• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Method for Optimal Feedback Control and Generalized HJB Equation

    2018-09-28 10:58:56XuesongChenandXinChen
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Xuesong Chen and Xin Chen

    Abstract—In this paper,a new iterative method is proposed to solve the generalized Hamilton-Jacobi-Bellman(GHJB)equation through successively approximate it.Firstly,the GHJB equation is converted to an algebraic equation with the vector norm,which is essentially a set of simultaneous nonlinear equations in the case of dynamic systems.Then,the proposed algorithm solves GHJB equation numerically for points near the origin by considering the linearization of the non-linear equations under a good initial control guess.Finally,the procedure is proved to converge to the optimal stabilizing solution with respect to the iteration variable.In addition,it is shown that the result is a closed-loop control based on this iterative approach.Illustrative examples show that the update control laws will converge to optimal control for nonlinear systems.

    I.INTRODUCTION

    THE optimal control of nonlinear systems is one of the mostchallenging and difficultsubjects in controltheory.A large number of theoretical results about the nonlinear optimal control problems have been reported in the past few decades[1]-[9].The dynamic programming algorithm is widely regarded as the most comprehensive method in finding optimal feedback controllers for generic nonlinear systems.However,the main drawback of dynamic programming methods today is the computationalcomplexity required to describe the value function which grows exponentially with the dimension of its domain.It is well known that continuous-time nonlinear optimal control problem depends on the solution of Hamilton-Jacobi-Bellman(HJB)equation,which is a nonlinear partialdifferentialequation(PDE).Even in simple cases,the HJB equation may nothave globalanalytic solutions.Various methods have been proposed in the literature forcomputing numericalsolutions to the HJB equation,see for example Aguilar et al.[10],Cacace et al.[11],Govindarajan et al.[12],Markman et al.[13],Sakamoto et al.[8],Smears et al.[14],and the references therein.

    It is known that the generalized Hamilton-Jacobi-Bellman(GHJB)equation is linear and easier to solve than HJB equation,butno generalsolution for GHJB equation is demonstrated as to the best knowledge of authors.Beard et al.[15]presented a series of polynomialfunctions as basic functions to solve the approximate GHJB equation,however,this method requires the computation of a larger number of integrals.Galerkin’s spectralapproximation approach is proposed in[16]to find approximate but close solutions to the GHJB at each iteration step.The reader is also referred to Markman et al.[13],Smears et al.[14],Saridis et al.[17],Aguilar et al.[10],Gong et al.[18]for more details and different perspectives.Although many articles have discussed the solution to the HJB equation for the continuous-time systems,currently there is very minimal work available on iterative solution approach for GHJB equation.

    In this paper,we propose a new iterative method to find the approximate solution to GHJB equation which is associated with the optimal feedback control for nonlinear systems.The idea of this iterative algorithm for GHJB equation is based on Beard’s work[16].Our approach is designed to obtain the general computational solution for the GHJB equation.We firstly convert the GHJB equation to a simple algebraic equation with vector norm,which is essentially a set of nonlinear equations.Then we propose the procedure of this method to compute the solution to the GHJB by considering the linearization of the nonlinear equations under a good initial control guess.The stability and convergence results of the proposed scheme are proved.

    The paper is organized as follows.The problem description is presented in Section II.The main result of this paper is derived in Section III,i.e.,the iterative algorithm forthe GHJB equation and the detailed mathematical proofs and justifications of the proposed approach.The numerical example is provided in Section IV.Finally,a brief conclusion is given in Section V.

    II.PROBLEM STATEMENT

    Consider the following continuous-time affine nonlinear system:

    where x∈Ω?Rnis the system state,f(0)=0,x0∈Ω?Rnis the initial state and u∈Rmis the control input,and f:Ω → Rn,g:Ω → Rn×m,u:Ω → Rm.Assume that the system is Lipschitz continuous on a setΩthat contains the origin.

    The optimalcontrolproblem under consideration is to find a state feedback controllaw u(x)=u?(x)such thatthe system(1)is closed-loop asymptotically stable,and the following infinite horizon cost function is minimized:

    where l:Ω→ R is called the state penalty function,and it is a positive-defi nite function onΩ.Typically,l is a quadratic weighting of the state,i.e.l=xTQx where Q is a positivedefinite matrix.

