• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of Energy Consumption and EffluentQuality Using Density Peaks-based AdaptiveFuzzy Neural Network

    2018-09-28 10:58:40JunfeiQiaoandHongbiaoZhou
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Junfei Qiao and Hongbiao Zhou

    Abstract—Modeling of energy consumption (EC) and effluentquality (EQ) are very essential problems that need to be solved forthe multiobjective optimal control in the wastewater treatmentprocess (WWTP). To address this issue, a density peaks-basedadaptive fuzzy neural network (DP-AFNN) is proposed in thisstudy. To obtain suitable fuzzy rules, a DP-based clusteringmethod is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned basedon the improved Levenberg-Marquardt algorithm during thetraining process. Furthermore, the analysis of convergence isperformed to guarantee the successful application of the DPAFNN.Finally, the proposed DP-AFNN is utilized to develop themodels of EC and EQ in the WWTP. The experimental resultsshow that the proposed DP-AFNN can achieve fast convergencespeed and high prediction accuracy in comparison with someexisting methods.

    I.INTRODUCTION

    W ASTEWATER treatment processes (WWTPs) are complexand energy-intensive systems as they require continuousoperation with effluent treatment [1]. In fact, to meetthe effluent discharge standards and reduce the effluent quality(EQ), wastewater treatment plants always run at full loadstatus. It is worth noting that EQ is used to represent the fineswhich are required to be paid due to the discharge of pollutantsin to the receiving water bodies. Under full load status, both ofthe dissolved oxygen concentration(SO)in the aerobic reactorsand the nitrate concentration(SNO)in the anaerobic reactorsare maintained at a high level through aeration and pumping.It is inevitable to remarkably increase the energy consumption(EC). According to the biochemical reaction mechanism of the WWTP,only set-points of SOand SNOare set in a manneraddition, to meet the requirements of energy conservation andemission reduction, it is imperative to realize optimal controlin the WWTP. The design of optimal control strategy mainlyincludes optimization objectives, optimization algorithm, andloop controllers. However, owing to the existing nonlinearcharacteristics and uncertain factors, it is difficult to establishoptimization models of EC and EQ in the WWTP [2].

    At present, the mechanism models of EC and EQ aremainly designed by the usage of process variables in theWWTP. Hernndez et al. utilized a non-radial data envelopmentanalysis (DEA) method to calculate the energy indexfor a wastewater treatment plant located in Spain [3]. Yanget al. applied a computational fluid dynamic (CFD) model tooptimize the operating condition by taking into considerationthe flow field and dissolved oxygen concentration [4]. Veraet al. employed a statistical software, called INFOSTAT, toestablish an EC model. However, these mechanism modelshave certain limitations, such as a single decision variable,complex structure, and many parameters [5]. Thus, the predictionaccuracy of these mechanism-based models cannotsatisfy the requirements of multi-objective optimal control inthe WWTP.

    The data-driven modeling method has the advantages ofonline detection, short time, and high accuracy. It is widelyemployed to identify the nonlinear dynamic systems. With theability to approach any nonlinear system with arbitrary precision,neural networks have been widely applied to predict thecritical parameters of water quality in WWTPs [6]. Noori et al.utilized a support vector machine to predict the biochemicaloxygen demand (BOD) in order to determine the uncertaintyof the data-driven method [7]. Qiao et al. introduced a softcomputingmethod for BOD, where the T-S fuzzy neuralnetwork with the error backpropagation (EBP) algorithm isutilized to design the prediction model [8]. Kusiak et al.adopted a multilayer perceptron-based data-mining method toestablish the EC and wastewater flow rate models [9]. Hanet al. applied an adaptive regressive kernel function (ARKF)approach to develop an EC model [10]. However, the researchon the modeling of EC and EQ from the perspective of multiobjectiveoptimal control is rare. In addition, since the initialnetwork structure is generated randomly and the parametersare usually adjusted by the EBP algorithm during the learningprocess, the prediction accuracy of the neural network-baseddata-driven models needs to be further improved.

    Recent studies have shown that fuzzy neural network(FNN), which combines the learning capability of a neural network with the interpretability of a fuzzy system,has tremendous advantage,and has an extremely extensive application in data-driven modeling[11].To develop the EC and EQ models with the usage of FNN,two issues must be dealt with,including the determination of network structure and the learning ofnetwork parameters.To determine the network size,some flexible clustering methods,such as fuzzy c-means clustering[12],Gustafson-Kessel clustering[13],and K-nearest neighbors clustering[14],are applied to partition the input space.These methods are mainly used for offline modeling.Another class of previously proposed methods,considering that whole training samples might not be available at once,utilizes online modeling[15],[16].However,for these online modeling approaches,the main problem regarding how to produce new rules or prune redundantrules based on some approximate criteria stillremains open.To update the parameters of FNN,the EBP algorithm is adopted frequently.However,as widely reported in the literature,the EBP algorithm has some drawbacks,such as slow convergence,local optimum,and low precision[17].To enhance the learning performance of FNN,various types of learning algorithms have been proposed for the training of FNN,such as hybrid learning algorithm[18],adaptive gradientdescentapproach[19],and evolutionary algorithm[20].However,these algorithms have either poor convergence ability or long training time.

