• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Robust Reserve Scheduling Method Considering Asymmetrical Wind Power Distribution

    2018-09-28 10:58:36GuanzhongWangQiaoyanBianMemberIEEEHuanhaiXinMemberIEEEandZhenWangMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Guanzhong Wang,Qiaoyan Bian,Member,IEEE,Huanhai Xin,Member,IEEE,and Zhen Wang,Member,IEEE

    Abstract—Nowadays,limited predictability and controllability of wind power are regarded as some bottlenecks to wind generation integration with the power system.This paper introduces a robust reserve scheduling method,where the spinning reserve allocation among conventionalunits is considered as well.The method applies to asymmetrical wind power distribution,and offers control on the degree of solution’s conservatism by changing the robustness budget.Meanwhile,distributional information of wind power is represented by mean value and asymmetrical bounds.Furthermore,the model is converted into a deterministic programming problem with dual theory.Case studies for asymmetrically distributed wind power illustrate its effectiveness.

    I.INTRODUCTION

    B Y the end of 2013,the installed wind capacity in China has been the largest in the world,and the wind has become the third-largestelectricalpower source in China[1].On the other hand,limited predictability and controllability of wind generation due to its intermittent characteristics still affect the quality of its power supply[2].To enhance the reliability of power system operation under fl uctuant load and wind power,spinning reserve(SR)provided by thermal generators needs to be scheduled.As the penetration of wind generation increases rapidly,it is of great importance to explore more reliable and economic strategies to address wind power uncertainty in reserve scheduling problem[3].

    The reserve scheduling with wind generation integration has been well studied in many literatures,in which those methodologies can be classified into three categories:the deterministic reserve margin methods(DRM),the stochastic optimization(SO)and the robust optimization(RO).As of DRM,the reserve capability is usually evaluated based on the possible largest forecast error of real-time wind power output[4],[5].However,it is very diffi cult to determine the representative operation condition for DRM-based decision-making.As an improvement,SO can consider more complicated operating conditions than DRM with certain assumption of wind power probability distribution given.For instance,in[6]a Beta function is used to fit the distribution of real-time output of wind farms;in[7]a chance-constrained optimization model is proposed to compute the reserve requirement;Weibull distribution of wind speed is used to obtain the probability distribution of wind generation output in[8].However,there exist two SO’s disadvantages:1)SO problem above usually is a non-convex optimization problem which poses optimal solution diffi culty[7];2)accurate evaluation of probability distribution is hard in some real situations[9].

    From another aspect,in recent years the RO-based approaches have attracted considerable attention for their probability distribution-free advantages[10]-[25].As a branch of RO methods,the robust linear optimization(RLO)is a convex optimization and can well control the degree of solution’s conservatism[10]-[15].The method of RLO has experienced severalevolutions since Soysterfirstdeveloped the RO method in 1973[12].To address the RO’s over-conservatism problem,Ben-Tal and Nemirovski introduced a robust linear optimization,where the rows of the constraintmatrix belong to some ellipsoid uncertainty sets and the robustcounterpartis a secondorder cone programming[13].To overcome the numerical calculation difficulty,an improved RLO method was proposed in[14],in which a linear robust counterpart is developed.However,all above RLO methods considering distributional information assume that the uncertainty of random variables is symmetrical with respect to the mean value.To handle the uncertainty asymmetry,Kang further proposed an RLO method called Kang’s robustlinear optimization(KRLO)[15].

    To our best knowledge,the existing RLO-based reserve scheduling methods have not included the research on asymmetrical wind power with respect to its mean value,e.g.,[26]uses wind power interval without mean value;[27] considers symmetrical wind power distributional information,which indicates the up-spinning reserves and the down-spinning reserves may have the same distribution interval.However,wind power may be asymmetrical distributed in some cases[6]-[9].In this paper,a robust reserve scheduling method is introduced to pursue the minimum spinning reserve cost,in which spinning reserve allocation as an additional AGC (automatic generation control)functionality is achieved by a linearization decision rule.This KRLO-based method applies to asymmetrical wind power distribution,and can control the degree of solution’s conservatism by an adjustable robustness budget.Meanwhile,the wind power uncertainty is represented by an asymmetrical uncertainty set of KRLO with given mean value and maximum/minimum limits.The robust counterpart handling of KRLO,which is based on dualtheory,can convert the proposed model into deterministic formulations.

    The rest of the paper is organized as follows.In Section II,the mathematical formulation of reserve scheduling is introduced.The KRLO method and the solution framework are presented in Section III.Numericalexamples are provided in Section IV.And Section V concludes the paper.

