• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observer-based Iterative and Repetitive Learning Control for a Class of Nonlinear Systems

    2018-09-28 10:58:48ShengZhuXuejieWangandHongLiu
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Sheng Zhu,Xuejie Wang,and Hong Liu

    Abstract—In this paper,both output-feedback iterative learning control(ILC)and repetitive learning control(RLC)schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties.An iterative learning controller,together with a state observer and a fully-saturated learning mechanism,through Lyapunov-like synthesis,is designed to deal with time-varying parametric uncertainties.The estimations for outputs,instead of system outputs themselves,are applied to form the error equation,which helps to establish convergence of the system outputs to the desired ones.This method is then extended to repetitive learning controller design.The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC.Numerical results are presented to verify the effectiveness of the proposed methods.

    I.INTRODUCTION

    I TERATIVE learning control(ILC),[1]and repetitive control(RC)[2]are two typical learning control strategies developed for systems performing tasks repetitively.ILC aims to achieve complete tracking of the system outputto a desired trajectory over a pre-specified interval,through updating the controlinput cycle by cycle,while RC addresses the problem of the periodic reference tracking and periodic disturbance rejection.The contraction-mapping-based learning control[1]features simplicity,especially reflected in the only use of the outputmeasurements.However,the learning gains are noteasy to be determined because of the difficulty in solving norm inequalities,that may lead to obstacles to the applications of the conventional learning control method.

    Early in 1990s,aiming to overcome the mentioned limitation of the contraction-mapping-based method,there have been intense researches in developing Lyapunov-like based designs of iterative learning control[3]-[5]and repetitive control[6],[7].Recently,such Lyapunov-like approach has received further attention[8],[9],[20],[21]-[25].In[8],[9],the learning control problems were formulated for broader classes of uncertain systems with local Lipschitz nonlinearities and time-varying parametric and norm bounded uncertainties.Note that in the mentioned works,the full state information is assumed to be available.However,in many applications,the system state may not be available for the controller design,where it is necessary to design output-based learning controllers in the framework of Lyapunov-like based learning control theory.

    For linear systems,Kalman filter[10]and Luenberger observer[11]are two kindsofbasic practicalobservers thatadequately address the linearstate estimation problem.Observers for nonlinear uncertain systems have recently received a great deal of attention,and there have been many designs such as adaptive observers[12],robust observers[13],sliding mode observers[14],neuralobservers[15],fuzzy observers[16],etc.In the published literature,works have been done for outputfeedback-based learning control.In[17],a transformation to give an output feedback canonical form is taken for nonlinear uncertain systems with well-defined relative degree.But the uncertainties in the transformed dynamics should be state independent.In[18],an adaptive learning algorithm is presented for unknown constants,linking two consecutive iterations by making the initial value of the parameter estimation in the next iteration equal to the final value of the one in the current iteration.The results are extended to outputfeedback nonlinear systems.But the nonlinear function of the system is assumed to be concerned with the system output only.

    The observers used in learning control are reported in[19]and[20].The former addresses the finite interval learning control problem while the latter addresses the infinite interval learning control problem.The nonlinear functions in[19]are notparametrized and the observer based learning controller is designed in the framework of contraction mapping approach without the requirement of zero relative degree.The observer used in[20]is special and complicated.By virtue of the separation principle,the state estimation observer and the parameter estimation learning law are taken into account respectively.The Lyapunov-like functions are employed and two classes of nonlinearties,the global Lipschitz continuous function of state variables and the the local Lipschitz continuous function of output variables,are all considered.

    As is known,repositioning is required at the beginning of each cycle in ILC.Repositioning errors will accumulate with iteration number increasing,which may lead the system to diverge finally.The variables to be learned are assumed to be repetitive.Repetitive controlrequires no repositioning,butthe variables to be estimated need to be periodic.Itis commonly seen that a repetitive signal may not be periodic.RLC has been developed recently[21]-[25],and formally formulated in[24],given as follows:

    F1)every operation ends in the same finite time ofduration;

    F2)the desired trajectory is given a priori and is closed;

    F3)the initial condition of the system at the beginning of each cycle is aligned with the final position of the preceding cycle;

    F4)the time-varying variables to be learnt are iteration independent cycle;

    F5)the system dynamics are invariant throughout all the cycles.

