• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time Stabilization of the Double Integrator Subject to Input Saturation and Input Delay

    2018-09-28 10:59:06HuawenYeMengLiChunhuaYangandWeihuaGui
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Huawen Ye,Meng Li,Chunhua Yang,and Weihua Gui

    Abstract—The time-optimal control design of the double integrator is extended to the fnite-time stabilization design that compensates both input saturation and input delay.With the aid of the Artstein’s transformation,the problem is reduced to assigning a saturated fnite-time stabilizer.

    I.INTRODUCTION

    AS an extension of time-optimal control,Bhat Bernstein proposed a saturated fnite-time stabilizer for the double integrator[1].Such a controller is continuous and consequently is free of jumping switch.In a recentwork[2],a class of saturated fnite-time stabilizers are presented for multiple integrators and a skillful analysis method was proposed for verifying the saturation reduction.

    Constructing fnite-time stabilizers for compensating input delays is a signifcantissue.In this line,profound results were achieved in[3]by means of time-varying distributed delay feedback;with the aid of the so-called Artstein’s transformation[4],the mentioned problem has been reduced to solely assigning a fnite-time stabilizer[5].

    In addition,the stabilization design for compensating input saturation and input delays has long occupied the attention of the control community.In most cases,the kernel technical work is to verify the reduction ofsaturated terms by fully using suitable normalforms,Newton-Leibniz formula and Lyapunov functional(see for instance[6]-[9]).

    However,there is currently no fnite-time stabilizing design that compensates both input saturation and input delays.The algorithms in[6]-[9]do not take into account the fnitetime stability and the classical time-optimal control design;the works in[1],[2]do not consider delay compensation;and the works in[3],[5]do not deal with input saturation.Therefore,it will be an important theoretical work to design fnite-time controllers that compensate both input saturation and inputdelay.

    Moreover,exploration in this direction is of practicalsignificance.As we know,the bounded bang-bang controlcan bring about fnite-time stability and the shortest transition time,but cannot allow a time delay.In fact,a delay in the input will make it diffcult to achieve the prescribed performance and even give rise to serious consequences.For example,when the inputis subjectto a time delay,itmay happen thata spacecraft has a downward velocity while it lands on the ground.

    Due to the above observations,for a double integrator we would like to presenta fnite-time stabilizer thatcompensates both input saturation and input delay.The detailed technical works are stated as follows:

    1)With the aid of the Artstein’s transformation[4]and the reduction approach in[5],the problem under consideration is reduced to assigning a saturated fnite-time stabilizer.This will largely simplify the design/analysis,for there is no need to deal with delayed terms when we focus on the equivalent system.

    2)The saturated fnite-time stabilizer is motivated by the method in[2].As we know,itis hard to verify the saturation reduction in a cancellation way,for there is no suitable normal form due to fractionalexponents.To this end,we will suggest a saturation reduction analysis method that slightly differs from the one in[2].Specifcally,we do not compute small time intervals for contradictions,but compute the derivatives of saturation functions in small domains and prove that the related derivatives are non-positive.Once the saturated controller reduces to a linear one,we invoke the homogeneity based stability theory[1]to analyze the fnite-time stability of the reduced system.These efforts allow us to obtain a saturated fnite-time stabilizer that can get rid of abs(·)and sign(·)functions.

    3)In addition,we will show that,in the case of the double integrator,the fnal control design has a simple form in the sense that it does not contain integralterms.

    The rest of the note is organized as follows.In Section II,we present the problem formulation and give mathematical preliminaries.In Section III,we provide the controldesign and stability analysis.Simulations are also given in this section to illustrate the effectiveness of the design.In Section IV,we make comments on the work in this note,emphasizing the importance of suitable methods and pointing out a potential extension.Finally,concluding remarks are put into Section V.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    A.Problem Formulation

    The bang-bang time-optimal controller is bounded and can guarantee the fnite-time stability and the shortestconvergence time.In the following,we will show that an inputdelay will lead to a serious consequence.

    Consider the system

    and fnd a suitable control u(|u|≤1)to minimize J=dt=Tf.Invoking[10],one knows that under the initial condition y1(0)=y2(0)=1,the bang-bang control law is described by

    and the shortest transition time Tf=1+√6 can be calculated directly.

    We now suppose that u is subjectto an inputdelay,namely,we will focus on a system like

    If one simply uses the following controller:

    the histories of states and inputwill exhibitas follows.