    In this paper,a novel fuzzy clustering approach based on the density peaks(DP)is applied to determine the network size.Fuzzy rules with appropriate centers can enhance the generalization performance of FNN.Meanwhile,an adaptive learning algorithm based on the improved Levenberg-Marquardt approach is designed to optimize the parameters of FNN during the learning process.The convergence speed and approximation accuracy of FNN can be enhanced by the combination of density peaks clustering method and adaptive parameter learning algorithm.

    The rest of this paper is outlined as follows.The architecture of FNN is introduced in Section II.Section III details the proposed DP-AFNN,including the DP-based clustering method and the improved LM parameter learning algorithm.Subsequently,the convergence of DP-AFNN is discussed in Section IV.In Section V,the proposed DP-AFNN is utilized to develop the nonlinear dynamic models of EC and EQ.Conclusion of the paper is provided in Section VI.

    II.FUZZY NEURAL NETWORK

    For a multi-input and single-output(MISO)system,the nonlinear continuous time form of the dynamical system can be defined as

    where x(t)=[x1(t),x2(t),...,xn(t)]Tand y(t)are the input and output of the nonlinear system attime t,respectively,n is the number of input variables,and f(·)denotes the unknown nonlinear function of the system.

    To model the MISO nonlinear system,a four-layer MISO FNN is introduced.The structure of the MISO FNN is shown in Fig.1.The four layers are,respectively,the input layer,the membership function(MF)layer,the rule layer,and the output layer[15].The mathematical description of this FNN is expressed as follows.

    Fig.1.Architecture of the FNN.

    The Input Layer:there are n neurons in this layer,and each neuron represents an inputlinguistic variable.The output values of input layer are

    where ui(t)is the outputvalue of the i th neuron attime t,and x(t)=[x1(t),x2(t),...,xn(t)]Tis the inputvector attime t.

    The MF Layer:there are n×r neurons in this layer,and each neuron represents a membership function which is in the form of Gaussian function.The outputvalues of MF layer can be expressed as

    whereμij(t),cij(t),and σij(t)are the output value,center,and width of the j th Gaussian MF of xi(t)at time t,respectively.

    The Rule Layer:there are r neurons in this layer,and each neuron represents an antecedent part for fuzzy rules.For the output of MF layer,the product and normalization operators are executed sequentially.The output values of rule layer denote the spatial firing strength of fuzzy rules.For the j th rule neuron,its output value is

    and

    where h(t)=[h1(t),h2(t),...,hr(t)]Tis the normalized output vector of rule layer at time t.

    The Output Layer:the output value of this layer is the summation of incoming signals

    where w(t)=[w1(t),w2(t),...,wr(t)]is the weight vector between the rule neuron and the output neuron at time t.

    III.DP-AFNN METHOD

    In the following,the principle of the DP-based clustering method is given firstly.Then,the adaptive learning algorithm is described in detail.Finally,the procedure of DP-AFNN modeling is provided.

    A.Density Peaks Clustering Method

    Recently,a powerful clustering approach based on the density peaks(DP)has been proposed by Rodriguez and Laio in[21].In this study,the DP-based clustering method is applied to partition the input space and to obtain a suitable classification of the training samples.Then,the centers and variances ofthe clusters are utilized as the parameters of FNN.In the DP algorithm,there are two assumptions:1)the cluster centers are surrounded by neighbors which have a lower local density;2)the cluster centers have a relatively large distance from any point which has a higher local density.For the convenience of the searching,two indicators,including the local density ρiand the minimum distance δi,are defined in the DP algorithm.

    In the DP algorithm,the local densityρiis given as

    where dijis the Euclidean distance between the data point i and j,and dcis a predefined cutoff distance.If x<0,then χ(x)=1,otherwiseχ(x)=0.Generally,the indicatorρican be obtained through finding data points whose distance to data point i is less than dc.Additionally,dccan also be obtained by setting a percentage parameterα%of all the distance values dijin an ascending order.The recommendedα%is 0.5%~5%.For example,if the number of training samples is 400 and the percentage parameterα%is setto be 4%,dcis equal to the sixteenth value of all the distances dijin an ascending order.