    II.MATHEMATICAL FORMULATION

    A.Problem Description

    The following assumptions are made for problem formulation:1)only wind power uncertainty is considered and bus loads are regarded as well-forecasted;2)each wind generator is connected to the transmission network from a single bus;3)wind powercan be asymmetrically distributed;4)a standard DC power flow is used[28];5)unit commitment solution has been solved in advance.The firstand second assumptions are common in the reserve scheduling problem.The third assumption is more practical compared with those symmetricaldistribution cases.The fourth is based on a fact that in a transmission network the active power is mainly phase angle related and reactive poweris voltage magnitude related.Under normal condition,voltage magnitude variation is small and a DC power flow can be considered in transmission network[28].The last assumption ensures that the state of units has been determined before reserve scheduling.

    Spinning reserve serving to AGC is allocated to each participating generator according to some distribution vector,ddd=[d1,...,dn]T,Pidi=1[29].In this paper,the distribution vector ddd is to be determined for AGC service in reserve scheduling stage.The existing AGC loop is illustrated in Fig.1,in which frequency regulation reserves are allocated based on the KRLO method.

    Fig.1. Schematic diagram illustrating the AGC functionality required for the proposed reserve scheduling method.

    B.Reserve Scheduling Model

    The reserve scheduling aims to reduce the procurementcost of generation and reserves.The following linear costobjective function is adopted[26],

    where CCCg,CCCup,CCCdown∈Rnare the costcoefficientvectors of generation,up-spinning reserves,and down-spinning reserves,respectively.PPPGdenotes the generation dispatch results;RRRup,RRRdown∈Rnare respectively up and down spinning reserves to be determined;N is the number of nodes in the power system.Notice that,a few elements in the vectors may be zero,i.e.,if there are no generators atnode i(i<N),the i th element of PPPGis equal to zero.Constraints are as follows:1)Nodal power balance:

    where BBB ∈ Rn×ndenotes the nodal admittance matrix of transmission network;θ∈ Rnrepresents the phase angle vector;gggsand gggfcorrespond to the scheduled output vectors of output-fixed units and spinning reserve units,respectively,and gggs+gggf=PPPG;Δgggfrepresents the power compensation for the real-time mismatch;pppwand pppddenote the wind power vector and the load vector,respectively.

    2)Wind power limits:

    Responding to the time scale and practical demand in engineering,the random variable PPPwcan be divided into two parts:the forecasted mean value and the uncertain deviation:

    whereμwrepresents the mean value of wind power;Δpppwdenotes the uncertain deviation between the real-time output and the mean value.Moreover,-ωB≤ΔPPPw≤ωF,in which

    whereωFand-ωBdenote the upper and lower limits of deviation respectively.IfωB/=ωF,the wind power distribution is called asymmetrical.

    3)Generation limits:

    4)Spinning reserve allocation:

    where 111 denotes a vector where all the elements are one;the element of ddd is zero if corresponding to an output-fixed unit,otherwise,it is a decision variable corresponding to an SR unit;the linearization decision rule in[11]is introduced to demonstrate the reserve allocation for the wind power deviation(7a);constraints(7b)and(7c)indicate that SR should be within the ramp rate limits,which correspond to the limitofgeneration compensation;moreover,the lastconstraint(7d)ensures the power mismatch can be fully compensated.

    5)Transmission capability constraints:

    where FFF is the branch power flow vector;TTT denotes the admittance matrix of network branches[30];fffmaxdenotes the deterministic transmission capacity limits.Since the uncertain wind power is included in constraints(2)that share the same nodal phase angle vectorθwith(8),the branch power flow vector FFF is also uncertain.Constraints(8)and(9)can guarantee that the standard transmission limits will be respected under uncertain wind generation.

    In the model,decision variables are PPPG,RRRup,RRRdownand ddd;uncertain vector isΔpppw;Δgggfandθare adjustable variables;the rest are parameters.

    Considering SR allocation and transmission capability constraints,the reserve scheduling with uncertain wind power,as an additional AGC functionality[30],is provided.The operating controller may monitor the deviation of the wind power and use the distribution vector ddd(see Fig.1),as a lookup table,to allocate the SR.

    The reserve scheduling problem in(1)-(9)is a special linearprogramming problem with wind poweruncertainty embedded,which will be handled by the tractable reformulation below.

    III.TRACTABLE REFORMULATION

    A.KRLO With Asymmetric Data Uncertainty

    For a general linear optimization model considering uncertain data:

    where xxx∈Rnis the decision variable;uu,,,lll ∈Rndenote the upper and lower bounds of xxx;ccc∈Rnis the coefficient vector;bbb∈Rmis a deterministic vector.And we assume that uncertain data only affects the elements in matrix A∈Rm×n[15].