    Unlike the ILC and RC,RLC can handle the finite time interval tracking without the repositioning.In the published literature,however,there are few results on observer-based RLC.

    In this paper,through Lyapunov-like synthesis,the ILC problem is addressed for a class of nonlinear systems that only the system outputmeasurements are available.Compared with the existing works,the main contributions of our paper are given as follows.Firstly,the parametric uncertainties discussed in this paper are state-dependent,while the uncertainties treated in the existing results[17]-[19]are assumed to be output-dependent.The state-dependent terms cannot be directly used in the output feedback controller design due to the lack of the state information.Secondly,a robust learning observer is given by simply using Luenberger observer design.Reference[20]pointed out that for learning control systems many conventionalobservers are difficultto apply.We clarify the possibility of designing observer-based learning controller by using a Luenberger observer.The estimation of output,instead of the system output itself,is applied to form the error equation,which helps to establish convergence of the system outputto the desired one.Finally,the method used in output-feedback ILC design is extended to the RLC design.To the bestof our knowledge,the output-feedback RLC problem is still open.In this paper,the fully saturated learning laws are developed for estimating time-varying unknowns.The boundedness of the estimations plays an important role in establishing stability and convergence results of the closedloop system.

    The rest of the paper is organized as follows.The problem formulation and preliminaries are given in Section II.The main results of this paper are given in Section IIIand Section IV,providing performance and convergence analysis of the observer based ILC and RLC,respectively.Section V presents simulation results and gives the comparison of the ILC and RLC schemes.The final section draws the conclusion of this work.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    Consider a class of uncertain nonlinear systems described by

    where t is the time.x(t)∈Rn,u(t)∈Rmand y(t)∈Rmrepresent the state vector,the system output and the control input,respectively.A ∈ Rn×n,B ∈ Rn×mand C ∈ Rm×nare known constant matrices.Θ(t) ∈ Rm×n1is the unknown continuous time-varying matrix-valued function and ξ(x(t),t)∈ Rn1is the known vector-valued function.

    Remark 1:||Θ(t)||is bounded over[0,T],hence letθmbe the supremum of the||Θ(t)||,butthe value ofθmis unknown.

    Assume thatthe system operates repeatedly overa specified interval[0,T].Let us denote by k the repetition index,and system(1)can be rewritten as follows:

    Given a desired trajectory yd(t)=C xd(t)over the interval[0,T],our objective is to design a learning controllaw uk(t),such that the output yk(t)converges to the desired output yd(t),for all t∈[0,T],as k→ ∞.To achieve the perfect tracking,the following assumptions are made.

    Assumption 1:For system(2),there exist positive matrices P ∈ Rn×nand Q ∈ Rn×nsatisfying

    Assumption 2:Rank(C B)=m.

    Assumption 3:The nonlinear functionξ(x(t),t)satisfies global Lipschitz condition,i.e.,?x1(t),x2(t) ∈ Rn,||ξ(x1(t),t)- ξ(x2(t),t)||≤ γ||x1(t)-x2(t)||,where γ is the unknown Lipschitz constant.

    Remark 2:Assumption 1 is the common strictly positive real(SPR)condition.It guarantees the asymptotic stability of the linear part of the system which helps us construct the Lyapunov-like function easily.It also indicates that if(A,B)is completely controllable,(A,C)=(A,BTP)is observable because the matrix P is positive,which makes that the observer can be constructed.Assumption 2 is needed to guarantee the existence of the learning gain in the controller design.The Lipschitz condition in Assumption 3 is commonly seen in observer design and ILC design for nonlinear systems.

    For the learning controller design,saturation function sat(·)which is defined in the following ensures the boundedness of the parameters estimation.For scalar f,

    Lemma 1:For m×n1-dimensional matrixes F1and F2,if F1=sat(F1),and the saturation limits of sat(F1)and sat(F2)are the same,then

    Proof:Itfollows thatfor the matrices F1=(f1ij)m×n1and F2=(f2ij)m×n1

    The following property of trace is used as below

    where G ∈ Rm×n1,g1∈ Rn1×1and g2∈ Rm×1.

    To establish stability and convergence of the repetitive learning control systems in Section IV,the following lemma is given.

    Lemma 2:The sequence of nonnegative functions fk(t)defined on[0,T]converges to zero uniformly on[0,T],i.e.,

    if

    and fk(t)is equicontinuous on[0,T].

