚洲av高清不卡| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利影视在线免费观看| 国产精品自产拍在线观看55亚洲| netflix在线观看网站| 国产一区二区在线av高清观看| 亚洲情色 制服丝袜| 精品国产美女av久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久亚洲av毛片大全| 99香蕉大伊视频| 国产99白浆流出| a在线观看视频网站| 欧美不卡视频在线免费观看 | 黑丝袜美女国产一区| 91精品国产国语对白视频| 日本精品一区二区三区蜜桃| 91老司机精品| www.999成人在线观看| 欧美大码av| 国产av一区二区精品久久| 成熟少妇高潮喷水视频| 午夜a级毛片| 成年女人毛片免费观看观看9| 人人妻人人澡欧美一区二区 | 精品一品国产午夜福利视频| 日本三级黄在线观看| 一区福利在线观看| 成人18禁在线播放| 午夜免费观看网址| 黄片播放在线免费| 99国产精品免费福利视频| 最近最新中文字幕大全电影3 | 国产精品九九99| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 制服人妻中文乱码| 99精品欧美一区二区三区四区| 制服人妻中文乱码| 日本精品一区二区三区蜜桃| 精品第一国产精品| 长腿黑丝高跟| 成人精品一区二区免费| 99国产综合亚洲精品| 在线观看舔阴道视频| 天天添夜夜摸| 不卡av一区二区三区| 亚洲av第一区精品v没综合| 一本大道久久a久久精品| 香蕉丝袜av| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 香蕉久久夜色| av视频在线观看入口| 757午夜福利合集在线观看| 两个人视频免费观看高清| 免费在线观看视频国产中文字幕亚洲| 久久久久久久精品吃奶| 少妇 在线观看| 欧美成人一区二区免费高清观看 | 国产成人一区二区三区免费视频网站| 亚洲精品在线观看二区| 性欧美人与动物交配| 美女大奶头视频| 国产单亲对白刺激| 精品一品国产午夜福利视频| 欧美大码av| 欧美黄色片欧美黄色片| 可以在线观看毛片的网站| 变态另类丝袜制服| 色播在线永久视频| 搡老妇女老女人老熟妇| 曰老女人黄片| 嫁个100分男人电影在线观看| 亚洲国产高清在线一区二区三 | 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一av免费看| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 国产1区2区3区精品| 长腿黑丝高跟| 亚洲国产欧美网| 亚洲性夜色夜夜综合| 欧美日本视频| 午夜亚洲福利在线播放| 国产精品一区二区精品视频观看| 久久久久国内视频| 妹子高潮喷水视频| 久99久视频精品免费| 神马国产精品三级电影在线观看 | 久久香蕉激情| 国产av在哪里看| 欧美中文日本在线观看视频| 欧美黑人精品巨大| 精品久久久久久久久久免费视频| 国产精品日韩av在线免费观看 | 少妇裸体淫交视频免费看高清 | svipshipincom国产片| 亚洲视频免费观看视频| 久久青草综合色| 成人免费观看视频高清| 免费在线观看视频国产中文字幕亚洲| 夜夜爽天天搞| 亚洲中文字幕一区二区三区有码在线看 | 一区二区三区国产精品乱码| 免费看美女性在线毛片视频| 欧美日韩精品网址| 青草久久国产| 国产精品久久久久久亚洲av鲁大| 欧美成人免费av一区二区三区| 男女做爰动态图高潮gif福利片 | 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 长腿黑丝高跟| 美国免费a级毛片| 99国产精品一区二区蜜桃av| 亚洲成人免费电影在线观看| 黄色片一级片一级黄色片| 国产男靠女视频免费网站| 大码成人一级视频| 91麻豆精品激情在线观看国产| 黄色a级毛片大全视频| 久久久久久久午夜电影| 91九色精品人成在线观看| 国产黄a三级三级三级人| a级毛片在线看网站| 亚洲欧美日韩另类电影网站| av福利片在线| 成人三级黄色视频| 国产人伦9x9x在线观看| 欧美激情极品国产一区二区三区| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 久9热在线精品视频| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 国产精品免费一区二区三区在线| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 亚洲欧美日韩另类电影网站| 国产精品美女特级片免费视频播放器 | 