    It is well known that the optimal control can be directly found to bewhere V satisfies the HJB equation

    Although the solution to the nonlinear optimal problem has been well-known since the early 1960s in[3],relatively few control designs explicitly use a feedback function of the form given in(3).The primary difficulty lies in solving the HJB equation,for which general closed-form solutions do not exist.It is noted that the HJB equation is a nonlinear PDE that is impossible to be solved analytically.To obtain its approximate solution,in Saridis[17],the HJB equation was successively approximated by a GHJB equation,written as GHJB(V,u)=0,if

    with

    The cost of u(i+1)is given by the solution of equation GHJB(Vi,u(i))=0.Since the GHJB equation is linear,it is theoretically easier to solve than the nonlinear HJB equation.

    III.THE MAIN RESULTS

    In many numerical methods for HJB equations,which are typically solved backward in time,the discretization is based on spatialcausality and the computation is explicitin time.The value of the solution function V at a grid point is computed at an earlier time using the known value of the function at neighboring grid points at a later time.This coupling usually comes from the discretization of the spatial derivatives.In order to mitigate the curse of dimensionality,a new iterative method using a simple algebraic equation with vector norm is proposed.

    A.Iterative Method for the GHJB Equation

    It is obvious that the GHJB equation(4)can be rewritten as

    with

    Let F(i)= (f+gu(i))T,define the norm of x =(x1,x2,...,xn)Tas follows

    then(7)can be rewritten as

    where

    Then,we obtain the feedback control from(8)

    The method proposed in this paper may be implemented by applying the following procedure on the system(1).

    In Algorithm 1,p is a function of the state x,that is to say,p(x)belongs to an infinite-dimensional functional space.The notation of this norm is defined as follows:

    Algorithm1: IterativeAlgorithmBasedonGHJBEquation u(i):=GHJB(f,g,l,u(1))IF(‖p(i)-p(i-1)‖p < ?)Solvenumerically:u?=u(i)ELSE Restriction:u(i+1)=-12gT(p(i))T Computation:p(i+1)=-l+‖u(i+1)‖2‖f+gu(i+1)‖2(f+gu(i+1))Recursion:i←i+1 ENDIF RETURNu(i).

    B.Initial Control Guess

    To apply the method introduced in this paper we mustchoose an initial stabilizing contro u(1)for the system(1) and an estimate of the stability region of u(1).A good estimate for u(1)can be found by considering the linearization of (11).

    If q∈Rnis an equilibrium point for system(1),and F(i)is differentiable at q, then its derivative is given byJF(i)(q).In this case,the linear map described byJF(i)(q)is the best linear approximation of F(i)near the point q, in the sense that

    for x close to q and where o is the little o-notation(forx→q)and ‖x-q‖ is the distance between x and q.

    C.Stability Analysis

    In this subsection, we conduct the stability and convergenceanalysis of the proposed scheme. First, we define the pre-Hamiltonian function for some control u(x) and an associatefunction V (x)

    Lemma1:The optimal control lawu?and the optimal value functionV?(x),if they exist,satisfy(4)and

    This lemma is proved in [17] which is a sufficient conditionfor the optimal control solution to the nonlinear systems.

    There is a bulk of literature devoted to the problem ofdesigning stable regulators for nonlinear system. The mostimportant and popular tool is Lyapunov’s method. To useLyapunov’s method, the designer first proposes a control andthen tries to find a Lyapunov function for the closed-loopsystem. A Lyapunov function is a generalized energy functionof the states, and is usually suggested by the physics of theproblem. It is often possible to find a stabilizing control for aparticular system. Now we show that value function V1is aLyapunov function for the system(f,g,u(2)).

    Theorem 1: Assume Ω is compact set,u(1)∈ Au(Ω)is anarbitrary admissible control for the system (1) onΩ,if there exists a positive definite continuously differentiable function V1(x,t)on[t0,∞)× Rnsatisfying the GHJB equation

    associated with

    then for all t∈ [t0,∞),system(1)hahas bounded trajectories over[t0,∞),and the origin is a stable equilibrium point forsystem (1).

    Proof:SinceV1(x,t)is a continuously differentiable function,we take the derivative ofV1(x,t)along the system(f,g,u(2))and the factthat

    Substituting (17) into (16), we can get

    This establishes the boundaries of the trajectories of system(1)over[t0,∞).Under the assumptions of the theorem,(x,t)<0 is a Lyapunov function, and the origin is a stableequilibrium point for system (1). ■

    D.Convergence Results

    In this subsection, the Algorithm 1 converges to the optimalcontrol will be shown when it exists. It is clear that thefollowing equation is easily obtained from (7) and (8)

    Linearizingtheequation(19)accordingto(13),weobtain

    where T is a linear operator. In its general form the classicalmethod of successive approximation applies to equations of theform=T(u).solution u to such an equation is said to be afixed point of the transformation T since T leaves u invariant.To find a fixed point by successive approximation, we begin with an initial trial vector u(1)and computeu(2)=T(u(1)).Continuing in this manner iteratively, we compute successive vectors u(i+1)=T(u(i)).Under appropriate conditions the sequence{u(i)}converges to a solution of the original equation.