    The proof of lemma 2 can be found in[19].

    III.OBSERVER-BASED ILC

    A.State Estimation

    By defining the estimation errorδxk(t)=xk(t)-(t),it can be easily derived

    where P is defined in Assumption 1,we obtain

    According to Assumptions 1 and 2,we have

    Using the inequality

    it can be verified that

    B.Full Saturated Iterative Learning Control

    Letus define the novelerrorfunction ek(t)=(t)-yd(t),where(t)=C(t).The objective of the learning controller design is to make yk(t)→yd(t),t∈[0,T],as k→∞.Now that the proposed robust learning observer(11)ensures(t)→xk(t),t∈[0,T],as k→ ∞,and the observerbased iterative learning controller will be designed to make(t)→yd(t),t∈[0,T],as k→∞firstly,then the objective can also be achieved.Using(11),the derivative of ek(t)is

    from which we can easily obtain the control law

    where L1∈Rm×mis a given positive matrix.

    Using the following Lypunov function candidate

    and considering the control input(19)and the error dynamic(18),we obtain

    whereλ2is the minimum eigenvalue of the matrix L1.

    It should be noted that the error dynamics(18)is independentof nonlinear uncertainties in system(1),and allvariables in(18)are available for controller design.This is the reason why we use(t)instead of yk(t)in error definition.The controller(19)and the observer(11)work concurrently,where(t)and(t)are updated by the following learning laws

    and

    where L2=∈Rm×mis a given positive matrix and l3>0 is a constant.Let us defineΘ(t)={θi,j(t)}m×n1.SinceΘ(t)is bounded,we assume<θi,j(t)<,whereandare the saturation limits of the matrix-valued function sat((t)).The saturation limits of the scalar function sat((t))areand,and we assume<μ<.

    Assumption 4:At the beginning of each cycle,(0)=xk(0)=xd(0).

    Remark 3:Assumption 4 is about the initial states resetting condition.This part focuses on the design of observers.An extension of initialstates condition is given in Section IV.See Assumptions 5 and 6.

    C.Convergence and Boundedness

    Theorem 1:For system(1)satisfying Assumptions 1-4,let controller(19)together with full saturated learning laws(22)and(23),whereis given by observer(11),be applied.Then,

    1)allsignals in the closed-loop are bounded on[0,T],and

    2)limk→∞||δxk||2=0,limk→∞||ek||2=0,for t∈ [0,T].

    Proof:Letus considerthe following Lyapunov-like function

    For k=1,2,...,and t∈[0,T],the difference of(24)is

    and

    Using the equalities

    and

    and substituting(26),(27)into(25),it can be verified that

    Applying learning laws(22)and(23),inequality(6)and Lemma 1,we obtain

    and

    Substituting(31)and(32)into(30)gives rise to

    whereλ3is minimum eigenvalue of matrix P.Obviously,Wk(t)is a monotone non-increasing sequence over[0,T],therefore,in order to prove the boundedness of Wk(t),t∈[0,T],we need to prove the boundedness of W0(t)for all t∈[0,T].From(24),when k=0,we have

    Taking the derivative of W0(t)and using(35),(36)and Lemma 1,we have

    From(33),we obtain

    Since Wk(t)is a monotone non-increasing series with an upper bound,its limit exists such that

    By the positiveness of Wk(t)and the finiteness of W0(t),we have limk→∞||δxk||2=0,limk→∞||ek||2=0,for t ∈[0,T]. ■

    IV.OBSERVER-BASED RLC

    In this section,we extend the observer-based ILC design into RLC design for uncertain nonlinear systems.The following properties are assumed according to the repetitive learning control formulation.

    Assumption 5:The desired trajectory is given to satisfy

    and yd(t)is bounded for t∈[0,T].

    Assumption 6:At the beginning of each cycle,

    Remark 4:Assumptions 5 and 6 satisfy F2)and F3).The initial state estimation condition(42)is required for the observer(11).We do not need Assumption 3 which is a strict condition in practical system.No extra limits of the unknown time-varying functionΘ(t)are needed in RLC,that implies Θ(t)is also repetitive over[0,T]instead of being periodic in repetitive control.