    Fig.1. Histories of states and input of system(1),(4).

    From Fig.1,it is observed that when y1reaches zero,y2takes a negative value.If system(1)represents the motion of a landing spacecraft,simulations in Fig.1 show that the spacecraft bumps into the ground.Namely,some serious consequences will be brought about,once the time-optimal controller is subject to a time delay.Therefore,it would be theoretically and practically signifcantto develop a fnite-time stabilization algorithm for compensating both input saturation and input delay;which is exactly what this note addresses.

    B.Preliminaries

    We frst recall the Artstein’s transformation and its application in fnite-time stabilization of systems subject to input delay(for details the reader is referred to[4],[5]).

    Consider the system subject to an inputdelay h

    Making the Artstein’s transformation

    system(5)is transformed into

    Noting

    the transformation(6)is the same as that in[5],where the Artstein’s transformation is described by

    From Theorem 7 of[5],we have

    Lemma 1:If system(7)is fnite-time stabilizable by a feedback control

    with k(t)bounded and f:Rn→R continuous such that f(0)=0 and there is a strictly increasing functionαsuch that

    then,system(5)is fnite-time stabilizable by the feedback

    We then recall homogeneity concepts and a related lemma from[11].Defne the dilationΔk(x1,...,x2)=(kr1x1,...,krnxn),k>0,where x1,...,xnare suitable coordinates on Rnand r1,...,rnare positive real numbers.

    Def nition 1:With respect to the dilationΔk(x1,...,x2),a vector feld F is homogeneous of degree m if and only if the i th component Fiis homogeneous of degree ri+m.

    Lemma 2:The origin is a fnite-time stable equilibrium of F ifand only ifthe origin is an asymptotically stable equilibrium of F and m<0.

    This criterion willfacilitate the fnite-time stability analysis.Next,we introduce useful inequalities[12]:

    1)For a constant p(a ratio of positive odd integers)and for any x,y∈R,the following inequalities hold:

    2)Let c and d be positive constants.Given any positive number r>0,the following inequality holds:

    Finally,the saturation level function is defned as

    satε(s)=sign(s)min{|s|,ε},s ∈ R,ε> 0.

    III.CONTROL DESIGN AND STABILITY ANALYSIS

    Consider the double integrator that is subject to an input delay h:

    By making an Artsteins transformation

    system(9)is described by

    where

    Making another transformation

    we then have

    In this note,we will frst present a saturated fnite-time stabilizer for system(13),and then use Lemma 1 to show that,after substituting variables,this controller will be a globally fnite-time stabilizer of system(9).

    A.Saturated Finite-time Stabilizer of System(13)

    We willfrstfocus on system(13),for which the following saturated controller is assigned:

    where

    and the control parameters bi(i=1,2)will be determined later.

    Remark 1:In[1],the saturated fnite-time stabilizer for system(13)is described by

    with α ∈ (0,1),ε> 0.Getting rid of functions sign(·)and|·|,here we willachieve a new saturated fnite-time stabilizer.

    In the following,we show that the controller(14)is a fnite-time stabilizer of system(13)under suitable parameter conditions.

    Red uction Analysis o f S aturated Terms:

    Fact 1:The controller(14)of system(13)reduces to an unsaturated one in a fnite time under the following parameter conditions:

    Proo f:We prove this resultin a bottom-up recursive manner.

    Step 1:Consider the z2subsystem and suppose that≥ εholds for all t≥ 0.There holds

    As time goes to infnity,we obtain a contradiction

    So there exists a fnite time t2such that

    We then calculate the time derivative ofat the time instant t2.By(15),we havetogether with(19),we obtain

    From(19),we have

    For cancellation,we calculate|z2|in the following way:

    Then,the parameter condition(16)leads to

    Namely,we have

    Combining(19)and(22),we have

    Similarly,it can be shown that there exists a time t1such that

    Step 2:We claim that with b1>2-a,there exists a fnite time t1(≥ T2=max{t2,})such that z1(t)≤ εholds for all t≥t2.In fact,using(23),(24)and(F1),we frst have|z2-z2?| ≤ 2-aε1+a;next,for z1≥ ε,we have z2? =-b1ε1+a.Hence,by(17),for z1≥ εthere holds

    This implies that the claim is true.