    RLO was proposed to find a solution of(10)immune to the uncertain data in[14].RLO methods are based on the following notation.The elements of A are denoted byi=1,...,m,j=1,...,n;the mean value of aijis;moreover,the uncertain data in different inequality constraints are assumed to be independent of each other.Letrepresents the set of uncertain data in row i of matrix A,and|Ji|represents the number of elements in set Ji.

    Studies in[14]and[26]are both based on the assumption that=,which means the uncertain data are symmetrically distributed.Although the uncertainty set and robust counterpart in[14]and[26]could be used in reserve scheduling with uncertain wind power,they cannot be applied when the wind power is asymmetrically distributed[6]-[9].

    To handle the asymmetricaluncertainty where/=,we introduce the KRLO uncertainty set with a robustness budget Γi(Γ ≤ |Ji|)[15],which can be defined as:

    where aaaidenotes the uncertain data vector in row i of matrix A,i=1,...,m;βikdepends on the robustness budgetΓi,which serves to adjust the conservative level of ?(Γi),i.e.,the larger the value of Γiis,the more robust ?(Γi)will be.Obviously,?(Γi)could also denote symmetric uncertainty when=.

    With dual theory,the robust counterpart of(10)and(11)can be given in(12):

    where ziand pik(i=1,...,m,?k ∈ Ji)are auxiliary variables with no actualphysicalmeaning[15].The robustcounterpart(12)is a determined linear programming.By increasing Γifrom Γi1to Γi2(Γi1≤ Γi2),the conservativeness level of the solution withΓi1will be lower than that withΓi2.

    By introducing the robust counterpart,the nominal linear programming is converted into a deterministic formulation.The robust counterpart(12)has the same optimal solution with the nominal linear programming(10)when the solution is immune to the uncertainty of(11),which is proved in[15].

    B.Robust Reserve Scheduling

    This section serves mainly to achieve the decoupling between the decision variables and uncertain variables in the equality constraints(2),and convert the optimization model into the general form(10).

    1)Variables Simplification

    Nodal phase angle vectorθserves as a redundant variable and can be eliminated only by substituting the equality constraints(8)to the power balance constraints(2).We use the linear sensitivity matrix between branch power flow and nodal injection power[11]in further detail to take the place of-BBB T-1.Then,the equality of nodal injection power and branch power flow is obtained:

    where S denotes the linear sensitivity matrix.

    The power balance constraint covered in equality(13)can be formulated as

    where IB,UB,WB and LB respectively denote the sets of output-fixed unit buses,spinning reserve unit buses,wind generator buses and load buses,respectively.

    Further,by substituting equality constraints(13)to the transmission limit constraints(9),inequality constraints with uncertain wind power are obtained:

    So far,the equality constraint with uncertain variables(2)is converted into the equality(14)and inequality(15)without nodal phase angle vectorθ.

    2)Deterministic Constraints

    Notice thatthere are no equalities with uncertain data in(12)and there are uncertain variables in equality(14).Therefore,to eliminate the uncertain wind power in(14),we substitute constraints(4),(7a)and(7d)to(14).And then,the equality with respect to the system power balance under wind power forecast is obtained:

    3)Inequality Constraints With Uncertain Wind Power

    By integrating constraints(6a)-(6b),(7a)-(7d)and(15),we get the following inequality constraints with the only uncertain vectorΔpppw:

    The uncertainty set of deviationΔpppwcan be written as follows:

    where the robustness budgetΓshould not be greater than the number of wind generators.According to the KRLO theory,constraints(17)-(19)can be converted into a robust counterpart similar to(12).

    Thus,the reserve scheduling model(1)-(9)can be further converted into a deterministic programming problem that consists of linear equality/inequality constraints.

    C.Algorithm Complexity Analysis

    The optimization problem can be transformed into the robustcounterpart(12)automatically via the MATLAB interface YALMIP[30].The algorithm for the problem could be any common linear programming algorithm,which is embedded in many solvers,such as the CPLEX[31].Therefore,the algorithm in this paper is of polynomial time complexity and fast enough when wind generation changes.

    IV.CASE STUDOES

    In this section,a simulation analysis of varying robustness budget and ramp rate will be conducted with asymmetrical wind power distribution.In addition,this section also presents a comparison between KRLO method and an adjustable robust method with symmetrical wind power distribution.

    A.Revised Garver’s 6-bus Test System

    The revised Garver’s 6-bus system[10]is used to verify the effectiveness of the introduced approach.As shown in Fig.2,four wind farms are connected to the power grid from different buses.Parameters of the load(L1-L5),generators,wind farms,branches,and the cost coefficients are shown in Tables I-III,respectively.All of the thermal generators are engaged in the reserve allocation;pppddenotes the load;gggminand gggmaxdenote the lower and upper limits of units;nijdenotes the number of transmission lines between node i and j;xijdenotes the imaginary partofadmittance of each branch;fijcorresponds to the active power limit of one line between node i and j.