    Theorem 2:Considering system(1)with controller(19)and fullsaturated learning laws(22)and(23),where the states are given by the observer(11)over a specified time interval[0,T],if Assumptions 1-3 and Assumptions 5 and 6 are satisfied,

    1)all signals in the closed-loop are bounded on[0,T],and

    2)limk→∞||δxk||2=0,limk→∞||ek||2=0,for t∈ [0,T].

    Proof:Assumptions 5 and 6 imply

    In view of(17)and(21),substituting(28)and(29)into(44),we obtain

    Applying inequalities(31)and(32),we have

    In addition,by the definition of Wk(t),we obtain

    Therefore,in view of(43),we have

    It follows that

    It is obvious that the right-hand side of the last inequality is actually the Wk-1(T),which implies

    for all t∈[0,T].By setting t=T,we obtain

    From above,itis clearly seen that Wk(T)is monotonically decreasing.Taking the derivative of W0(t),we can obtain the same result as(37)such that W0(t)is bounded on[0,T].Therefore,Wk(T)is uniformly bounded.Using(50),Wk(t)is uniformly bounded on[0,T].Therefore,||δxk||and||ek||are all uniformly bounded on[0,T].It is seen that the full saturated learning laws(22)and(23)ensure the boundedness of(t)and(t).We can claim that from(19),uk(t)is uniformly bounded on[0,T],and from(18),(t)is uniformly bounded on[0,T],and from(12),δ(t)is uniformly bounded on[0,T].

    Setting t=T in(48)results in,

    Therefore,

    Since Wk(T)≥ 0 is monotonically decreasing and bounded,its limit exists such that

    Now,based on the above analysis and using Lemma 1,we can summarize the stability and convergence results as Theorem 2. ■

    V.ILLUSTRATIVE EXAMPLES

    In this section,two illustrative examples are presented to show the design procedure and the performance of the proposed controllerforthe cases ofILC and RLC,respectively.

    Example 1:Consider the following system

    and

    therefore,Assumption 1 is satisfied.

    Observer(11),control law(19)and full saturated learning laws(22)and(23)are applied.The desired trajectory is given by yd(t)=12t2(1.1-t),t∈[0,1].We choose L1=0.1,L2=diag{10},and l3=7.Simulation results can be seen in Figs.1-4.In Fig.1,it can be easily seen that the system output yk(t)and the output estimation(t)=C(t)converge to the desired trajectory yd(t)over[0,1].The quantities on vertical axis in Fig.2 and Fig.3 represent=log10(maxt∈[0,1]||δxk||)and Jk=log10(maxt∈[0,1]|ek|),respectively.The learned control quantity uk(t)is shown in Fig.4.

    Fig.1. Desired trajectory,output estimation and system output in the case of ILC(k=50).

    Fig.2. State estimation errors in the case of ILC.

    Fig.3. Output tracking errors in the case of ILC.

    Fig.4.Control input in the case of ILC(k=50).

    Example 2:Consider the circuit[20]described by

    where R1=1Ω and R2=1Ω are resistors,and M1=0.36H,M2=0.5H are inductors,and the mutual inductors M3=0.5H.x1k=i1and x2k=i2are the loop currents.η(t)=x2ksin3t+0.8 sin2t sin x1krepresents the input perturbation.The desired trajectory is given by yd(t)=12t2(1-t),t∈[0,1].We set L1=0.5,L2=diag{0.8},and l3=1.Simulation results can be seen in Figs.5-8.Fig.5 shows the ultimate tracking of the system output and the output estimation and the desired trajectory.In order to show the difference between the ILC and the RLC,we depict the state x2k(t)of the top 10 iterations in Fig.6.It can be easily seen that the initial value of the k th cycle is equal to the final value of the(k-1)th cycle which satisfies the Assumption 6.

    The vertical quantities in Fig.7 represent Jk=log10(maxt∈[0,1]|ek|)which implies perfect tracking can be achieved after 50 iterations.The learned controlquantity uk(t)is shown in Fig.8.

    Fig.5.Desired trajectory,output estimation and system output in the case of RLC(k=40).

    Fig.6. The changes of state x2k(t)in 10 iterations in the case of RLC.

    Fig.7. Output tracking errors in the case of RLC.

    Fig.8.Control input in the case of RLC(k=40).