    Likewise,it can be shown that a fnite time(≥T2)exists such that z1(t)≥ εholds for all t≥. ■

    Asymptotical Stability Analysis of the Reduced System:

    After the time T1=max{t1,,the controller(14)is reduced to

    Following the backstepping method in[12],we can prove:

    Fact 2:There are suitable b1,b2such that system(13)with the controller(25)is fnite-time stable.

    Proo f:Fact 2 is proved in three steps.

    Step 1:Defne the function W1=(2-a)-1for the subsystem=z2.Keeping(25)in mind,we obtain

    where l>0 is tunable.

    Step 2:For the whole system(13),(25),we defne the function

    and have

    To calculate(?W2/?z1)z2,we obtain

    Next,there holds

    We then have

    where m is a tunable positive constant.Noting u=-,we fnally have

    Direct computations show that,with

    Finite-time Stab ility Analysis:

    Combining Facts 1 and 2,we know that the closed-loop system(13),(14)is globally attractive and locally asymptotically stable,while also globally asymptotically stable at the origin in terms of[13].

    Moreover,we can claim that the reduced system is fnite-time stable.At frst,we show that system(13),(25)is homogeneous of order a with respect to the dilationSince z2and u=are homogeneous of degree 1+a and 1+2a,respectively,it follows from Defnition 1 that the vector feld

    is homogeneous of order a.

    By a<0 and Lemma 2,the claim is true.

    Thus,for system(13)we have actually constructed a globally fnite-time stabilizing controller,since system(13),(14)is globally asymptotically stable at the origin and in a fnite time the states enter a small domain

    in which system(13),(14)is fnite-time stable.

    So far we can have the following result:

    Proposition 1:The controller(14)is a saturated fnite-time stabilizer of system(13)if the parameter conditions(16),(17)and(26)are fulflled.

    Remark 2:The saturated fnite-time stabilizer for system(13)is motivated by the method in[2].A slight modifcation to the method in[2]is used:instead of calculating smalltime intervals for contradiction,we verify the saturation reduction in such a way that the derivatives of saturation functions are calculated in small domains and are proved to be non-positive(see the Proof of Fact 1).

    B.Saturated Finite-time Stabilizer of System(9)

    In this part,we give the entire expression of the saturated fnite-time stabilizer for system(9).

    We frst give a candidate of controller(14)by computing parameters a,b1and b2.Let a=-2/9;set b1=1.2,b2=1.6 according to(17)and(16)of Fact1;assign b1=1.2,b2=5.4 according to(26)of Fact 2.So we fnally set

    Now a saturated fnite-time stabilizer of system(13)is described by

    We then invoke Lemma 1 to show that,based on the controller(29),one can have a saturated fnite-time stabilizer of(9).

    Since z1and z2are proved to be bounded and there holds(1+a)-1>1,there is a certain d>0 such that

    Namely,the condition(8)of Lemma 1 is fulflled.Next,ithas been proved that the controller(29)is a fnite-time stabilizer of system(13).Thus,by Lemma 1,(12)and(29),we obtain a saturated fnite-time stabilizer of system(9):

    where Y1,Y2are given in(10).

    Note that Y1,Y2contain integral terms and involve the history of the control signals.Interestingly,by further using equations in(9),the expression of the fnal controller will not include integral terms.

    At frst,we have

    Furthermore,from equations in(9),we have

    Also,we have

    Thus,there hold

    Keeping in mind(30)and(31),we fnally obtain the entire expression of the saturated fnite-time stabilizer for system(9):

    Moreover,due to time delay,the actual control action will be

    In the end,the result in this note is summed up as follows.

    Theorem 1:For a=-2/9 and any h,ε> 0,the controller(32)globally fnite-time stabilizes system(9)if the parameter conditions(16),(17)and(26)are fulflled.

    Remark 3:In the case where the simple double integrator is considered,the fnalcontroldesign does notcontain an integral term.

    In the following,we use numericalsimulations to show the effectiveness of the algorithm.

    Take a=-2/9,ε=1,h=0.2.Run simulations for system(9),(32)under the initial conditions Simulations in Fig.2 show thatthe continuous controller(32)can guarantee that states converge to zero in fnite time,although the input is subject to a time delay.

    Using the simulation example,we now explain that the causality requirementis met.

    Fig.2. Histories of states and input of system(9),(32).

    When t=0,the control action is taken as

    At this time instant,u(0-0.2)has an explicit value that is determined from(X1(0),X2(0))=(1,1).