    Definition 1:Let S be a subset of a normal space X and let T be a transformation mapping S into S.Then,T is said to be a contraction mapping if there isα,0≤α<1 such that‖T(u(1))-T(u(2))‖ ≤ α‖u(1)-u(2)‖.

    Note for example that a transformation having ‖T′(u)‖≤α<1 on a convex set S is a contraction mapping since,by the mean value inequality,‖T(u(1))-T(u(2))‖ ≤ sup‖u(1)-u(2)‖≤ α‖u(1)-u(2)‖.

    Lemma 2:If T is a contraction mapping on a closed subset S of a Banach space,there is a unique vector u?∈ S satisfying u?=T(u?).Furthermore,u?can be obtained by the method of successive approximation starting from an arbitrary initial vector in S.

    Proof:Select an arbitrary element u(1)∈S.Define the sequence{u(i)}by the formula u(i+1)= T(u(i)).Then‖u(i+1)-u(i)‖=‖T(u(i))-T(u(i-1))‖ ≤ α‖u(i)-u(i-1)‖.Therefore,

    It follows that

    and hence we conclude that{u(i)}is a Cauchy sequence,since S is a closed subset of a complete space,there is an element u?∈ S such that u(i)→ u?.

    We now show that u?=T(u?).We have

    By appropriate choice of n the right-hand side of the above inequality can be made arbitrarily small.Thus‖u?-T(u?)‖ =0.

    It remains only to show that u?is unique.Assume that u?andare fixed points.Then

    Thus u?=.■

    Defining T(u)=Au+B,the problem is equivalent to that of finding a fixed point of T.Furthermore,the method of successive approximation proposed above for this problem is equivalentto ordinary successive approximation applied to T.Thus it is sufficient to show that T is a contraction mapping with respect to some norm on n-dimensional space.For the mapping T defined above we have

    The basic idea of successive approximation and contraction mappings can be modified in several ways to produce convergence theorems for a number of different situations.We consider one such modification below.

    Theorem 2:Let T be a continuous mapping from a closed subset S of a Banach space into S,and suppose that Tnis a contraction mapping for some positive integer n.Then,T has a unique fixed point in S which can be found by successive approximation.

    Proof:Let u(1)be arbitrarily selected from S.Define the sequence{u(i)}by

    Now since Tiis a contraction,it follows by Lemma 1 that the subsequence{u(ik)}converges to an element u?∈ S which is a fixed point of Ti.We show that u?is a unique fixed point of T.

    By the continuity of T,the element T(u?)can be obtained by applying Tisuccessively to T(u(1)).Therefore,we have u?=limk→∞Tik(u(1))and

    Hence,again using the continuity of T,

    where α < 1.Thus u?=T(u?).If u?,v?are fixed points,then

    and hence u?=v?.Thus the u?found by successive approximation is a unique fixed point of T. ■

    IV.ILLUSTRATIVE EXAMPLES

    In this section,we will show how this solution using the proposed method is worked to obtained a control law which improves the closed-loop performance of the original control.

    A.One Dimensional Nonlinear System

    A first-order nonlinear system is described by the state equation

    with initial condition x(0)=x0.It is desired to find u(t),t∈ (0,∞),that minimizes the performance measure

    Fig.1. A continuous stabilizing control u(1)with different initial state.

    Fig.2. A continuous stabilizing control u(2)with different time.

    Assume a linear control to start with

    it is clear that the system is stable when a>0.Now select a feedback initial control

    then the system(24)under controller u(1)is stable with different initial value as shown in Fig.1.Substitute u(1)into(7),we have

    The above yields

    Then the system(24)under controller u(2)is stable with different time domain as shown in Fig.2.

    To continue the iterative algorithm,we would repeat the preceding steps,using this revised value.If we select x=2,then we can obtain the value p(i)(i=1,2,...),for example,p(1)(2)=-8.000,p(2)(2)=-2.500,p(3)(2)=-0.4120,p(4)(2)=-0.2594,p(5)(2)=-0.2552,p(6)(2)=-0.2550.It is obvious that

    Eventually the iterative procedure should converge to the optimal control history,u?.The preceding example indicates the steps involved in carrying out one iteration of Algorithm 1.Letus use this algorithm to determine the optimaltrajectory and control for a continuous stirred-tank chemical reactor.