    Fig.2.Configuration of modified Garver’s network.

    TABLE I SYSTEM BUS DATA(MW-1)

    TABLE IISYSTEM BRANCH DATA

    TABLE IIICONVENTIONAL GENENATOR COSTS($/MW)

    The optimization is solved by the solver CPLEX in the interface YALMIP of MATLAB.

    1)Effect of Robustness Budget

    This case investigates the effect of the robustness budget.Fixed ramp rate parameterηis used to make this simulation.Results of Table IV show the variation of the total cost,and the total up/down spinning reserves withη=1/6 orη=1/4 when the robustness budgetdecreases.Respectively,Fig.3 and Fig.4 show the variation of the up/down spinning reserves provided by each participating unit withη=1/6 when the robustness budget increases.

    As is seen in Table IV,the total cost of the generation and reserves with a fixedηreduces when the robustness budgetΓdecreases.The reason for the results is that the decreasing value ofΓleads to a lower fluctuation of wind power considered in the problem.In Fig.3 and Fig.4,unit 3 provides the largestreserve capacity for uncertain wind power in the 6-bus system,because the reserve capacity limit of unit 3 is much larger than those of other units and that reserve capacity limit of unit 1 is reached.

    Fig.3.Down-spinning reserves provided by each unit(η=1/6).

    Fig.4. Up-spinning reserves provided by each unit(η=1/6).

    2)Effect of Ramp Rate

    This case considers the effect of the ramp rate.Fig.5 and Fig.6 show the up/down spinning reserves provided by each participating unit withη=1/4,respectively.

    It can be seen from the comparison betweenη=1/6 and η=1/4 that a bigger value ofη,which corresponds to a larger ramp rate provided by participating units,will reduce the total cost in Table IV,and increase the reserves provided by unit1 in Fig.5 and Fig.6.The reason is thata larger ramp rate ensures the power mismatch can be compensated more by the optimal reserves purchased from unit 1,which is an affordable approach in this test system.

    TABLE IV CONVENTIONAL GENENATOR COSTS($/MW)

    Fig.5.Down-spinning reserves provided by each unit(η=1/4).

    Fig.6. Up-spinning reserves provided by each unit(η=1/4).

    In addition,the total up/down spinning reserves withη=1/6 are equalto those withη=1/4 in Table IV.The reason is thattotalreserves are determined by the worstcase fluctuation.As is seen in the powersystem,the totaldown spinning reserve required for the worst case is 95 MW where the robustness budget is 4(the number of wind generators),which presents the probable maximum deviation between the real-time output and the forecast output(the mean value).In other words,total reserves are determined by the parameterΓ,but the distribution vector can reflect the influence of other factors,such as ramp rate.

    3)Comparison With an Adjustable Robust Method

    This case investigates the differences between the KRLO method and the adjustable robust optimization(ARO)method of[26]with symmetric wind power.Based on the method in[26],each deviation of the wind generation belongs to an uncertain interval without robustness budget,i.e.,∈

    By setting the wwwFequal to wwwBin Table I,symmetric wind power distribution is considered.Table V indicates that the solution obtained via the KRLO method is the same as the ARO method’s solution,when the robustness budget is 4.In conclusion,KRLO method applies to both symmetric and asymmetric uncertainty,and could control the solution’s conservatism only by changing the robustness budget;ARO method could also control the solution’s conservatism via changing the bounds of each deviation interval.

    TABLE V TOTAL COST AND RESERVES(η=1/6)

    B.IEEE 39-bus System

    The IEEE 39-bus system is used to test the scalability of the method.Withoutloss of generality,itis assumed thatthree wind farms are connected with the test system at bus 16,23 and 26,respectively.The data of wind farms are listed in Table VI.The generators atbus 30,31,35 and 38 are assumed to provide SR and the power outputs of the other units are fixed.All other system data can be referred in[32].

    TABLE VI WIND FARM DATA

    The total generation and reserve cost,total up spinning reserves and down spinning reserves are shown in Table VII.It can be seen that the cost and reserves increase with parameter Γbecoming larger.The reason is also that a larger value of Γmeans larger deviation of wind power considered in the reserve scheduling,then more SR will be purchased.

    TABLE VII TOTAL COST AND RESERVE REQUIREMENT(η=1/6)

    The allocations of up/down spinning reserves are shown in Fig.7 and Fig.8.In Fig.7,unit1 provides the maximum down spinning reserves,and the reserves increase with robustness budget being larger.The same situation occurs in Fig.8.

    By comparison between the revised Garver’s 6-bus system and IEEE 39-bus system,the scalability of the method is illustrated.

    Fig.7.Down-spinning reserves provided by each unit(η=1/6).