    When 0<t≤0.2,the control action is taken as

    Clearly,in the time interval(0,0.2],u(t-0.2)can always be determined from the input value at the previous instant.Therefore,it is safe to say that the causality requirement is met.

    Finally,it is noted that the controllers may be sensitive to input delay mismatches,since one needs to know the exact input delay when utilizing the suggested control design.Therefore,it would be a signifcant issue to address the robustness of such controllers.

    IV.SOME DISCUSSIONS

    In this section,we make some comments on the work in this note.

    Firstly,we explain that searching for a suitable method is crucial to establish our algorithm.

    To deal with the double integrator,we have made some attempts but ultimately failed.Then,we search for other solutions and fnd that the problem is largely simplifed once we jointly use the results in[2],[4]and[5].

    1)By making the Artsteins transformation[4]and using the resultin[5],the concerned problem is reduced to how to obtain a saturated fnite-time stabilizer;

    2)By drawing inspiration from[2],a saturated fnite-time stabilizer including no abs(·)and sign(·)functions can be explicitly constructed.

    Two failed attempts are listed as follows.

    Scheme 1:

    system(9)is described by

    By introducing the transformation

    for which we assign the saturated control law:

    where 0<ε<1,a=-2k1/(2k2+1),1≤k1<k2,and multiplying coeffcients bi(i=1,2)are to be determined.

    Transferring delay h into the perturbed termψ,we hope that the problem is simplifed and only the saturated fnitetime stabilization problem needs to be considered.Butwe fnd that the fnite-time stability of the reduced system is hard to prove.In fact,due to the perturbed termψand particularly the negative parameter a,itis hard to choose suitable bi(i=1,2)to ensure the fnite-time stability of the reduced system.A more detailed explanation is given as follows.Suppose that the saturation reduction is already verifed and there hold

    and

    Using the function W1=(2-a)-1for the x1subsystem of(33),and=-b1,we obtain

    and here we need to specially focus on the term

    Noting|ξ2|≤ ε< 1,if a > 0 we will have

    This estimate is useful for the stability analysis since we fnally hope to obtain the dissipative inequality with the form

    But we have to let a<0 for fnite-time stability.Thus,if we make a computation in the following way

    The term|xa|(|xa|≥ εa> 1)willbecome an obstacle to take suitable bi(i=1,2).Besides,other computational manners will give rise to the same problem.

    Scheme 2:

    Use the approach in[8]for system(9)and directly design

    where 0<ε<1,a=-2k1/(2k2+1),1≤k1<k2,the control parameters bi(i=1,2)are to be determined.

    In this case,delayed terms need to be treated at each step of the saturation reduction analysis and some conservative estimates will be inevitable due to fractional exponents.At the same time,the delayed terms and the fractionalexponents will also make it diffcult to dealwith the reduced system.

    Secondly,we briefy discuss a potential extension of the suggested algorithm.

    Initialinvestigation shows itis possible to dealwith the n-th orderintegrator,since we can stillreduce the problem into how to assign saturated fnite-time stabilizers.As an example,letus consider the triple integrator that is subject to an input delay h:

    By making the Artstein’s transformation

    system(34)is described by

    Making another transformation

    we fnally have

    Then,itsuffces to consider the saturated fnite-time stabilization of the equivalentsystem.

    As it can be imagined,we will face a parameter assignment problem in the case of the n th order integrator.In fact,we now have to use the contradiction method in[2]to do the saturation reduction analysis.As a consequence,some multiplying coeffcients will become quite large as the system dimension increases.Likewise,the multiplying coeffcients needed in treating the reduced system will also be too large.

    In addition,atpresent,itis notclear whether the algorithm can be extended to some feedforward nonlinear systems.Apart from the problem of choosing control parameters,we have to ensure that the equivalent system has an upper-triangular structure.Moreover,once the equivalentsystem contains some delayed terms,we will bump into the same problem as in Scheme 1.

    V.CONCLUSION

    Finite-time stabilization,compensation of input saturation,and compensation of input delay are important topics in the control community.In this note,through jointly using the existing approaches,we have for the frst time provided a fnite-time stabilizing design that compensates both input saturation and input delay.Hopefully,the analysis method in this note might motivate some new thinking.