    VI.CONCLUSIONS

    In this paper,an observer-based iterative learning controller has been presented for a class of nonlinear systems.The uncertainties treated is parameterized into two parts.One is the unknown time-varying matrix-valued parameters and the other is the Lipschitz continuous function,which is also unknown due to unmeasurable system states.The learning controller designed for trajectory tracking composes of parameter estimation and state estimation which is given by a robustlearning observer.The parameter estimations are constructed by full saturated learning algorithms,by which the boundedness ofthe parameter estimations are guaranteed.Further,the extension to repetitive learning control is provided.The observer-based RLC avoids the initial repositioning and does not require the strict periodicity constraint in repetitive control.The global stability of the learning system and asymptotic convergence ofthe tracking errorare established through theoreticalderivations for both ILC and RLC schemes,respectively.

    欧美日韩综合久久久久久 | 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 久久人妻av系列| 别揉我奶头~嗯~啊~动态视频| 亚洲18禁久久av| 日韩欧美精品v在线| 男女那种视频在线观看| 禁无遮挡网站| 亚洲av.av天堂| 欧美日韩黄片免| netflix在线观看网站| 真人一进一出gif抽搐免费| 12—13女人毛片做爰片一| 日本一本二区三区精品| 免费在线观看成人毛片| 国产精品久久视频播放| 琪琪午夜伦伦电影理论片6080| 国产高清视频在线播放一区| 99热精品在线国产| 性色avwww在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产日韩欧美精品在线观看| 桃色一区二区三区在线观看| 岛国在线免费视频观看| 哪里可以看免费的av片| 国产精品福利在线免费观看| 亚洲欧美日韩高清在线视频| 欧美极品一区二区三区四区| 18禁裸乳无遮挡免费网站照片| 露出奶头的视频| 熟女电影av网| 日韩大尺度精品在线看网址| 男人的好看免费观看在线视频| 国产精品,欧美在线| 免费人成在线观看视频色| 亚洲欧美日韩高清专用| 亚洲国产欧美人成| 久久久午夜欧美精品| 在线播放无遮挡| 性欧美人与动物交配| 制服丝袜大香蕉在线| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 国产人妻一区二区三区在| 色哟哟·www| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3| 免费观看的影片在线观看| 变态另类丝袜制服| 乱码一卡2卡4卡精品| 一进一出抽搐动态| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 啦啦啦韩国在线观看视频| 一级黄片播放器| 色视频www国产| 直男gayav资源| 免费观看的影片在线观看| 欧美成人性av电影在线观看| 99九九线精品视频在线观看视频| 精品久久久久久久久av| 国产av在哪里看| 一个人看视频在线观看www免费| 国产亚洲精品综合一区在线观看| 三级毛片av免费| 淫秽高清视频在线观看| 久久久久久久久大av| 亚洲专区中文字幕在线| 国产黄片美女视频| 蜜桃亚洲精品一区二区三区| 我要搜黄色片| 国产蜜桃级精品一区二区三区| 无遮挡黄片免费观看| 久久热精品热| 国产伦在线观看视频一区| 亚洲人成网站高清观看| 婷婷丁香在线五月| 亚洲四区av| 午夜爱爱视频在线播放| 桃色一区二区三区在线观看| 亚洲成人久久爱视频| 亚洲av免费高清在线观看| 嫁个100分男人电影在线观看| 99九九线精品视频在线观看视频| 日日撸夜夜添| 99热只有精品国产| 最好的美女福利视频网| 亚洲精品日韩av片在线观看| 永久网站在线| 国产探花极品一区二区| 黄色欧美视频在线观看| 精品人妻熟女av久视频| 午夜福利在线观看吧| 校园人妻丝袜中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲精华国产精华精| 校园人妻丝袜中文字幕| 日韩欧美免费精品| 男女做爰动态图高潮gif福利片| 亚洲一区二区三区色噜噜| 