    Fig.8. Up-spinning reserves provided by each unit(η=1/6).

    V.CONCLUSIONS

    A robust method is proposed in this paper,as an analysis tool for reserve scheduling considering asymmetrical wind power distribution.This method can serve as an additional AGC function to allocate the SR with varying solution’s conservatism,and ramp rate.Simulation results verify that the approach is effective.

    Besides,storage system will be helpful for the reserve scheduling problem,which will be our future work.On the other hand,this work is based on linear dual theory that has strong duality property,therefore,the robust counterpart is equal to the original problem.If the problem has non-affine constraints,the robustcounterpartis hard to obtain,which will serve as another future work of us.

    一本久久精品| a级一级毛片免费在线观看| 中文欧美无线码| 日本爱情动作片www.在线观看| 亚洲精品自拍成人| 日产精品乱码卡一卡2卡三| 免费观看a级毛片全部| 日日啪夜夜撸| 菩萨蛮人人尽说江南好唐韦庄 | 好男人视频免费观看在线| or卡值多少钱| 91久久精品国产一区二区三区| 亚洲av成人av| 不卡视频在线观看欧美| 欧美最黄视频在线播放免费| 韩国av在线不卡| 成人无遮挡网站| 亚洲精品久久国产高清桃花| 亚洲五月天丁香| 日韩欧美精品v在线| 亚洲五月天丁香| 精品久久久久久久末码| 色综合站精品国产| 毛片一级片免费看久久久久| 一区二区三区四区激情视频 | 99精品在免费线老司机午夜| 欧美激情国产日韩精品一区| 日本熟妇午夜| 特级一级黄色大片| 看免费成人av毛片| 成年女人看的毛片在线观看| 日本-黄色视频高清免费观看| 色综合色国产| 女人被狂操c到高潮| 能在线免费观看的黄片| 国产精品嫩草影院av在线观看| 国产精华一区二区三区| 国产片特级美女逼逼视频| 春色校园在线视频观看| 在线观看美女被高潮喷水网站| 在线天堂最新版资源| 午夜福利在线观看免费完整高清在 | 在线国产一区二区在线| 国产亚洲精品久久久久久毛片| 97人妻精品一区二区三区麻豆| 少妇的逼好多水| 女人十人毛片免费观看3o分钟| 久久久国产成人免费| 国产一级毛片在线| 啦啦啦观看免费观看视频高清| 免费看光身美女| 日本-黄色视频高清免费观看| 2022亚洲国产成人精品| www日本黄色视频网| 黄片wwwwww| 99热网站在线观看| 成人特级黄色片久久久久久久| 亚洲在线自拍视频| 中文资源天堂在线| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜爱| 18禁在线无遮挡免费观看视频| 99国产精品一区二区蜜桃av| 色播亚洲综合网| 亚洲欧美日韩卡通动漫| 男女视频在线观看网站免费| 国产黄色小视频在线观看| 97在线视频观看| 中文精品一卡2卡3卡4更新| 国产高清视频在线观看网站| 天堂中文最新版在线下载 | 婷婷六月久久综合丁香| av又黄又爽大尺度在线免费看 | 婷婷色综合大香蕉| 久久久久久久久久黄片| 亚洲精品粉嫩美女一区| 一级毛片电影观看 | 精品人妻一区二区三区麻豆| 一区福利在线观看| 国产真实伦视频高清在线观看| 国产男人的电影天堂91| 日韩成人av中文字幕在线观看| 男人和女人高潮做爰伦理| 久久精品久久久久久久性| 成人亚洲精品av一区二区| 久久99热6这里只有精品| 麻豆av噜噜一区二区三区| 美女内射精品一级片tv| 亚洲成av人片在线播放无| 亚洲欧美清纯卡通| 成年女人永久免费观看视频| 青春草国产在线视频 | 国产成人a∨麻豆精品| or卡值多少钱| 国产一级毛片七仙女欲春2| 黄色日韩在线| 人妻制服诱惑在线中文字幕| 亚洲成人av在线免费| 三级男女做爰猛烈吃奶摸视频| 91狼人影院| 色播亚洲综合网| 一个人观看的视频www高清免费观看| 亚洲国产欧美人成| 国产精品野战在线观看| 99久久人妻综合| 精品久久久久久成人av| 亚洲久久久久久中文字幕| 亚洲美女搞黄在线观看| 欧美极品一区二区三区四区| 精品人妻熟女av久视频| 亚洲成人av在线免费| 国产毛片a区久久久久| 欧美激情国产日韩精品一区| 国产黄片美女视频| 国产精品一区二区在线观看99 | 