    夫妻午夜视频| 欧美黑人精品巨大| 侵犯人妻中文字幕一二三四区| 搡老熟女国产l中国老女人| 一区二区三区国产精品乱码| 日韩国内少妇激情av| 9热在线视频观看99| 中文字幕av电影在线播放| 国产精品野战在线观看 | 一区二区三区激情视频| 亚洲精品国产区一区二| 乱人伦中国视频| 在线观看日韩欧美| 最近最新中文字幕大全免费视频| 久久久久久免费高清国产稀缺| 91在线观看av| 美女福利国产在线| 最近最新免费中文字幕在线| 在线观看www视频免费| 美国免费a级毛片| 又黄又粗又硬又大视频| 色综合婷婷激情| 午夜福利影视在线免费观看| 成人永久免费在线观看视频| 亚洲av五月六月丁香网| 亚洲色图 男人天堂 中文字幕| 久久人妻熟女aⅴ| 久久香蕉激情| 真人做人爱边吃奶动态| 美国免费a级毛片| 麻豆成人av在线观看| 成人永久免费在线观看视频| 亚洲av熟女| 亚洲性夜色夜夜综合| 国产有黄有色有爽视频| 老鸭窝网址在线观看| 中文欧美无线码| 日本撒尿小便嘘嘘汇集6| 老司机午夜福利在线观看视频| 久久影院123| 午夜91福利影院| 午夜激情av网站| 国产高清视频在线播放一区| 日韩国内少妇激情av| 久久久久久久久免费视频了| 中文字幕人妻丝袜制服| 大香蕉久久成人网| 国产亚洲欧美精品永久| 黄片播放在线免费| 国产免费男女视频| 国产精品1区2区在线观看.| 老熟妇乱子伦视频在线观看| 久久久久九九精品影院| 日韩av在线大香蕉| 又大又爽又粗| 久久精品亚洲av国产电影网| 午夜视频精品福利| 亚洲自偷自拍图片 自拍| 老熟妇乱子伦视频在线观看| av免费在线观看网站| av中文乱码字幕在线| 老汉色av国产亚洲站长工具| 视频在线观看一区二区三区| 嫩草影院精品99| 日韩高清综合在线| 欧美日韩亚洲国产一区二区在线观看| 女人被狂操c到高潮| 高清av免费在线| 亚洲 欧美一区二区三区| 成人精品一区二区免费| 黄色毛片三级朝国网站| 色哟哟哟哟哟哟| 精品久久久久久,| 99re在线观看精品视频| 国产免费现黄频在线看| 两性夫妻黄色片| 两人在一起打扑克的视频| 动漫黄色视频在线观看| 久久精品亚洲精品国产色婷小说| 一区二区三区激情视频| 国产又爽黄色视频| svipshipincom国产片| 啪啪无遮挡十八禁网站| 亚洲一码二码三码区别大吗| 国产av又大| 日韩一卡2卡3卡4卡2021年| 老司机福利观看| 脱女人内裤的视频| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 成人国语在线视频| 色婷婷久久久亚洲欧美| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 免费av中文字幕在线| 黄色成人免费大全| 日韩三级视频一区二区三区| 国产精品秋霞免费鲁丝片| 窝窝影院91人妻| 91字幕亚洲| 亚洲熟妇熟女久久| 亚洲欧美一区二区三区黑人| 亚洲精品在线美女| 成人永久免费在线观看视频| 成年版毛片免费区| 在线观看www视频免费| 校园春色视频在线观看| 日本wwww免费看| 国产97色在线日韩免费| 精品午夜福利视频在线观看一区| 91大片在线观看| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 少妇粗大呻吟视频| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 国产成人欧美| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 一级黄色大片毛片| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 校园春色视频在线观看| 法律面前人人平等表现在哪些方面| 亚洲一码二码三码区别大吗| 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| 精品卡一卡二卡四卡免费| 亚洲 欧美 日韩 在线 免费| 18禁观看日本| 99久久人妻综合| 一a级毛片在线观看| 国产欧美日韩精品亚洲av| 欧美激情极品国产一区二区三区| 啪啪无遮挡十八禁网站| 久久精品国产99精品国产亚洲性色 | 免费av中文字幕在线| 精品卡一卡二卡四卡免费| 午夜激情av网站| 亚洲av成人不卡在线观看播放网| 日韩 欧美 亚洲 中文字幕| 国产三级黄色录像| 天天躁夜夜躁狠狠躁躁| 欧美日韩国产mv在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 最新美女视频免费是黄的| 制服人妻中文乱码| 在线视频色国产色| 久久久水蜜桃国产精品网| 久久99一区二区三区| 精品熟女少妇八av免费久了| 午夜久久久在线观看| 国产成人精品久久二区二区免费| 一区二区三区激情视频| 婷婷六月久久综合丁香| 亚洲精品国产精品久久久不卡| 日韩大码丰满熟妇| 女人精品久久久久毛片| 国产人伦9x9x在线观看| 女人爽到高潮嗷嗷叫在线视频| 