日韩精品中文字幕看吧| 中文字幕av成人在线电影| 亚洲av中文av极速乱 | 色综合站精品国产| 日韩人妻高清精品专区| 99久久九九国产精品国产免费| 不卡视频在线观看欧美| 国语自产精品视频在线第100页| 不卡一级毛片| kizo精华| 国产成人精品福利久久| 亚洲av中文av极速乱| 人人妻人人澡人人爽人人夜夜| 直男gayav资源| 精品久久久精品久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品福利在线免费观看| 午夜福利在线观看免费完整高清在| 草草在线视频免费看| 久久 成人 亚洲| 国产精品久久久久久精品古装| 人妻一区二区av| 黄片无遮挡物在线观看| 国产精品三级大全| 亚洲国产色片| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久人人人人人人| 又大又黄又爽视频免费| 天美传媒精品一区二区| 日本黄色片子视频| 国产精品不卡视频一区二区| 国产永久视频网站| 国产国拍精品亚洲av在线观看| 99久久综合免费| 亚洲精品第二区| 国产伦精品一区二区三区四那| 色综合色国产| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 2021少妇久久久久久久久久久| 男男h啪啪无遮挡| 中文字幕免费在线视频6| 一级爰片在线观看| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 超碰av人人做人人爽久久| 国产成人a∨麻豆精品| 春色校园在线视频观看| 美女内射精品一级片tv| 超碰97精品在线观看| av黄色大香蕉| 黑丝袜美女国产一区| 国产黄频视频在线观看| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 国产精品一区www在线观看| 亚洲av不卡在线观看| 人妻 亚洲 视频| 免费大片黄手机在线观看| 制服丝袜香蕉在线| 2022亚洲国产成人精品| 欧美激情极品国产一区二区三区 | 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩另类电影网站 | 男女无遮挡免费网站观看| 秋霞在线观看毛片| 99久久综合免费| 伦理电影免费视频| 97在线视频观看| 五月伊人婷婷丁香| 欧美激情极品国产一区二区三区 | 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 男人和女人高潮做爰伦理| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 免费看光身美女| 插逼视频在线观看| 欧美+日韩+精品| av专区在线播放| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 我要看黄色一级片免费的| 观看免费一级毛片| 肉色欧美久久久久久久蜜桃| 各种免费的搞黄视频| 美女cb高潮喷水在线观看| 又爽又黄a免费视频| 人体艺术视频欧美日本| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 亚洲第一av免费看| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版| 少妇丰满av| 国产黄片视频在线免费观看| 亚洲精品中文字幕在线视频 | 国产老妇伦熟女老妇高清| 99热全是精品| 久久久精品免费免费高清| 国产黄色免费在线视频| 日本欧美国产在线视频| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| videos熟女内射| 欧美亚洲 丝袜 人妻 在线| 一区二区三区免费毛片| 久久久欧美国产精品| 久久99热这里只有精品18| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在| 欧美一区二区亚洲| 秋霞伦理黄片| 精品一区二区免费观看| 91精品国产九色| 国产女主播在线喷水免费视频网站| av在线播放精品| 丝袜喷水一区| 国产高潮美女av| 久久人人爽人人爽人人片va| 2021少妇久久久久久久久久久| 久久精品国产鲁丝片午夜精品| 三级经典国产精品| www.色视频.com| 国内精品宾馆在线| 久久这里有精品视频免费| freevideosex欧美| 日本av手机在线免费观看| 国产精品嫩草影院av在线观看| 精品久久久噜噜| 午夜福利高清视频| 亚洲国产精品一区三区| 91精品国产九色| 亚洲成色77777| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 男人狂女人下面高潮的视频| 久久久久久久国产电影| 丝袜喷水一区| 全区人妻精品视频| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 网址你懂的国产日韩在线| 国产精品欧美亚洲77777| 直男gayav资源| 在线观看免费日韩欧美大片 | 日韩成人av中文字幕在线观看| 成人美女网站在线观看视频| 久久久久久久久大av| 亚洲av综合色区一区| 成人毛片60女人毛片免费| 91精品伊人久久大香线蕉| 免费看不卡的av| 久久久久久伊人网av| 婷婷色av中文字幕| 亚洲一区二区三区欧美精品| 在线免费十八禁| 久久国产精品大桥未久av | 国产精品久久久久久精品古装| 国产精品一区二区性色av| 美女福利国产在线 | 一级片'在线观看视频| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 青春草国产在线视频| 我的老师免费观看完整版| 亚洲成人手机| 五月开心婷婷网| 成人漫画全彩无遮挡| 美女中出高潮动态图| 日韩制服骚丝袜av| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 热99国产精品久久久久久7| 国产精品.