午夜福利在线观看免费完整高清在 | 日韩视频在线欧美| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 久久草成人影院| 国产中年淑女户外野战色| 久久精品国产鲁丝片午夜精品| 波多野结衣巨乳人妻| 天堂中文最新版在线下载 | 伊人久久精品亚洲午夜| 精品不卡国产一区二区三区| 三级国产精品欧美在线观看| 亚洲精品成人久久久久久| 久久久成人免费电影| 亚洲经典国产精华液单| 国模一区二区三区四区视频| 国产淫片久久久久久久久| 国产精品一二三区在线看| a级毛色黄片| 麻豆av噜噜一区二区三区| 欧美成人免费av一区二区三区| 高清毛片免费看| 日韩在线高清观看一区二区三区| 夜夜看夜夜爽夜夜摸| 成人毛片a级毛片在线播放| 日本免费一区二区三区高清不卡| 天天躁夜夜躁狠狠久久av| 美女大奶头视频| 99国产极品粉嫩在线观看| 99国产极品粉嫩在线观看| 国产成人影院久久av| 日日撸夜夜添| 一边亲一边摸免费视频| 国产一区二区亚洲精品在线观看| 岛国在线免费视频观看| 人妻少妇偷人精品九色| 中文字幕制服av| av专区在线播放| 大香蕉久久网| 又粗又爽又猛毛片免费看| 亚洲精品成人久久久久久| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆| 国产精品蜜桃在线观看 | 22中文网久久字幕| 成人亚洲欧美一区二区av| 波野结衣二区三区在线| 国产乱人视频| 深夜a级毛片| 最近视频中文字幕2019在线8| 国产老妇伦熟女老妇高清| 国产久久久一区二区三区| 麻豆一二三区av精品| 悠悠久久av| 亚州av有码| 天天躁日日操中文字幕| 一级av片app| 久久精品国产亚洲av天美| 成人美女网站在线观看视频| 天堂av国产一区二区熟女人妻| 国产精品国产高清国产av| 日日啪夜夜撸| 国产成人福利小说| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 国产成人freesex在线| 国内揄拍国产精品人妻在线| 最近手机中文字幕大全| 国产精品不卡视频一区二区| 97超视频在线观看视频| 桃色一区二区三区在线观看| 国产午夜精品论理片| 国产乱人视频| 丰满乱子伦码专区| 亚洲国产精品成人久久小说 | 伊人久久精品亚洲午夜| 1000部很黄的大片| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 国产精品电影一区二区三区| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人精品一区二区| 人人妻人人澡欧美一区二区| 久久精品综合一区二区三区| 日本一二三区视频观看| 尤物成人国产欧美一区二区三区| 国产成人精品久久久久久| 色哟哟·www| 国产精品一二三区在线看| 国产毛片a区久久久久| 少妇丰满av| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av| 亚洲av男天堂| 欧美色视频一区免费| 看黄色毛片网站| 深夜a级毛片| 91久久精品国产一区二区成人| 高清在线视频一区二区三区 | 少妇的逼水好多| 欧美日本亚洲视频在线播放| 国产精品,欧美在线| 国产一区二区激情短视频| 蜜桃亚洲精品一区二区三区| 人妻制服诱惑在线中文字幕| 美女国产视频在线观看| 久久久久网色| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 能在线免费看毛片的网站| 亚洲不卡免费看| av.在线天堂| av免费在线看不卡| 国内精品宾馆在线| 成人综合一区亚洲| 国产女主播在线喷水免费视频网站 | 我要搜黄色片| 欧美一区二区国产精品久久精品| 国产av麻豆久久久久久久| 99热6这里只有精品| 青春草亚洲视频在线观看| 欧美又色又爽又黄视频| 搞女人的毛片| 级片在线观看| 美女cb高潮喷水在线观看| 九九热线精品视视频播放| 尤物成人国产欧美一区二区三区| 最近最新中文字幕大全电影3| 国产精品蜜桃在线观看 | 婷婷六月久久综合丁香| 国产成人福利小说| 欧美性猛交╳xxx乱大交人| 亚洲欧洲日产国产| 国产精品免费一区二区三区在线| 亚洲综合色惰| 激情 狠狠 欧美| 一区二区三区四区激情视频 | 久久久色成人| 嫩草影院新地址| 我要看日韩黄色一级片| 一区二区三区四区激情视频 | 久久久久久久亚洲中文字幕| av专区在线播放| 在线国产一区二区在线| 亚洲精华国产精华液的使用体验 | 麻豆国产97在线/欧美| 亚洲五月天丁香| 1024手机看黄色片| 国产精品伦人一区二区| 国产成人精品一,二区 | 男人舔女人下体高潮全视频| 精品人妻视频免费看| 美女大奶头视频| 国产精品一及| 亚洲18禁久久av| 国产黄a三级三级三级人| 久久精品综合一区二区三区| 69人妻影院| 一区二区三区免费毛片| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 日本色播在线视频| 日日撸夜夜添| 久久久精品欧美日韩精品| 色吧在线观看| 国产成年人精品一区二区| 村上凉子中文字幕在线| 麻豆久久精品国产亚洲av| 22中文网久久字幕| 永久网站在线| 国产精品久久久久久亚洲av鲁大| 国产精品1区2区在线观看.