    In the DP algorithm,δiis defined as the minimum distance between the data point i and any other data pointwith higher local density

    When the point i has the highestlocaldensity,itsδiis setto be the maximum distance between the data point i and other data points.Thus,the data points with large ρiand δivalues are chosen as cluster centers.To avoid setting two thresholds for ρiand δisimultaneously,a scheme to select the cluster center is given by

    In the clustering process,data pointwillbe chosen as cluster center if itsγiis larger than the pre-specified threshold.To avoid the setting of threshold,γican be sorted by its value in a descending order and the centers with a fixed number N can be selected.Afterwards,other non-central points are assigned to the cluster which has the highestlocaldensity and the minimum distance to them.

    B.Improved LM Algorithm

    To avoid trapping into local optimal,the EBP algorithm which has been widely used in FNNs is replaced by an improved LM algorithm in this study.Thereby,the modeling accuracy can be enhanced with the usage of the improved LM parameter optimization algorithm.For the p th sample,the error between the desired output and network output of FNN can be described as

    where P is the total number of the samples.

    Derived from LM algorithm[22],all the parameters in the FNN,i.e.,centers,widths,and outputweights are adjusted by the following formula

    where Θ(t)=[w(t),c(t),σ(t)]is the parameter vector,Ψ(t)is the quasi-Hessian matrix,Ω(t)is the gradientvector,I is the identity matrix which is adopted to circumvent the difficulty of singularity in reversing the matrix.And the learning rate η(t)is given by

    where e(t)=[e1(t),e2(t),...,eP(t)]Tis the error vector.The adaptive learning rate can accelerate the learning speed of FNN.Furthermore,theΨ(t)andΩ(t)are the accumulation of submatrices and subvectors for all samples,respectively.

    where the submatrixψp(t)and the subvectorωp(t)are defi ned as

    where jp(t)is the row vector of Jacobian matrix

    According to the update rule of gradient descent learning approach,the elements of the Jacobian row vector are presented as

    where

    The proposed improved adaptive LMalgorithm is a secondorder parameter estimation algorithm.While computing the submatrixψp(t)and subvectorωp(t)for each pattern p,only(2n+1)×r elements of jp(t)are needed.It should be noted that there is no need for storing and multiplying Jacobian matrix in the computation of quasi-Hessian matrixΨ(t)and gradient vectorΩ(t).Thus,the memory cost and computational complexity can be significantly reduced.Furthermore,the improved LM algorithm with the adaptive learning rate can not only accelerate the learning speed,but also enhance the generalization capability.

    C.Procedure of DP-AFNN Modeling

    To reveal the proposed modeling method clearly,the design steps ofthe models of EC and EQ with the usage of DP-AFNN are summarized as follows.

    Step 1:Generate enough process data about EC and EQ using BSM1 and execute data normalization operation.

    Step 2:Calculate the local densityρfor each data point according to the predefined percentage parameterα%.

    Step 3:Calculate the minimum distanceδfor each data point.

    Step 4:Compute the cluster center selection parameterγ for each data point,sortall data points by theirγvalues in a descending order,and select the first N data points as cluster centers.

    Step 5:Create two initial four-layer FNN.The number of neurons in the inputlayer is the same as the number of input variables.The initial centers of fuzzy rules are the centers of clusters.The initial widths of all fuzzy rules are set to be the variances of clusters.The initial output weights of DPAFNN are set to be the outputs of training samples which are selected as the centers of fuzzy rules.The maximum number of iterations is set to be T.

    Step 6:Calculate the network output y(t)for each training sample.

    Step 7:Make the error e(t),submatrixψ(t),and subvector ω(t)for each training sample.

    Step 8:Make the accumulation of submatricesΨ(t)and subvectorsΩ(t)for all the training samples.

    Step 9:Update the learning rateη(t)and the parameter vectorΘ(t).

    Step 10:Stop and evaluate the test samples if the stopping criteria is satisfied.Otherwise,go to Step 6.

    IV.CONVERGENCE ANALYSIS

    The convergence of the proposed DP-AFNN is of great importance for modeling EC and EQ.In this section,our analysis suggests that the convergence of DP-AFNN can be guaranteed.

    We choose the Lyapunov function as follows

    where e(t)=[e1(t),e2(t),...,ep(t)]Tand V(Θ(t))> 0.The difference between the Lyapunov function in the nexttime step and in the present time step is determined as follows

    where?E(Θ(t))and?2E(Θ(t))are the gradientvector and the matrix of second derivative(or Hessian matrix)of the cost function,respectively.In[22]and[23],when the parameters of DP-AFNN are updated by(11),if

    It follows from(23)and(24)thatΔV(Θ(t))can be expressed as

    When the condition(21)is satisfied,the matrix?2E(Θ(t))is positive definite,then we can conclude thatΔV(Θ(t))< 0.Therefore,

    According to the Lyapunov stability theorem,we know that the DP-AFNN is convergent.

    Fig.2.Schematic diagram of the modeling of EC and EQ.