久久久| 多毛熟女@视频| 欧美 日韩 精品 国产| 亚洲成色77777| 视频区图区小说| 久久久久久久久大av| 国产欧美另类精品又又久久亚洲欧美| 亚洲自偷自拍三级| 国产精品精品国产色婷婷| 久久精品久久精品一区二区三区| 丰满少妇做爰视频| 国产淫片久久久久久久久| 麻豆精品久久久久久蜜桃| 国产欧美日韩一区二区三区在线 | 国产精品福利在线免费观看| 欧美bdsm另类| 日韩大片免费观看网站| 久久久精品94久久精品| av国产精品久久久久影院| 国产精品99久久99久久久不卡 | 成人毛片60女人毛片免费| www.色视频.com| 亚洲高清免费不卡视频| 中文字幕制服av| 一个人看的www免费观看视频| 国产有黄有色有爽视频| 亚洲av中文av极速乱| 亚洲国产av新网站| 欧美国产精品一级二级三级 | 国产精品一区二区在线不卡| 欧美性感艳星| 久久97久久精品| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 深爱激情五月婷婷| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 欧美日韩在线观看h| 成人国产麻豆网| 国产成人91sexporn| 一级毛片 在线播放| 国产亚洲午夜精品一区二区久久| 色哟哟·www| 美女xxoo啪啪120秒动态图| 综合色丁香网| 九九爱精品视频在线观看| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 老女人水多毛片| 国产免费福利视频在线观看| 免费av中文字幕在线| 妹子高潮喷水视频| 久久久久久久久久人人人人人人| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 免费av不卡在线播放| av又黄又爽大尺度在线免费看| 狂野欧美激情性bbbbbb| 欧美变态另类bdsm刘玥| 久久热精品热| 欧美性感艳星| 亚洲av免费高清在线观看| 老熟女久久久| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 亚洲精品色激情综合| 18禁在线播放成人免费| 亚洲综合精品二区| 亚洲无线观看免费| 一级毛片 在线播放| 色视频www国产| 国产又色又爽无遮挡免| 国产永久视频网站| 国产精品人妻久久久影院| 丰满乱子伦码专区| 一级爰片在线观看| 搡老乐熟女国产| 91在线精品国自产拍蜜月| 国产无遮挡羞羞视频在线观看| 亚洲四区av| 久久精品国产鲁丝片午夜精品| 国产av一区二区精品久久 | 在现免费观看毛片| 一级爰片在线观看| 国产精品国产三级专区第一集| 大码成人一级视频| 国产精品久久久久久精品古装| 亚洲欧美成人精品一区二区| 26uuu在线亚洲综合色| 国产人妻一区二区三区在| 精品亚洲成国产av| 久久人妻熟女aⅴ| 伦理电影免费视频| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 国产成人精品久久久久久| 国产综合精华液| videos熟女内射| 亚洲精品视频女| 午夜免费鲁丝| 成人一区二区视频在线观看| 一区二区三区精品91| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 国产乱来视频区| 欧美区成人在线视频| 18禁在线播放成人免费| 国产免费又黄又爽又色| 亚洲欧美日韩无卡精品| 亚洲国产色片| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 国产 一区 欧美 日韩| 深夜a级毛片| 久久久久网色| 久久精品国产亚洲av涩爱| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性bbbbbb| 女人久久www免费人成看片| 亚洲精品国产色婷婷电影| 中文字幕人妻熟人妻熟丝袜美| av在线观看视频网站免费| 免费大片18禁| 精品一品国产午夜福利视频| 亚洲美女视频黄频| 色吧在线观看| 韩国av在线不卡| 国产精品久久久久久久电影| 91久久精品国产一区二区三区| 熟妇人妻不卡中文字幕| 91午夜精品亚洲一区二区三区| 午夜福利视频精品| 伦精品一区二区三区| 欧美bdsm另类| 黄色视频在线播放观看不卡| 黄色日韩在线| 女性被躁到高潮视频| 亚洲性久久影院| 亚洲av福利一区| 亚洲不卡免费看| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 久久这里有精品视频免费| 亚洲av成人精品一二三区| 一本久久精品| 国产精品人妻久久久久久| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 在线观看免费日韩欧美大片 | 国产精品不卡视频一区二区| 亚洲激情五月婷婷啪啪| 欧美成人a在线观看| 亚洲第一av免费看| 国产午夜精品久久久久久一区二区三区| 国产av国产精品国产| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 日韩强制内射视频| 亚洲精品中文字幕在线视频 | 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 久久久久网色| .