    B.Two Dimensional Nonlinear System

    The state equations for a continuous stirred-tank chemical reactorare given below from[1].The flow ofa coolantthrough a coil inserted in the reactor is to control the first-order,irreversible exothermic reaction taking place in the reactor.x1=T(t)is the deviation from the steady-state temperature and x2(t)=C(t)is the deviation from the steady-state concentration.u(t)is the normalized controlvariable,representing the effect of coolant flow on the chemical reaction.The state equations are

    with the boundary conditions x0=[0.05,0]T.The performance measure to be minimized is

    Fig.3.(a)Optimal control and trajectory;(b)Performance measure reduction by Algorithm 1;(c)Performance measure reduction by Beard in[16].

    indicating thatthe desired objective is to maintain the temperature and concentration close to their steady-state value without expending large amounts of control effort.R is a weighting factor that we shall select arbitrarily as 0.1.To ensure that a monotonically decreasing sequence of performance indices was generated,each trial control was required to provide a smaller performance measure than the preceding control.This was accomplished by re-generating any trial control that increased the performance measure.

    With t∈[0,0.78],and an initial value equal to 1.0,the value of the performance measure as a function of the number of iterations is as shown in Fig.3(b).The results compared with Beard’s method are shown in Fig.3(c).In this figure,J is regarded as the performance obtained by Beard’s method in[16].It is seen from Fig.3(b)and Fig.3(c)that the optimal feedback controlobtained by ourmethod is betterthan Beard’s method.However,the approximate optimal controlunder our approach can be decreased by strengthening the stopping criteria even if it costs further computations.

    To illustrate the effects of differentinitialparameters for the control history,different additional solutions were obtained.The results ofthese computer runs are summarized in Table I.

    TABLE I SUMMARY OF ALGORITHM 1 WITH DIFFERENT PARAMETERS

    The value of the performance measure J as a function of the number of iterations with different initial control(u(1)=1.0,0)and different stopping criterion(?=10-6,10-7)is as shown in Table I.To ensure thata monotonically decreasing sequence of performance indices was generated,each initial control was required to provide a smaller stopping criterion than the preceding initial control.This was accomplished by having?and re-generating any trial control that increased the performance measure.It could be seen from Table I when the initial control is equal to zero and the stopping criterion is 10-6,the steps of iteration reduced significantly,however,the performance measure yielded only very slightreduction.This type of progress is typical of the iterative method.

    Remark 1:To conclude our discussion of Algorithm 1,let us summarize the important features of the algorithm.First of all,from the nominal control history,u(1),must be selected to begin the numerical procedure.In selecting the nominal control we use whatever physical insight we have about the problem.Secondly,the current control u(i)and the corresponding state trajectory x(i)are stored.If storage must be conserved,the state value needed to determine p(i)can be obtained by reintegrating the state equations with the costate equations.If this is done x(i)does not need to be stored;however,the computation time will increase.Generating the required state values in this mannermay take the results ofthe backward integration more accurate,because the piecewiseconstant approximation for x(i)need not be used.Finally,the proposed method is generally characterized by ease of starting the initial guess for the control is not usually crucial.On the other hand,the method has a tendency to converge slowly as a minimum is approach.

    C.Robot Arm Problem

    The robotarm problem is taken from[1].In the formulation the arm of the robot is a rigid bar of length L that protrudes a distanceρfrom the origin to the gripping end and sticks out a distance L-ρin the opposite direction.If the pivot point of the arm is the origin of a sphericalcoordinate system,then the problem can be phrased in terms of the lengthρof the arm from the pivot,the horizontal and vertical angles(θ,φ)from the horizontal plane,the controls(uρ,uθ,uφ),and the final time tf.Bounds on the length and angles are

    and for the controls

    The equations of motion for the robot arm are

    where I is the moment of inertia,defined by

    The boundary conditions are

    Fig.4. Variables x1,...,x6 for the robot arm problem.

    Fig.5. Control variables uρ,uθ,uφ for the robot arm problem.

    This model ignores the fact that the spherical coordinate reference frame is a non-inertial frame and should have terms for Coriolis and centrifugal forces.Let x1=ρ,x2=˙ρ,x3=θ,x4=˙θ,x5=φ,x6=˙φ,then the optimal control of this robot arm problem is stated as follows.Find the controls(uρ,uθ,uφ)such that they minimize the cost functional

    subject to the dynamic constraints

    The control inequality constraints and the boundary conditions are shown in the above statement.

    Fig.4 shows the variables x1,...,x6for the robot arm as a function of time.The control variables uρ,uθ,uφfor the robot arm as a function of time are also shown in Fig.5.Note that the functions x1,x3,x5for the robot arm are continuously differentiable,but since the second derivatives are directly proportionalto the controls,the second derivatives are piecewise continuous.