    V.SIMULATION STUDIES

    A.Wastewater Treatment Process

    The mostpopular technology of wastewater treatment is the activated sludge process(ASP).To evaluate the performance of different control strategies,a benchmark simulation platform based on ASP has been developed with the framework of COST Actions 682 and 624-BSM1[24].

    In the BSM1,EC is the sum of aeration energy(AE)and pumping energy(PE).AE and PE are calculated as

    where KLaiand Viare the oxygen transferrate and volume of the i th biological reactor,respectively.SO,satis the saturation concentration of dissolved oxygen and T is the optimal cycle.Qa,Qr,and Qware the internal recycle flow rate,external recycle flow rate,and waste sludge flow rate,respectively.

    Moreover,EQ is defined as

    where S Seis the suspended solid concentration,C O Deis the chemicaloxygen demand,SNKj,eis the Kjeldahlnitrogen concentration,SNO,eis the nitrate and nitrite nitrogen concentration,B O D5,eis the biochemicaloxygen demand of 5 days,and Qeis the effluent flow rate.

    In the BSM1,there are two control loops.One is the control loop of the dissolved oxygen concentration(SO,5)in the fifth reactor and another is the control loop of the nitrate level(SNO,2)in the second reactor.The manipulated variables for SO,5and SNO,2are KLa5and Qa,respectively.Through the analysis of the reaction mechanism and optimal control,Qw,KLa3,KLa4,SO,5,and SNO,2are selected as the decision variables.The aim of multiobjective optimal control in the WWTP is to acquire the balance between EC and EQ with the usage of the best set points of decision variables found by the optimization algorithm.Thus,any attempt to develop the models of EC and EQ is not trivial.In this study,the proposed DP-AFNN method is adopted to establish the relationship between EC,EQ and decision variables.The schematic diagram of the modeling of EC and EQ is shown in Fig.2.The ranges of decision variables are listed in Table I.And Fig.3 demonstrates the changes of decision variables in an optimal cycle.

    TABLE I THE RANGE OF DECISION VARIABLES

    Fig.3. The values of input variables in the predicting process.

    B.Experimental Settings

    In this section,the effectiveness of the proposed DP-AFNN data-driven modeling method is demonstrated by using the BSM1 platform.A total of 500 samples are collected from BSM1.The preceding 400 samples are chosen as the training set,and the remaining 100 samples are applied as the testing set.Through the practicaltest,the parameters of DP-AFNN are setas follows:α%=2.5%,N=10,T=500.Regarding the number of input and output variables,two prediction models with the initialnetwork structure of 5-50-10-1 are constructed to predict EC and EQ,respectively.In the EBP algorithm,the learning rateηis set to be 0.01.

    To assess the performance of the proposed DP-AFNN,the root mean-square-error(RMSE)and the predicting accuracy are adopted as two performance criteria in the experiments.For comparative analysis,the obtained results of DP-AFNN are compared with some existing methods,including modelbased and FNN-based methods.All the results are averaged on 30 independent runs.RMSE and Accuracy are defined as

    C.Experimental Results

    1)Energy Consumption Modeling

    For the EC modeling,Fig.4 shows the plotofγsorted in a descending order.From Fig.4,ten data points with highγare selected as clustering centers.Fig.5 presents the variation of RMSE values in the training process.From Fig.5,the RMSE values of DP-AFNN and FNN-EBP can converge to a steady state,but the convergence speed of DP-AFNN is obviously faster than FNN-EBP.One may notice that the integration of the DP-based structure identification and adaptive parameter learning algorithm can achieve better solutions.The predicting results of the EC values are shown in Fig.6,and the graphs of predicting errors between the desired and predicted outputs of these two algorithms are displayed in Fig.7.From Fig.7,the predicting errors obtained by the proposed DP-AFNN model are smaller than that of FNN-EBP.

    Fig.4. The value ofγin decreasing order.

    Fig.5.RMSE values during training.

    Fig.6. The predicting values of EC.

    The performance of the proposed DP-AFNN for EC modeling is compared with the FNN-EBP,BSM-MBR[25],TCIM[26],MLR[27],ARKF[10],and DFNN[15].The details of performance comparison are given in Table II.As observed in Table II,the proposed DP-AFNN achieves the smallest testing RMSE(0.97)and the best testing accuracy(99.39%).The performance of DP-AFNN is superior to that of FNN-EBP and other mechanism methods.Although the MLR gets the least training time(0.03 s),its testing accuracy(95.17%)is lower than that of DP-AFNN.The comparisons indicate that the proposed DP-AFNN algorithm can be utilized to address the EC modeling problem in the WWTP.

    Fig.7. The predicting error of EC.