国产精品久久| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 男女边摸边吃奶| av在线播放精品| 中文字幕久久专区| 国产一区二区三区av在线| 激情 狠狠 欧美| 国产一区有黄有色的免费视频| 在线观看av片永久免费下载| 毛片一级片免费看久久久久| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 尤物成人国产欧美一区二区三区| 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 老司机影院成人| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 国产乱来视频区| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 日韩欧美一区视频在线观看 | 日韩在线高清观看一区二区三区| 99九九线精品视频在线观看视频| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 久久精品人妻少妇| 国产一级毛片在线| 亚洲国产精品专区欧美| 国产淫语在线视频| 国产精品女同一区二区软件| 三级经典国产精品| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 日日撸夜夜添| 国产伦精品一区二区三区四那| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 狂野欧美激情性xxxx在线观看| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 中文天堂在线官网| 亚洲四区av| 午夜福利在线观看免费完整高清在| 日韩免费高清中文字幕av| 久久av网站| 91aial.com中文字幕在线观看| 一级黄片播放器| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 国产欧美亚洲国产| 天堂8中文在线网| 国产伦精品一区二区三区四那| 国产男人的电影天堂91| 性色av一级| 两个人的视频大全免费| 色婷婷久久久亚洲欧美| av.在线天堂| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 有码 亚洲区| 尤物成人国产欧美一区二区三区| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 日韩国内少妇激情av| 亚洲精品国产色婷婷电影| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一区二区三区视频在线| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级 | 国产在线视频一区二区| 久久久久久久精品精品| 国产成人freesex在线| 午夜免费鲁丝| 国产欧美亚洲国产| 一二三四中文在线观看免费高清| 久久久久国产网址| 亚洲色图综合在线观看| 大香蕉久久网| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区| 观看美女的网站| 国产av精品麻豆| 人妻系列 视频| 亚洲av.av天堂| 国产精品不卡视频一区二区| 插阴视频在线观看视频| 国产午夜精品久久久久久一区二区三区| 最近最新中文字幕大全电影3| 成人漫画全彩无遮挡| 人体艺术视频欧美日本| 青春草国产在线视频| 国产精品秋霞免费鲁丝片| 国产欧美日韩精品一区二区| 啦啦啦中文免费视频观看日本| 成人毛片60女人毛片免费| 热re99久久精品国产66热6| 日韩大片免费观看网站| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av欧美aⅴ国产| 九九爱精品视频在线观看| 国产精品免费大片| 看免费成人av毛片| 国产成人a∨麻豆精品| 日韩一本色道免费dvd| av线在线观看网站| 91久久精品国产一区二区三区| 黑丝袜美女国产一区| a级毛色黄片| 99热网站在线观看| 80岁老熟妇乱子伦牲交| 好男人视频免费观看在线| 蜜臀久久99精品久久宅男| 一个人免费看片子| 久久久久久久精品精品| 男的添女的下面高潮视频| 99热这里只有精品一区| 麻豆国产97在线/欧美| 女性生殖器流出的白浆| 久久久久国产精品人妻一区二区| 国产精品一及| 麻豆成人av视频| 国产片特级美女逼逼视频| 最新中文字幕久久久久| 亚洲av中文字字幕乱码综合| 丰满少妇做爰视频| 欧美精品一区二区免费开放| 青春草视频在线免费观看| 久久 成人 亚洲| 日韩av不卡免费在线播放| videos熟女内射| 天美传媒精品一区二区| 交换朋友夫妻互换小说| 精品亚洲乱码少妇综合久久| 舔av片在线| 日本黄大片高清| 九九爱精品视频在线观看| 国产精品精品国产色婷婷| 天堂中文最新版在线下载| 午夜精品国产一区二区电影| 免费av中文字幕在线| 国产av码专区亚洲av| 国产精品久久久久久久久免| 欧美国产精品一级二级三级 | 又大又黄又爽视频免费| 亚洲av中文字字幕乱码综合| 午夜福利影视在线免费观看| 美女主播在线视频| 国产av一区二区精品久久 | 久久av网站| 麻豆成人午夜福利视频| 亚洲怡红院男人天堂| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 国产一区二区三区综合在线观看 | 欧美精品人与动牲交sv欧美| 国产 精品1| 久久久午夜欧美精品| 成人二区视频| 国产精品一及| 另类亚洲欧美激情|