    V.CONCLUSION

    In this paper,we proposed a new iterative numerical technique to solve the GHJB equation effectively.There is a need for numerical methods which approximate solutions to the special types of equations which arise in nonlinear optimal control.We also showed that the resulting controls are in feedback form and stabilize the closed-loop system.The procedure is proved to converge to the optimal solution to GHJB equation with respect to the iteration variable.

    国产成人av教育| 久久久国产欧美日韩av| 国产高清videossex| 久久天躁狠狠躁夜夜2o2o| 欧美一级a爱片免费观看看 | 久久久久免费精品人妻一区二区 | 人人澡人人妻人| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区91| 国产精品二区激情视频| 国产av在哪里看| 亚洲电影在线观看av| 9191精品国产免费久久| 十分钟在线观看高清视频www| 久久香蕉国产精品| 村上凉子中文字幕在线| 一进一出抽搐gif免费好疼| 欧美不卡视频在线免费观看 | 成人亚洲精品av一区二区| 亚洲成av人片免费观看| av福利片在线| av在线天堂中文字幕| 精品国产一区二区三区四区第35| 国产精品亚洲一级av第二区| 亚洲午夜理论影院| 欧美国产日韩亚洲一区| 黄色片一级片一级黄色片| 男女之事视频高清在线观看| 99精品欧美一区二区三区四区| 久久久久亚洲av毛片大全| 久热爱精品视频在线9| 亚洲av中文字字幕乱码综合 | 一区二区三区激情视频| 在线观看舔阴道视频| 日韩欧美国产在线观看| 在线看三级毛片| 国产伦人伦偷精品视频| 天堂√8在线中文| 国产又爽黄色视频| 麻豆久久精品国产亚洲av| 久久精品国产综合久久久| 国产片内射在线| 狂野欧美激情性xxxx| 麻豆成人午夜福利视频| 免费搜索国产男女视频| 国产精品av久久久久免费| 久久精品国产清高在天天线| 国产高清激情床上av| 欧美亚洲日本最大视频资源| 欧美性长视频在线观看| 中文字幕久久专区| 亚洲精品国产一区二区精华液| 国产亚洲欧美98| 男女视频在线观看网站免费 | 一级a爱片免费观看的视频| 侵犯人妻中文字幕一二三四区| 不卡av一区二区三区| 窝窝影院91人妻| xxx96com| 最近最新中文字幕大全电影3 | 正在播放国产对白刺激| 久久久久九九精品影院| 精品久久久久久久毛片微露脸| 久久中文字幕人妻熟女| 亚洲成av片中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中文亚洲av片在线观看爽| 国产成人精品久久二区二区免费| 久久久久九九精品影院| 88av欧美| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影 | 午夜福利免费观看在线| 十八禁网站免费在线| av在线播放免费不卡| 国产av在哪里看| 亚洲av成人不卡在线观看播放网| 亚洲精品在线美女| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 久久久久久久久中文| 精品国产国语对白av| 日日摸夜夜添夜夜添小说| 精品国内亚洲2022精品成人| 国产又黄又爽又无遮挡在线| 久久国产亚洲av麻豆专区| 一级毛片精品| 成人永久免费在线观看视频| 看片在线看免费视频| 精品午夜福利视频在线观看一区| 国产av又大| 禁无遮挡网站| 亚洲人成77777在线视频| 天堂√8在线中文| 欧美黑人欧美精品刺激| 亚洲成av片中文字幕在线观看| 国产精品精品国产色婷婷| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 久久草成人影院| 91老司机精品| 亚洲一区二区三区不卡视频| 在线观看www视频免费| 变态另类成人亚洲欧美熟女| 少妇 在线观看| 日本熟妇午夜| 亚洲一区二区三区不卡视频| 好看av亚洲va欧美ⅴa在| 国产精品野战在线观看| 脱女人内裤的视频| 精品久久蜜臀av无| 亚洲一区高清亚洲精品| 无人区码免费观看不卡| 1024手机看黄色片| 两性夫妻黄色片| 成人手机av| 午夜福利视频1000在线观看| 亚洲国产欧美一区二区综合| 69av精品久久久久久| 一个人免费在线观看的高清视频| 十八禁网站免费在线| 88av欧美| 国产又色又爽无遮挡免费看| 亚洲色图av天堂| 看片在线看免费视频| 