视频在线观看一区二区三区| 老熟妇仑乱视频hdxx| 十分钟在线观看高清视频www| 国产主播在线观看一区二区| 免费在线观看日本一区| 中文字幕另类日韩欧美亚洲嫩草| 久热爱精品视频在线9| 精品欧美国产一区二区三| 婷婷精品国产亚洲av在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一青青草原| 色播在线永久视频| 亚洲黑人精品在线| 999久久久精品免费观看国产| 午夜老司机福利片| 亚洲精品久久成人aⅴ小说| 黄色a级毛片大全视频| 亚洲人成77777在线视频| 岛国在线观看网站| 欧美成狂野欧美在线观看| 精品人妻1区二区| 法律面前人人平等表现在哪些方面| 88av欧美| 国产成+人综合+亚洲专区| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 啦啦啦韩国在线观看视频| 国产精品av久久久久免费| 亚洲av五月六月丁香网| 99精品久久久久人妻精品| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕最新亚洲高清| 一个人免费在线观看的高清视频| 九色亚洲精品在线播放| 日本一区二区免费在线视频| 日韩精品免费视频一区二区三区| 午夜免费鲁丝| 亚洲av第一区精品v没综合| 一区二区三区激情视频| av片东京热男人的天堂| 亚洲激情在线av| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 老汉色∧v一级毛片| 国产区一区二久久| 亚洲激情在线av| 丝袜美足系列| 中亚洲国语对白在线视频| 大型黄色视频在线免费观看| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 一级a爱片免费观看的视频| 久久热在线av| 极品教师在线免费播放| 黑人巨大精品欧美一区二区mp4| 久久久精品国产亚洲av高清涩受| 黄色女人牲交| 午夜日韩欧美国产| 视频在线观看一区二区三区| av天堂在线播放| 日韩欧美在线二视频| 国产一区二区在线av高清观看| 色老头精品视频在线观看| 久久久国产成人免费| 国产一区在线观看成人免费| 窝窝影院91人妻| 亚洲国产精品成人综合色| 国产欧美日韩一区二区三区在线| 亚洲男人的天堂狠狠| 国产一区二区激情短视频| 9热在线视频观看99| 69精品国产乱码久久久| 日韩精品免费视频一区二区三区| 国产精品野战在线观看| 男女下面插进去视频免费观看| 国产成人欧美| 美女扒开内裤让男人捅视频| 成人免费观看视频高清| 侵犯人妻中文字幕一二三四区| 国内精品久久久久久久电影| 亚洲成人国产一区在线观看| 久久精品亚洲精品国产色婷小说| 制服诱惑二区| 亚洲国产看品久久| 真人做人爱边吃奶动态| 18美女黄网站色大片免费观看| 亚洲精品在线观看二区| 成人18禁高潮啪啪吃奶动态图| 亚洲狠狠婷婷综合久久图片| 亚洲欧美激情在线| 少妇的丰满在线观看| 长腿黑丝高跟| 欧美日韩精品网址| x7x7x7水蜜桃| 欧美老熟妇乱子伦牲交| 欧美绝顶高潮抽搐喷水| 别揉我奶头~嗯~啊~动态视频| 亚洲片人在线观看| 色播在线永久视频| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 日日爽夜夜爽网站| 麻豆av在线久日| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| 黄频高清免费视频| 国产欧美日韩一区二区三区在线| 亚洲第一电影网av| 久久人妻福利社区极品人妻图片| 亚洲中文字幕一区二区三区有码在线看 | 91字幕亚洲| 正在播放国产对白刺激| 香蕉丝袜av| 99久久久亚洲精品蜜臀av| 欧美中文综合在线视频| 亚洲性夜色夜夜综合| 妹子高潮喷水视频| 校园春色视频在线观看| 91成年电影在线观看| 一区二区三区激情视频| 成熟少妇高潮喷水视频| 露出奶头的视频| 日韩中文字幕欧美一区二区| 精品日产1卡2卡| 黄色视频不卡| 在线观看免费视频日本深夜| 女人被狂操c到高潮| 久久久水蜜桃国产精品网| 欧美性长视频在线观看| 可以在线观看的亚洲视频| 午夜免费观看网址| 久久精品亚洲熟妇少妇任你| 国产成人av教育| 国产精品免费一区二区三区在线| 色婷婷久久久亚洲欧美| 亚洲人成伊人成综合网2020| 男女床上黄色一级片免费看| 成年版毛片免费区| 桃色一区二区三区在线观看| 亚洲精品美女久久av网站| 在线观看66精品国产| 久久久国产成人精品二区| 亚洲精品粉嫩美女一区| 亚洲欧美激情在线| 成熟少妇高潮喷水视频| 黑丝袜美女国产一区| 悠悠久久av| 级片在线观看| 亚洲一码二码三码区别大吗| 波多野结衣高清无吗|