    TABLE IIPERFORMANCE MEASURE VALUES OBTAINED BY DIFFERENT ALGORITHMS FOR EC

    2)Effluent Quality Modeling

    For the EQ modeling,the variation of RMSE values in the training process is presented in Fig.8.Based on the results shown in Fig.8,the proposed DP-AFNN method achieves faster convergence speed than that of FNN-EBP.The predicting results of the EQ values are shown in Fig.9,and the graphs of the predicting errors between the desired and predicted outputs are displayed in Fig.10.The predicting values demonstrate that the proposed DP-AFNN has high modeling precision.

    The performance of the DP-AFNN for EQ modeling is compared with the FNN-EBP,MLR[27],and DFNN[15].The detailed results of different algorithms are exhibited in Table III.The testing RMSE and accuracy of the proposed DP-AFNN modelapproach to 0.96 and 93.04%,respectively,which is remarkable in comparison with other results.The experimentalresults in Table IIIdemonstrate thatthe proposed DP-AFNN has high generalization performance.

    Fig.8.RMSE values during training.

    Fig.9. The predicting values of EQ.

    Fig.10.The predicting error of EQ.

    TABLE IIIPERFORMANCE MEASURE VALUES OBTAINED BY DIFFERENT ALGORITHMS FOR EQ

    VI.CONCLUSION

    In this paper,the DP-AFNN approach for designing the models of EC and EQ in the WWTP has been presented.The proposed method is technically developed with the usage of the DP-based clustering algorithm and the improved LM parameter learning algorithm.Based on the results obtained from the modeling of EC and EQ,the main contributions of this paper include:1)Since the DP-based clustering algorithm can partition the input space well,the initial fuzzy rules of the proposed DP-AFNN are suitable for all the training samples.The simulation results indicate that the DP-based fuzzy rules extracting method can also reduce the computationalcomplexity and enhance generalization ability.2)Since the parameters are optimized by using the improved LM algorithm,the convergence speed and learning ability of the proposed DP-AFNN are superior to that of the FNN-EBP.3)The experimentalresults indicate thatthe proposed DP-AFNN achieves bettermodeling accuracy than the mechanism models(i.e.,BSM-MBR and TCIM)and other FNNs(i.e.,FNN-EBP and DFNN).4)The experimentalresults also demonstrate that the EC and EQ models in the WWTP can be developed with acceptable accuracy utilizing Qw,KLa3,KLa4,SO,5,and SNO,2as decision variables.

    This work,which has solved the modeling problems of EC and EQ,plays an extremely essential role in the subsequent study of the multiobjective optimal controlin the WWTP.The following work of our team includes two aspects.One is to dealwith the complicated multiobjective optimization problem with the usage of the multiobjective evolutionary algorithm.The traditional multiobjective evolutionary algorithm should be improved so that high-quality Pareto optimal solutions can be found.The other is to design two tracking controllers for the optimal set-points of SO,5and SNO,2.The built-in PID closed-loop controllers of BSMshould be improved in orderto achieve higher tracking accuracy and better control placidity.