99热这里只有精品一区 | 十八禁网站免费在线| 岛国视频午夜一区免费看| 在线永久观看黄色视频| 久久精品aⅴ一区二区三区四区| 午夜福利18| 91成人精品电影| 好男人电影高清在线观看| 999精品在线视频| 亚洲精品在线美女| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩瑟瑟在线播放| 女人爽到高潮嗷嗷叫在线视频| 色播在线永久视频| 婷婷精品国产亚洲av| 一区二区三区激情视频| 丝袜在线中文字幕| 在线观看www视频免费| 亚洲国产看品久久| 99在线人妻在线中文字幕| 中亚洲国语对白在线视频| 香蕉国产在线看| 亚洲成a人片在线一区二区| 亚洲男人的天堂狠狠| 制服人妻中文乱码| 国产99久久九九免费精品| 香蕉久久夜色| 少妇 在线观看| 麻豆久久精品国产亚洲av| 精品久久久久久,| av在线播放免费不卡| 一a级毛片在线观看| 亚洲第一青青草原| 国产黄a三级三级三级人| 国产一区二区三区在线臀色熟女| 欧美激情高清一区二区三区| 久久精品91无色码中文字幕| 在线观看日韩欧美| 女人被狂操c到高潮| 亚洲精品国产一区二区精华液| 国产又黄又爽又无遮挡在线| 窝窝影院91人妻| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 欧美 日韩 在线 免费| 韩国精品一区二区三区| 亚洲精品在线观看二区| 午夜免费成人在线视频| 女人高潮潮喷娇喘18禁视频| 妹子高潮喷水视频| 日本免费一区二区三区高清不卡| 韩国精品一区二区三区| 中文字幕人成人乱码亚洲影| 国产精品免费一区二区三区在线| 久久久久久久午夜电影| 免费观看人在逋| 国产精品 国内视频| 国产成人av教育| 熟女少妇亚洲综合色aaa.| 欧美最黄视频在线播放免费| 超碰成人久久| 夜夜看夜夜爽夜夜摸| 国产成人系列免费观看| 欧美激情 高清一区二区三区| 国产精品九九99| 欧美在线一区亚洲| 最近在线观看免费完整版| 欧美一级毛片孕妇| svipshipincom国产片| 欧美中文综合在线视频| 观看免费一级毛片| 婷婷亚洲欧美| 好看av亚洲va欧美ⅴa在| 亚洲人成网站在线播放欧美日韩| 一区二区日韩欧美中文字幕| videosex国产| 1024手机看黄色片| xxx96com| 日韩精品中文字幕看吧| 午夜影院日韩av| 亚洲中文av在线| 大型av网站在线播放| 一级片免费观看大全| 午夜福利免费观看在线| 亚洲激情在线av| 国产一卡二卡三卡精品| or卡值多少钱| 日日干狠狠操夜夜爽| 两性夫妻黄色片| 国产麻豆成人av免费视频| 午夜久久久在线观看| 精品高清国产在线一区| 熟女电影av网| 久久欧美精品欧美久久欧美| 久久久国产精品麻豆| 香蕉丝袜av| 国产精华一区二区三区| 桃色一区二区三区在线观看| 精品第一国产精品| 国产伦在线观看视频一区| 亚洲五月色婷婷综合| 一区二区三区高清视频在线| 国产又爽黄色视频| 欧美黄色片欧美黄色片| 俄罗斯特黄特色一大片| 亚洲成av人片免费观看| 欧美丝袜亚洲另类 | 欧洲精品卡2卡3卡4卡5卡区| 91老司机精品| 女性被躁到高潮视频| 亚洲av成人不卡在线观看播放网| 在线免费观看的www视频| 制服丝袜大香蕉在线| 操出白浆在线播放| 日韩欧美国产在线观看| 一二三四在线观看免费中文在| 欧美+亚洲+日韩+国产| 香蕉av资源在线| 啦啦啦 在线观看视频| 母亲3免费完整高清在线观看| 国产麻豆成人av免费视频| 成熟少妇高潮喷水视频| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 欧美性猛交╳xxx乱大交人| 香蕉国产在线看| 亚洲国产精品久久男人天堂| 国产伦在线观看视频一区| 熟女电影av网| 国内揄拍国产精品人妻在线 | 亚洲无线在线观看| 欧美黄色片欧美黄色片| 99在线人妻在线中文字幕| 久久久精品欧美日韩精品| 国产91精品成人一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 国产av又大| 欧美久久黑人一区二区| 欧美绝顶高潮抽搐喷水| 一区二区三区高清视频在线| 久久精品国产清高在天天线| 91国产中文字幕| 精品第一国产精品| 身体一侧抽搐| 一级a爱片免费观看的视频| 变态另类丝袜制服| 欧美日韩乱码在线| 中文字幕精品亚洲无线码一区 | 日韩大尺度精品在线看网址| 亚洲最大成人中文| 99久久久亚洲精品蜜臀av| 一区二区日韩欧美中文字幕| 日韩视频一区二区在线观看| 国产视频内射| 可以在线观看毛片的网站| 欧美三级亚洲精品| www.