| 免费无遮挡裸体视频| 99久久九九国产精品国产免费| 亚洲欧美成人精品一区二区| 成人永久免费在线观看视频| 不卡视频在线观看欧美| 久久鲁丝午夜福利片| 成人毛片60女人毛片免费| 亚洲自拍偷在线| 久久久久久久久大av| or卡值多少钱| 亚洲欧美日韩卡通动漫| 禁无遮挡网站| 一级av片app| 天堂影院成人在线观看| 成人永久免费在线观看视频| 少妇高潮的动态图| 亚洲无线观看免费| 国产色婷婷99| 小蜜桃在线观看免费完整版高清| 国产成人午夜福利电影在线观看| 日韩欧美在线乱码| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| 一级黄色大片毛片| 国产高清不卡午夜福利| 在线观看66精品国产| 免费观看在线日韩| 成人亚洲欧美一区二区av| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久久久久噜噜老黄 | 国产乱人偷精品视频| 非洲黑人性xxxx精品又粗又长| 国产单亲对白刺激| 久久精品国产亚洲av天美| 在线国产一区二区在线| 看免费成人av毛片| 看免费成人av毛片| 岛国毛片在线播放| 成年女人看的毛片在线观看| 亚洲成人久久性| 最新中文字幕久久久久| 99热只有精品国产| 美女xxoo啪啪120秒动态图| 亚洲精品国产av成人精品| 非洲黑人性xxxx精品又粗又长| 欧美高清性xxxxhd video| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 国产日本99.免费观看| 人妻制服诱惑在线中文字幕| 国产极品天堂在线| 我要搜黄色片| 成人性生交大片免费视频hd| 国产探花在线观看一区二区| 欧美最新免费一区二区三区| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av香蕉五月| av免费在线看不卡| 中文精品一卡2卡3卡4更新| 在线观看美女被高潮喷水网站| 一区二区三区四区激情视频 | 干丝袜人妻中文字幕| 熟妇人妻久久中文字幕3abv| 白带黄色成豆腐渣| 久久精品国产自在天天线| 亚洲欧洲国产日韩| 两个人视频免费观看高清| 亚洲国产色片| 国产91av在线免费观看| 成人高潮视频无遮挡免费网站| 日韩一本色道免费dvd| 久久久久久久久大av| 丝袜美腿在线中文| 美女 人体艺术 gogo| 午夜免费男女啪啪视频观看| 永久网站在线| 久久精品夜夜夜夜夜久久蜜豆| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 精品人妻一区二区三区麻豆| 国产伦理片在线播放av一区 | 寂寞人妻少妇视频99o| 午夜a级毛片| 波多野结衣高清作品| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 午夜精品一区二区三区免费看| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 午夜视频国产福利| 黄色一级大片看看| 麻豆久久精品国产亚洲av| eeuss影院久久| 亚洲av成人av| 欧美zozozo另类| 少妇熟女欧美另类| 99久久人妻综合| 99精品在免费线老司机午夜| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 国产精品一区二区三区四区久久| 少妇猛男粗大的猛烈进出视频 | 久久中文看片网| 一夜夜www| a级毛色黄片| 99热精品在线国产| 亚洲一区二区三区色噜噜| 精品午夜福利在线看| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| 国产毛片a区久久久久| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| 免费在线观看成人毛片| 成人欧美大片| 在线a可以看的网站| 美女国产视频在线观看| 久久精品影院6| 国产真实乱freesex| 观看免费一级毛片| 婷婷精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 日本三级黄在线观看| 欧美区成人在线视频| 一区福利在线观看| 91在线精品国自产拍蜜月| 婷婷色av中文字幕| 亚洲性久久影院| 中文欧美无线码| 中国国产av一级| 99久久精品国产国产毛片| 亚洲国产精品国产精品| 亚洲色图av天堂| 精品国产三级普通话版| 久久国内精品自在自线图片| 日韩欧美国产在线观看| 99视频精品全部免费 在线| 亚洲av.av天堂| 禁无遮挡网站| 中文字幕久久专区| 看十八女毛片水多多多| 最好的美女福利视频网| 国产成年人精品一区二区| 国产精品一区www在线观看| 亚洲精品456在线播放app| 国产精品国产高清国产av| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 有码 亚洲区| 能在线免费观看的黄片| 搞女人的毛片| 美女黄网站色视频| 人妻少妇偷人精品九色| 