老司机靠b影院| 免费少妇av软件| 天堂√8在线中文| 久久精品91无色码中文字幕| 国产精品 欧美亚洲| 亚洲aⅴ乱码一区二区在线播放 | 国产真人三级小视频在线观看| 久久精品国产亚洲av高清一级| 亚洲免费av在线视频| 国产精品电影一区二区三区| 曰老女人黄片| 免费少妇av软件| 最近最新免费中文字幕在线| av天堂久久9| 欧美乱色亚洲激情| 啦啦啦免费观看视频1| 日韩视频一区二区在线观看| 波多野结衣一区麻豆| 亚洲成国产人片在线观看| 麻豆一二三区av精品| 精品少妇一区二区三区视频日本电影| 亚洲成人精品中文字幕电影 | e午夜精品久久久久久久| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 久久午夜综合久久蜜桃| 午夜91福利影院| 麻豆久久精品国产亚洲av | 亚洲一卡2卡3卡4卡5卡精品中文| www.精华液| a级毛片黄视频| 婷婷精品国产亚洲av在线| 亚洲国产精品sss在线观看 | 日韩欧美国产一区二区入口| 男女午夜视频在线观看| 欧美老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 色婷婷av一区二区三区视频| 日日爽夜夜爽网站| 97人妻天天添夜夜摸| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| 在线观看日韩欧美| 老司机亚洲免费影院| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| ponron亚洲| 天堂中文最新版在线下载| 成人影院久久| 99久久人妻综合| 免费看十八禁软件| 欧美日韩瑟瑟在线播放| videosex国产| 成人影院久久| 日韩精品免费视频一区二区三区| bbb黄色大片| 国产精品1区2区在线观看.| 成人亚洲精品一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 嫩草影院精品99| 久久人妻av系列| 亚洲国产毛片av蜜桃av| 日本一区二区免费在线视频| 欧美一级毛片孕妇| 色哟哟哟哟哟哟| 大型av网站在线播放| 国产成人av激情在线播放| 巨乳人妻的诱惑在线观看| tocl精华| 亚洲成人免费电影在线观看| 久久久久久久久久久久大奶| av电影中文网址| 亚洲熟妇中文字幕五十中出 | 男女做爰动态图高潮gif福利片 | netflix在线观看网站| 午夜福利影视在线免费观看| 身体一侧抽搐| 99精品欧美一区二区三区四区| 国产精品成人在线| 成人影院久久| 精品国产亚洲在线| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 精品一区二区三卡| 欧美成狂野欧美在线观看| 欧美日韩国产mv在线观看视频| 国产av在哪里看| 国产精品二区激情视频| 免费在线观看影片大全网站| 国产精品国产av在线观看| 久久99一区二区三区| 午夜老司机福利片| 脱女人内裤的视频| 国产高清视频在线播放一区| 欧美午夜高清在线| 一级片免费观看大全| 亚洲欧美精品综合久久99| 精品国产国语对白av| 自线自在国产av| 男女下面插进去视频免费观看| 国产精品电影一区二区三区| 99精品欧美一区二区三区四区| 高清av免费在线| 日本五十路高清| 国产色视频综合| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 搡老乐熟女国产| 在线视频色国产色| 国产97色在线日韩免费| 国产av在哪里看| 麻豆国产av国片精品| 欧美人与性动交α欧美软件| 天堂√8在线中文| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| 美女 人体艺术 gogo| 精品少妇一区二区三区视频日本电影| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 色哟哟哟哟哟哟| 国产精品久久视频播放| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 国产在线观看jvid| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 欧美大码av| 国产av在哪里看| 麻豆成人av在线观看| 国产成年人精品一区二区 | 亚洲国产精品合色在线| 一进一出好大好爽视频| 久久久久九九精品影院| 亚洲 欧美一区二区三区| 丝袜在线中文字幕| 女性生殖器流出的白浆| 国产成人欧美在线观看| 一边摸一边抽搐一进一出视频| 黄片小视频在线播放| 操出白浆在线播放| 热99国产精品久久久久久7| 色在线成人网| 欧美激情高清一区二区三区| 欧美黄色淫秽网站| 少妇粗大呻吟视频| 操出白浆在线播放| 好男人电影高清在线观看| 国产欧美日韩一区二区精品| 日本黄色视频三级网站网址| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 