    色综合婷婷激情| 丁香欧美五月| 女同久久另类99精品国产91| 麻豆成人av在线观看| 国内精品美女久久久久久| 一级黄色大片毛片| 亚洲精品成人久久久久久| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 国模一区二区三区四区视频| 男人和女人高潮做爰伦理| 国产97色在线日韩免费| 9191精品国产免费久久| 国产精品亚洲美女久久久| 在线观看舔阴道视频| 岛国在线观看网站| 一区二区三区激情视频| 国产精品av视频在线免费观看| or卡值多少钱| 桃色一区二区三区在线观看| 又黄又粗又硬又大视频| 精品人妻偷拍中文字幕| 深夜精品福利| 青草久久国产| 欧美国产日韩亚洲一区| 搞女人的毛片| 国产男靠女视频免费网站| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 国产精品免费一区二区三区在线| 国产私拍福利视频在线观看| 深夜精品福利| a级毛片a级免费在线| 国产一区二区亚洲精品在线观看| 欧美性感艳星| 欧美3d第一页| 日韩国内少妇激情av| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 免费看日本二区| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 国产精品女同一区二区软件 | a级毛片a级免费在线| 久久久国产成人免费| 真实男女啪啪啪动态图| 亚洲电影在线观看av| 久久久久久久久大av| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式 | 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 搡老岳熟女国产| 日韩欧美免费精品| 色视频www国产| 亚洲午夜理论影院| 亚洲乱码一区二区免费版| 欧美性猛交黑人性爽| tocl精华| 真人做人爱边吃奶动态| 精品一区二区三区人妻视频| 男人舔奶头视频| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区色噜噜| 欧美日韩国产亚洲二区| 国产精品久久视频播放| 久久精品综合一区二区三区| av在线天堂中文字幕| 18禁美女被吸乳视频| 久久精品综合一区二区三区| 亚洲无线在线观看| 欧美成人性av电影在线观看| 性色avwww在线观看| 国产真实乱freesex| xxxwww97欧美| 国产精品电影一区二区三区| 99国产极品粉嫩在线观看| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 成人特级av手机在线观看| bbb黄色大片| a级一级毛片免费在线观看| 91久久精品电影网| 19禁男女啪啪无遮挡网站| а√天堂www在线а√下载| 中亚洲国语对白在线视频| 青草久久国产| 欧洲精品卡2卡3卡4卡5卡区| 中出人妻视频一区二区| 亚洲av成人av| 国产av一区在线观看免费| 美女cb高潮喷水在线观看| 宅男免费午夜| 久久精品国产自在天天线| 99视频精品全部免费 在线| 国产午夜精品论理片| 亚洲在线观看片| 伊人久久精品亚洲午夜| 精品电影一区二区在线| 九色成人免费人妻av| 国产美女午夜福利| 无限看片的www在线观看| 色在线成人网| 免费观看的影片在线观看| 国产成人a区在线观看| 国产爱豆传媒在线观看| 亚洲av一区综合| 特大巨黑吊av在线直播| 人妻丰满熟妇av一区二区三区| 欧美高清成人免费视频www| 少妇高潮的动态图| 精品一区二区三区人妻视频| 色噜噜av男人的天堂激情| 床上黄色一级片| 日韩av在线大香蕉| 狂野欧美白嫩少妇大欣赏| 国产精品野战在线观看| av中文乱码字幕在线| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美 | 日日干狠狠操夜夜爽| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 亚洲国产欧洲综合997久久,| 久久精品国产99精品国产亚洲性色| 欧美日韩精品网址| 国产精品一区二区三区四区久久| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久 | 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 中文在线观看免费www的网站| 日本黄大片高清| 亚洲国产欧美人成| 欧美极品一区二区三区四区| 小说图片视频综合网站| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 国产黄色小视频在线观看| 校园春色视频在线观看| 国产一区二区三区视频了| 国产亚洲欧美在线一区二区| 国产久久久一区二区三区| av在线蜜桃| 精品久久久久久久毛片微露脸| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 久久久国产精品麻豆| 狂野欧美激情性xxxx| 欧美区成人在线视频| 天堂√8在线中文| av片东京热男人的天堂| 熟女电影av网| 天天添夜夜摸| 99热这里只有是精品50| 国产男靠女视频免费网站| 母亲3免费完整高清在线观看| 国内精品久久久久精免费| 国产野战对白在线观看| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 国产高清激情床上av| 久久九九热精品免费| 韩国av一区二区三区四区| 亚洲片人在线观看| 少妇人妻精品综合一区二区 | av视频在线观看入口| 亚洲欧美激情综合另类| 天堂网av新在线| 亚洲专区国产一区二区| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 成人特级黄色片久久久久久久| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 老熟妇仑乱视频hdxx| 超碰av人人做人人爽久久 | 欧美三级亚洲精品| 欧美黑人欧美精品刺激| 亚洲成av人片免费观看| 啦啦啦韩国在线观看视频| 国产老妇女一区| 国产精品久久久久久精品电影| 国产高清有码在线观看视频| 成人鲁丝片一二三区免费| 国产亚洲精品av在线| 97碰自拍视频| 麻豆国产97在线/欧美| e午夜精品久久久久久久| 免费av不卡在线播放| 亚洲无线在线观看| 观看免费一级毛片| 搡老岳熟女国产| 亚洲欧美日韩高清专用| 免费无遮挡裸体视频| 国产av不卡久久| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 中国美女看黄片| 一区二区三区国产精品乱码| 欧美黑人欧美精品刺激| 精品99又大又爽又粗少妇毛片 | 一级黄色大片毛片| 日本免费a在线| 亚洲在线观看片| 亚洲成人中文字幕在线播放| 免费在线观看成人毛片| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 欧美一级a爱片免费观看看| 亚洲精品日韩av片在线观看 | 国产精品1区2区在线观看.