可以在线观看毛片的网站| 我的老师免费观看完整版| 国产亚洲91精品色在线| 一本一本综合久久| 精品久久久噜噜| 色哟哟哟哟哟哟| 精品午夜福利在线看| 亚洲va在线va天堂va国产| 一级黄片播放器| 日日摸夜夜添夜夜添av毛片| av国产免费在线观看| 偷拍熟女少妇极品色| 国产在线精品亚洲第一网站| 亚洲乱码一区二区免费版| av女优亚洲男人天堂| av专区在线播放| 黄色配什么色好看| 国产高清激情床上av| 免费搜索国产男女视频| 啦啦啦啦在线视频资源| 日韩国内少妇激情av| 国产一区二区三区av在线 | 看非洲黑人一级黄片| 精品免费久久久久久久清纯| 别揉我奶头 嗯啊视频| 美女 人体艺术 gogo| 国产色婷婷99| 91久久精品电影网| 国产一区亚洲一区在线观看| 黄色视频,在线免费观看| 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| 欧美bdsm另类| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 欧美极品一区二区三区四区| 天天躁夜夜躁狠狠久久av| 黄色配什么色好看| 久久亚洲精品不卡| 午夜免费激情av| 成人一区二区视频在线观看| 一区福利在线观看| 美女cb高潮喷水在线观看| 久久久久久久久中文| 日韩精品有码人妻一区| 亚洲五月天丁香| 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 日韩大尺度精品在线看网址| 午夜福利高清视频| 亚洲内射少妇av| 麻豆成人午夜福利视频| 成人欧美大片| 久久精品人妻少妇| 丰满人妻一区二区三区视频av| 一本一本综合久久| 久久亚洲国产成人精品v| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 91精品国产九色| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 在现免费观看毛片| 美女被艹到高潮喷水动态| 亚洲成a人片在线一区二区| 人人妻人人澡人人爽人人夜夜 | 国产精品人妻久久久久久| 久久精品国产清高在天天线| 国产淫片久久久久久久久| 欧美日本视频| 午夜福利高清视频| 亚洲最大成人av| 又爽又黄无遮挡网站| 九草在线视频观看| 蜜臀久久99精品久久宅男| 久久精品国产清高在天天线| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 国产v大片淫在线免费观看| 国语自产精品视频在线第100页| 中文欧美无线码| 国产精品久久久久久av不卡| 亚洲丝袜综合中文字幕| 精华霜和精华液先用哪个| 免费观看的影片在线观看| av专区在线播放| 亚洲av中文av极速乱| 欧美激情在线99| 欧美一级a爱片免费观看看| 久久99热这里只有精品18| 国产精品一区www在线观看| 免费看光身美女| 99热只有精品国产| 精品久久久久久成人av| 成人特级黄色片久久久久久久| a级毛片免费高清观看在线播放| 如何舔出高潮| 亚洲精品日韩在线中文字幕 | 欧美变态另类bdsm刘玥| 欧美日韩精品成人综合77777| 亚洲欧美日韩高清专用| 少妇高潮的动态图| 舔av片在线| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 久久久久性生活片| 熟女电影av网| 天堂√8在线中文| 精品久久久久久成人av| 国产成人精品久久久久久| 国产一区二区激情短视频| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 成人漫画全彩无遮挡| 观看免费一级毛片| 亚洲人成网站在线播放欧美日韩| 我要看日韩黄色一级片| 级片在线观看| 最好的美女福利视频网| 亚洲精品影视一区二区三区av| 亚洲在线观看片| 黄片无遮挡物在线观看| 一夜夜www| 观看免费一级毛片| 男人舔奶头视频| 色综合站精品国产| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 日韩av在线大香蕉| 99精品在免费线老司机午夜| 国产真实伦视频高清在线观看| 青青草视频在线视频观看| av在线老鸭窝| 欧美日韩在线观看h| 日韩,欧美,国产一区二区三区 | 色视频www国产| 中文亚洲av片在线观看爽| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 九九在线视频观看精品| 欧美一区二区亚洲| 乱码一卡2卡4卡精品| av在线观看视频网站免费| 中国美女看黄片| 日韩欧美在线乱码| 久久精品国产清高在天天线| a级毛色黄片| 国产精品一区二区性色av| 丝袜美腿在线中文| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 给我免费播放毛片高清在线观看| 变态另类成人亚洲欧美熟女| 欧美在线一区亚洲| 欧美人与善性xxx| 亚洲国产欧美人成| 日本在线视频免费播放| 男人舔奶头视频| 午夜免费激情av| 三级经典国产精品| 免费观看人在逋| 黄色欧美视频在线观看| 国内揄拍国产精品人妻在线|