一级片免费观看大全| www日本在线高清视频| av有码第一页| 窝窝影院91人妻| 天堂动漫精品| 久久热在线av| 欧美黑人精品巨大| 日韩欧美在线二视频| 男人舔女人的私密视频| 免费人成视频x8x8入口观看| 国产免费现黄频在线看| 这个男人来自地球电影免费观看| 伦理电影免费视频| 老司机靠b影院| 免费观看人在逋| 欧美另类亚洲清纯唯美| 999精品在线视频| 在线看a的网站| 黄色怎么调成土黄色| 亚洲国产精品999在线| 香蕉国产在线看| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看的高清视频| 亚洲色图综合在线观看| www.999成人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 大型黄色视频在线免费观看| 国产精品久久视频播放| 9热在线视频观看99| 91av网站免费观看| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出 | 老汉色∧v一级毛片| 免费高清在线观看日韩| 日日夜夜操网爽| 91麻豆精品激情在线观看国产 | 99re在线观看精品视频| www国产在线视频色| 97碰自拍视频| 操出白浆在线播放| 少妇粗大呻吟视频| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 一级,二级,三级黄色视频| 欧美乱色亚洲激情| av在线天堂中文字幕 | 天天躁夜夜躁狠狠躁躁| av超薄肉色丝袜交足视频| 91九色精品人成在线观看| 免费高清视频大片| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| 91麻豆av在线| 村上凉子中文字幕在线| 成人黄色视频免费在线看| 变态另类成人亚洲欧美熟女 | 两性夫妻黄色片| 少妇 在线观看| 久久久久久久精品吃奶| 脱女人内裤的视频| 99热只有精品国产| 男女高潮啪啪啪动态图| 国产91精品成人一区二区三区| 久久影院123| 亚洲男人天堂网一区| 久久热在线av| 国产精品一区二区三区四区久久 | 欧美日韩福利视频一区二区| 好男人电影高清在线观看| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合久久99| 久久狼人影院| 男女高潮啪啪啪动态图| 中文字幕人妻丝袜一区二区| 亚洲色图综合在线观看| 大陆偷拍与自拍| 久久精品国产综合久久久| 色综合站精品国产| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲综合一区二区三区_| 一本大道久久a久久精品| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 这个男人来自地球电影免费观看| 丝袜在线中文字幕| 99久久精品国产亚洲精品| 新久久久久国产一级毛片| 国产单亲对白刺激| 午夜福利欧美成人| 国产av一区在线观看免费| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 99久久综合精品五月天人人| 国产精品香港三级国产av潘金莲| 在线播放国产精品三级| 精品人妻在线不人妻| 精品国产一区二区久久| 日韩免费av在线播放| 国产麻豆69| 国产男靠女视频免费网站| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 亚洲国产精品sss在线观看 | 身体一侧抽搐| 中文字幕另类日韩欧美亚洲嫩草| 国产高清videossex| 亚洲少妇的诱惑av| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看 | 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 狂野欧美激情性xxxx| 日本欧美视频一区| 黑人猛操日本美女一级片| 91麻豆精品激情在线观看国产 | 国产伦人伦偷精品视频| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 精品国产超薄肉色丝袜足j| 99热国产这里只有精品6| 神马国产精品三级电影在线观看 | 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 视频区图区小说| 国产av在哪里看| 成人三级做爰电影| 亚洲精品一二三| 黄色怎么调成土黄色| 90打野战视频偷拍视频| 一本综合久久免费| 1024视频免费在线观看| 热re99久久精品国产66热6| 国产国语露脸激情在线看| 亚洲精品一区av在线观看| 久久草成人影院| 日韩欧美一区二区三区在线观看| av国产精品久久久久影院| videosex国产| 美女国产高潮福利片在线看| 欧美乱妇无乱码| 波多野结衣高清无吗| 国产成人欧美在线观看| 桃色一区二区三区在线观看| 