| 亚洲精品国产精品久久久不卡| 亚洲第一欧美日韩一区二区三区| 欧美一区二区精品小视频在线| 久久久久久久精品吃奶| 一级毛片高清免费大全| 久久精品国产清高在天天线| 人妻久久中文字幕网| 国产一级毛片七仙女欲春2| 日韩欧美免费精品| 99久久成人亚洲精品观看| 午夜福利在线观看免费完整高清在 | 日韩国内少妇激情av| 国产av在哪里看| 深夜精品福利| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 两个人的视频大全免费| 国产精品久久久久久精品电影| 日韩高清综合在线| 国产aⅴ精品一区二区三区波| 全区人妻精品视频| 日韩av在线大香蕉| 国产成+人综合+亚洲专区| 波多野结衣高清作品| 99久国产av精品| 两个人的视频大全免费| 俺也久久电影网| 日韩国内少妇激情av| 亚洲内射少妇av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品综合久久久久久久免费| 嫁个100分男人电影在线观看| 国产伦在线观看视频一区| 88av欧美| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 在线观看日韩欧美| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 国产色婷婷99| 国产精品,欧美在线| 99热6这里只有精品| 一级毛片女人18水好多| a在线观看视频网站| 中出人妻视频一区二区| 在线国产一区二区在线| 国产免费男女视频| 小说图片视频综合网站| 丰满乱子伦码专区| 精品久久久久久久久久久久久| 亚洲电影在线观看av| 国产高清视频在线观看网站| 亚洲人与动物交配视频| 久久久久久久久中文| 国产爱豆传媒在线观看| 免费高清视频大片| 欧美性猛交黑人性爽| 岛国视频午夜一区免费看| 亚洲精华国产精华精| 蜜桃久久精品国产亚洲av| 日韩免费av在线播放| 日本a在线网址| 国产久久久一区二区三区| 在线观看免费视频日本深夜| 91av网一区二区| 观看美女的网站| 亚洲avbb在线观看| 九九在线视频观看精品| 国产色爽女视频免费观看| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 日本一本二区三区精品| av中文乱码字幕在线| 精品免费久久久久久久清纯| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 一进一出好大好爽视频| 丝袜美腿在线中文| svipshipincom国产片| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看 | 欧美丝袜亚洲另类 | 国产精品女同一区二区软件 | 99精品欧美一区二区三区四区| 老鸭窝网址在线观看| 99热这里只有是精品50| 亚洲av成人不卡在线观看播放网| 男女之事视频高清在线观看| 内地一区二区视频在线| 精品一区二区三区人妻视频| 国内毛片毛片毛片毛片毛片| 午夜免费男女啪啪视频观看 | 国产免费男女视频| 日本免费a在线| 中文字幕高清在线视频| 国产一区二区激情短视频| 亚洲av成人精品一区久久| 丰满的人妻完整版| 午夜久久久久精精品| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 亚洲精品在线观看二区| 丰满乱子伦码专区| 国产伦精品一区二区三区视频9 | 国产精品亚洲一级av第二区| 亚洲成人久久性| 高清日韩中文字幕在线| 国产成人aa在线观看| 国产精品乱码一区二三区的特点| 国产一区二区在线观看日韩 | 日本一本二区三区精品| 国产乱人视频| www日本黄色视频网| 嫩草影院入口| 精品99又大又爽又粗少妇毛片 | 亚洲第一电影网av| 欧美在线黄色| 高清毛片免费观看视频网站| 高潮久久久久久久久久久不卡| av天堂在线播放| 色播亚洲综合网| 日日夜夜操网爽| 神马国产精品三级电影在线观看| 69av精品久久久久久| 国产激情偷乱视频一区二区| av欧美777| 51国产日韩欧美| 无限看片的www在线观看| 国产精品久久久人人做人人爽| xxxwww97欧美| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 看免费av毛片| av国产免费在线观看| 亚洲人成伊人成综合网2020| 免费观看的影片在线观看| 日本一本二区三区精品| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 午夜日韩欧美国产| 亚洲精品成人久久久久久| 欧美性感艳星| 中文字幕高清在线视频| av在线蜜桃| 色播亚洲综合网| 九色国产91popny在线| 国产野战对白在线观看| 可以在线观看的亚洲视频| 国内精品美女久久久久久| 亚洲av第一区精品v没综合| 99热这里只有是精品50| 亚洲自拍偷在线| 国产欧美日韩一区二区精品| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 婷婷丁香在线五月| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 99久久久亚洲精品蜜臀av| 精品久久久久久久毛片微露脸| 日韩欧美国产在线观看| 午夜影院日韩av| 亚洲精华国产精华精| 91在线观看av| 久久久久久久久久黄片| e午夜精品久久久久久久| 国语自产精品视频在线第100页| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 不卡一级毛片| 91在线精品国自产拍蜜月 | 最新中文字幕久久久久| 亚洲成人久久爱视频| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 无限看片的www在线观看| 免费av毛片视频| 99热6这里只有精品| 小说图片视频综合网站| or卡值多少钱| 国产精品一区二区免费欧美| 97人妻精品一区二区三区麻豆| 亚洲av免费高清在线观看| 国产午夜精品论理片| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 国产亚洲精品久久久久久毛片| 国内毛片毛片毛片毛片毛片| 