自偷自拍.com| 亚洲av片天天在线观看| av电影中文网址| 亚洲熟女毛片儿| 国产真人三级小视频在线观看| 日韩欧美免费精品| 国产精品久久视频播放| 国产精品亚洲av一区麻豆| 91在线观看av| 波多野结衣高清无吗| 国产精品九九99| 久久九九热精品免费| 欧美一级毛片孕妇| av电影中文网址| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 亚洲中文日韩欧美视频| 精品一区二区三区视频在线观看免费| 日韩成人在线观看一区二区三区| 午夜福利免费观看在线| 真人一进一出gif抽搐免费| 91麻豆av在线| 久久国产亚洲av麻豆专区| 日本免费一区二区三区高清不卡| 亚洲男人天堂网一区| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 99re在线观看精品视频| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 日韩大尺度精品在线看网址| 免费无遮挡裸体视频| 国产99白浆流出| 18禁国产床啪视频网站| cao死你这个sao货| av福利片在线| 精品一区二区三区av网在线观看| 日本熟妇午夜| 男女午夜视频在线观看| 国产av不卡久久| 成年人黄色毛片网站| 我的亚洲天堂| 亚洲色图av天堂| 久久天堂一区二区三区四区| 两性夫妻黄色片| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 女生性感内裤真人,穿戴方法视频| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 国产精品久久久久久亚洲av鲁大| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 久久国产亚洲av麻豆专区| 日本免费一区二区三区高清不卡| 欧美激情极品国产一区二区三区| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 黄色视频,在线免费观看| 久久草成人影院| 亚洲av成人一区二区三| 婷婷精品国产亚洲av在线| 俄罗斯特黄特色一大片| aaaaa片日本免费| 精品卡一卡二卡四卡免费| 精品久久久久久,| а√天堂www在线а√下载| 老司机福利观看| 在线观看免费视频日本深夜| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频 | 日韩免费av在线播放| 亚洲精品中文字幕一二三四区| 欧美大码av| 免费看a级黄色片| 午夜福利在线观看吧| 色综合婷婷激情| 精华霜和精华液先用哪个| 午夜免费激情av| 中文在线观看免费www的网站 | 女性被躁到高潮视频| 人妻丰满熟妇av一区二区三区| 亚洲全国av大片| 欧美在线一区亚洲| 在线播放国产精品三级| 国产精品亚洲一级av第二区| 日韩欧美三级三区| 后天国语完整版免费观看| 久久青草综合色| 亚洲全国av大片| or卡值多少钱| 欧美色欧美亚洲另类二区| netflix在线观看网站| 精品人妻1区二区| 极品教师在线免费播放| 女人被狂操c到高潮| 中文字幕精品免费在线观看视频| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 色婷婷久久久亚洲欧美| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| 午夜福利一区二区在线看| 香蕉丝袜av| 精品日产1卡2卡| av免费在线观看网站| 亚洲精品久久成人aⅴ小说| 国产成人精品无人区| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 国产免费av片在线观看野外av| 满18在线观看网站| 精品久久久久久久久久久久久 | 亚洲精品在线观看二区| 欧美激情高清一区二区三区| 91麻豆av在线| 亚洲专区国产一区二区| 亚洲av美国av| 可以在线观看的亚洲视频| 国产熟女xx| 久久国产精品男人的天堂亚洲| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久精品吃奶| 日本三级黄在线观看| 亚洲三区欧美一区| 欧美激情极品国产一区二区三区| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 97碰自拍视频| 99久久无色码亚洲精品果冻| 国产成人av激情在线播放| 精品人妻1区二区| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 99国产精品一区二区蜜桃av| svipshipincom国产片| 亚洲五月色婷婷综合| 国产精品九九99| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看 | 日本精品一区二区三区蜜桃| 在线观看日韩欧美| 黑人操中国人逼视频| 无遮挡黄片免费观看| 国产精品久久视频播放| 可以在线观看毛片的网站| 亚洲国产精品999在线| 这个男人来自地球电影免费观看| 国产激情欧美一区二区| 在线视频色国产色| 青草久久国产| 国产成人精品久久二区二区免费| 日韩精品免费视频一区二区三区| 一个人观看的视频www高清免费观看 | 男女做爰动态图高潮gif福利片| 亚洲一卡2卡3卡4卡5卡精品中文| 成人永久免费在线观看视频| 