女人被躁到高潮嗷嗷叫费观| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 亚洲国产精品999在线| 性少妇av在线| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 叶爱在线成人免费视频播放| 国产激情欧美一区二区| 国产精品一区二区三区四区久久 | 男人的好看免费观看在线视频 | 999精品在线视频| 黄片大片在线免费观看| 老司机在亚洲福利影院| 男女之事视频高清在线观看| 精品久久久精品久久久| 美女高潮到喷水免费观看| 国产亚洲精品一区二区www| 99国产精品一区二区蜜桃av| 黄网站色视频无遮挡免费观看| 18禁黄网站禁片午夜丰满| 免费少妇av软件| 久久热在线av| 国产精品av久久久久免费| 岛国在线观看网站| 青草久久国产| 村上凉子中文字幕在线| 最新美女视频免费是黄的| 成人亚洲精品一区在线观看| 亚洲色图av天堂| 99在线视频只有这里精品首页| 好男人电影高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黄色片欧美黄色片| 精品国产国语对白av| a级毛片在线看网站| 色哟哟哟哟哟哟| 性欧美人与动物交配| 80岁老熟妇乱子伦牲交| 精品高清国产在线一区| a级毛片在线看网站| 纯流量卡能插随身wifi吗| 性欧美人与动物交配| a级片在线免费高清观看视频| 真人做人爱边吃奶动态| 高清黄色对白视频在线免费看| 999久久久精品免费观看国产| e午夜精品久久久久久久| 另类亚洲欧美激情| 久久国产亚洲av麻豆专区| 欧美在线一区亚洲| 麻豆久久精品国产亚洲av | 亚洲第一青青草原| 精品卡一卡二卡四卡免费| 国产精品久久视频播放| 国产深夜福利视频在线观看| 国内久久婷婷六月综合欲色啪| 久久久水蜜桃国产精品网| 色婷婷久久久亚洲欧美| 久久香蕉激情| 男人舔女人下体高潮全视频| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 亚洲成国产人片在线观看| 亚洲av美国av| av电影中文网址| 在线观看免费日韩欧美大片| 精品久久久久久,| 精品久久久久久久久久免费视频 | 99国产精品99久久久久| 亚洲精华国产精华精| 国产欧美日韩一区二区三区在线| 老司机福利观看| 99精品欧美一区二区三区四区| 无限看片的www在线观看| 两性夫妻黄色片| 美女大奶头视频| 色尼玛亚洲综合影院| 淫秽高清视频在线观看| 欧美日韩av久久| 黄色片一级片一级黄色片| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 久久久久精品国产欧美久久久| 国产精品爽爽va在线观看网站 | xxx96com| 天天添夜夜摸| 在线观看免费视频日本深夜| 亚洲免费av在线视频| 人人妻人人爽人人添夜夜欢视频| netflix在线观看网站| 久久中文字幕人妻熟女| 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 欧美精品亚洲一区二区| 1024视频免费在线观看| 欧美一级毛片孕妇| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| av天堂在线播放| 可以免费在线观看a视频的电影网站| 亚洲第一av免费看| 中文字幕色久视频| 国产成人系列免费观看| 日韩欧美三级三区| 91成人精品电影| 国产区一区二久久| 亚洲熟女毛片儿| 日本五十路高清| 欧美中文日本在线观看视频| 一区二区日韩欧美中文字幕| 99国产精品99久久久久| 久久精品成人免费网站| 亚洲成人免费av在线播放| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕一二三四区| 不卡一级毛片| 欧美成人免费av一区二区三区| 十八禁网站免费在线| 老熟妇乱子伦视频在线观看| 精品无人区乱码1区二区| 国产精品久久久人人做人人爽| 久久久久久久久中文| 久久久久九九精品影院| 久久国产精品男人的天堂亚洲| 黄色毛片三级朝国网站| www.www免费av| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 国产精品久久视频播放| 久久久国产欧美日韩av| 久久久国产一区二区| 91麻豆精品激情在线观看国产 | 人妻久久中文字幕网| 美女大奶头视频| 夫妻午夜视频| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 免费观看人在逋| 欧美不卡视频在线免费观看 | 黄色 视频免费看| 波多野结衣一区麻豆| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清 | 中文亚洲av片在线观看爽| 香蕉国产在线看| 99国产极品粉嫩在线观看| 成年女人毛片免费观看观看9| 一进一出好大好爽视频| 丁香六月欧美|