国产 一区 欧美 日韩| 美女大奶头视频| 精品熟女少妇八av免费久了| 欧美最新免费一区二区三区 | 国产精品久久久久久亚洲av鲁大| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线乱码| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 亚洲精品乱码久久久v下载方式 | 欧美一级毛片孕妇| www日本黄色视频网| 精品午夜福利视频在线观看一区| 美女大奶头视频| 91麻豆av在线| 在线观看av片永久免费下载| 日韩av在线大香蕉| 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| av片东京热男人的天堂| 熟女电影av网| 亚洲av熟女| 看片在线看免费视频| 在线观看一区二区三区| 在线看三级毛片| 久久精品91蜜桃| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 香蕉av资源在线| 精品熟女少妇八av免费久了| 小说图片视频综合网站| 哪里可以看免费的av片| 亚洲久久久久久中文字幕| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 久久久久免费精品人妻一区二区| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 一区福利在线观看| 国产美女午夜福利| 成人特级黄色片久久久久久久| 亚洲黑人精品在线| 18+在线观看网站| 中文字幕人妻丝袜一区二区| svipshipincom国产片| 男女午夜视频在线观看| 1024手机看黄色片| 熟女电影av网| 国产精品久久久久久人妻精品电影| 99久久99久久久精品蜜桃| 日本精品一区二区三区蜜桃| 91麻豆av在线| 最好的美女福利视频网| 精品一区二区三区视频在线 | 国产一区二区亚洲精品在线观看| 亚洲欧美日韩高清在线视频| 日本 av在线| 又爽又黄无遮挡网站| 欧美+亚洲+日韩+国产| 久久久国产成人免费| 成人特级黄色片久久久久久久| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 99精品欧美一区二区三区四区| 亚洲av电影在线进入| 内地一区二区视频在线| 国内精品美女久久久久久| 少妇裸体淫交视频免费看高清| 中文字幕高清在线视频| 岛国视频午夜一区免费看| www.熟女人妻精品国产| av欧美777| 国产精品一及| 天堂影院成人在线观看| 少妇丰满av| 亚洲精品456在线播放app | 国产一区二区三区视频了| 欧美zozozo另类| 成人永久免费在线观看视频| a级毛片a级免费在线| 久久久久久久久中文| av在线天堂中文字幕| 国产精品亚洲美女久久久| av天堂在线播放| 天堂√8在线中文| 国产精品野战在线观看| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 国产亚洲欧美在线一区二区| 亚洲成av人片在线播放无| 日本a在线网址| 激情在线观看视频在线高清| 日本 欧美在线| 在线a可以看的网站| 国产精华一区二区三区| 亚洲国产高清在线一区二区三| tocl精华| 中文字幕av成人在线电影| 国产淫片久久久久久久久 | 午夜福利在线观看吧| 波野结衣二区三区在线 | 99热这里只有是精品50| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 色噜噜av男人的天堂激情| 欧美一级毛片孕妇| av中文乱码字幕在线| 欧美黄色淫秽网站| 在线视频色国产色| 亚洲avbb在线观看| 久久国产乱子伦精品免费另类| 欧美3d第一页| 日韩 欧美 亚洲 中文字幕| av黄色大香蕉| 国产精品免费一区二区三区在线| 级片在线观看| 欧美在线黄色| 哪里可以看免费的av片| 天堂网av新在线| 免费高清视频大片| 日韩欧美在线乱码| 成人午夜高清在线视频| 婷婷亚洲欧美| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 精品欧美国产一区二区三| 1000部很黄的大片| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 成人无遮挡网站| 亚洲成人久久性| 在线免费观看不下载黄p国产 | 日本黄色片子视频| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 色噜噜av男人的天堂激情| 日本三级黄在线观看| 搡女人真爽免费视频火全软件 | 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 看片在线看免费视频| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点| 色播亚洲综合网| 一级黄色大片毛片| 国产亚洲精品久久久com| 国内少妇人妻偷人精品xxx网站| 99热只有精品国产| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 少妇的丰满在线观看| www.色视频.com| 国产探花在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 天天一区二区日本电影三级| 欧美xxxx黑人xx丫x性爽| 老熟妇仑乱视频hdxx| 亚洲精品456在线播放app | 国产高清videossex| 国产一区二区激情短视频| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 国产精品影院久久| 亚洲avbb在线观看| 免费电影在线观看免费观看| 亚洲中文日韩欧美视频| 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线观看免费| 熟女人妻精品中文字幕| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 国产欧美日韩一区二区三| 黄色丝袜av网址大全| 岛国视频午夜一区免费看| 中文字幕高清在线视频| 18禁在线播放成人免费| 久久久久国产精品人妻aⅴ院| 一个人免费在线观看电影| 国产精品一区二区三区四区免费观看 | 国产成人系列免费观看| 日本三级黄在线观看| 免费高清视频大片| 在线播放无遮挡| 欧美成人性av电影在线观看| 国产99白浆流出| 成人鲁丝片一二三区免费| 久久久久久久久大av| 看黄色毛片网站| 国产亚洲欧美在线一区二区| 熟女人妻精品中文字幕| 亚洲国产精品999在线| 精品一区二区三区av网在线观看| 亚洲国产欧美人成|