欧美午夜高清在线| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 成年免费大片在线观看| 一级a爱视频在线免费观看| 亚洲熟妇熟女久久| av有码第一页| 一进一出抽搐动态| 国产黄片美女视频| 变态另类丝袜制服| 日本在线视频免费播放| 97碰自拍视频| 一本久久中文字幕| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| svipshipincom国产片| 久久国产乱子伦精品免费另类| 国产av又大| 女性被躁到高潮视频| 变态另类丝袜制服| 国产片内射在线| 村上凉子中文字幕在线| 后天国语完整版免费观看| 亚洲人成网站在线播放欧美日韩| 一夜夜www| 久久久久免费精品人妻一区二区 | av视频在线观看入口| 可以在线观看毛片的网站| 久久狼人影院| 一进一出抽搐动态| 精品国产亚洲在线| 国产精品久久视频播放| 国产黄片美女视频| 欧美在线一区亚洲| 日韩国内少妇激情av| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| 韩国精品一区二区三区| 黄片大片在线免费观看| 欧美性长视频在线观看| 免费高清在线观看日韩| 亚洲第一电影网av| 99re在线观看精品视频| 最新在线观看一区二区三区| 精品国产亚洲在线| 人成视频在线观看免费观看| 国产熟女xx| 国产黄a三级三级三级人| 制服人妻中文乱码| 一a级毛片在线观看| 欧美黄色淫秽网站| 久久久久久九九精品二区国产 | 国产成人精品无人区| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 亚洲美女黄片视频| 麻豆成人午夜福利视频| 变态另类成人亚洲欧美熟女| 国产伦人伦偷精品视频| 精品高清国产在线一区| 深夜精品福利| 欧美国产日韩亚洲一区| 国产在线观看jvid| 久久久精品国产亚洲av高清涩受| 精品国产亚洲在线| 久久久久国内视频| 亚洲国产精品合色在线| 丝袜美腿诱惑在线| 99国产精品99久久久久| 国产精品一区二区三区四区久久 | 中文字幕精品免费在线观看视频| 久久香蕉国产精品| 久久久久久久久免费视频了| 久久亚洲精品不卡| 久久久国产成人精品二区| 999久久久精品免费观看国产| 色播亚洲综合网| 亚洲狠狠婷婷综合久久图片| 最新美女视频免费是黄的| 免费在线观看完整版高清| 亚洲精品国产一区二区精华液| 2021天堂中文幕一二区在线观 | 精品少妇一区二区三区视频日本电影| 18禁美女被吸乳视频| 欧美乱码精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 国产免费av片在线观看野外av| 成人三级做爰电影| 国产一区在线观看成人免费| 亚洲第一欧美日韩一区二区三区| 免费看a级黄色片| 三级毛片av免费| 悠悠久久av| 成年人黄色毛片网站| 亚洲电影在线观看av| www.www免费av| 国产精品1区2区在线观看.| 老鸭窝网址在线观看| 色老头精品视频在线观看| 亚洲九九香蕉| 美国免费a级毛片| 黄色视频,在线免费观看| 亚洲午夜理论影院| 亚洲九九香蕉| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清在线视频| 国产一卡二卡三卡精品| svipshipincom国产片| 国产av一区二区精品久久| 午夜福利成人在线免费观看| 欧美av亚洲av综合av国产av| 99久久精品国产亚洲精品| 午夜福利在线在线| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 青草久久国产| 久久精品91蜜桃| 禁无遮挡网站| 精品国产亚洲在线| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 日本 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品无人区| 757午夜福利合集在线观看| av视频在线观看入口| 欧美性长视频在线观看| 黄频高清免费视频| 欧美国产精品va在线观看不卡| 日日干狠狠操夜夜爽| 日本熟妇午夜| 日韩av在线大香蕉| 黄色成人免费大全| 1024视频免费在线观看| 在线观看免费视频日本深夜| 麻豆av在线久日| 亚洲五月色婷婷综合| 俺也久久电影网| 999久久久精品免费观看国产| 久久性视频一级片| 午夜两性在线视频| 给我免费播放毛片高清在线观看| 亚洲精品在线美女| 麻豆国产av国片精品| ponron亚洲| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 久久久国产成人精品二区| 亚洲国产精品999在线| 亚洲男人的天堂狠狠| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久久久久 | 99国产精品一区二区蜜桃av| 日本成人三级电影网站| 国产亚洲av嫩草精品影院|