• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feed-Forward Active Noise Control System Using Microphone Array

    2018-09-28 10:58:28LichuanLiuSeniorMemberIEEEYangLiandSenKuoSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Lichuan Liu,Senior Member,IEEE,Yang Li,and Sen M.Kuo,Senior Member,IEEE

    Abstract—Feedforward active noise control(ANC)system are widely used to reduce the wide-band noise in different application.In feedforward ANC systems,when the noise source is unknown,the misplacement of the reference microphone may violate the causality constraint.We present a performance analysis of the feedforward ANC system under a noncausal condition.The ANC system performance degrades when the degree ofnoncausality increases.This research applies the microphone array technique to feedforward ANC systems to solve the unknown noise source problem.The generalized cross-correlation(GCC)and steering response power(SRP)methods based on microphone array are used to estimate the noise source location.Then,the ANC system selects the proper reference microphone for a noise control algorithm.The simulation and experiment results show that the SRP method can estimate the noise source direction with 84%%%accuracy.The proposed microphone array integrated ANC system can dramatically improve the system performance.

    I.INTRODUCTION

    N OISE pollution becomes a pressing problem due to the developmentofindustrialapplications[1],[2].Reducing noise continues to be a challenge to maintaining and increasing the quality of life.Feedforward active noise control(ANC)systems are based on adaptive system identification,thus,are able to control both broadband and narrowband noises.Therefore,ANC systems are widely used in many practical applications,such as heating,ventilation,and air-conditioning systems[3],[4];engine exhaust systems[5],[6];and ANC headphones[7],[8].However,when the acoustic/electric delays in the ANC systems exceed the acoustic delay of the primary path,the causality constraint will be violated[9].The performance of the feedforward ANC system dramatically degrades as the degree of noncausality increases.Thus,the positions of the noise source and the reference microphone are critical for feedforward ANC system’s performance.

    In some ANC applications,the noise source position is known in advance,for example,electronic mufflers.Therefore,the reference microphone can be placed atthe proper upstream position to make the ANC filter casual.However,in many other applications,the noise source is unknown or moving,such as the ANC system for infantincubators[10].The ANC system may work with a degraded performance or is unable to cancel the primary noise,as shown in Section IV.Therefore,there is an increased demand for ANC systems to estimate the noise source location or direction,then one can select the reference signalto cancelunwanted noise from unknown noise source or moving noise source environment,for example,a noisy street.

    Microphone array is widely used in speech signalprocessing for speaker direction detection[11]-[15].However,the noise sound signal,especially broadband noise,is highly uncorrelated which is different from speech signal.Therefore,the conventional localization methods designed for speech signal are difficult to utilize in noise signal situations.

    In this paper,we propose to integrate a microphone array technique with the feedforward ANC system.The microphone array is used to estimate the noise source location or direction by using generalized cross-correlation(GCC)and steering response power(SRP)methods[16],[17].The ANC system selects the microphone close to the noise source as the reference microphone,using the filtered-X least mean square(FXLMS)algorithm to reduce the unwanted noise level.

    The paper is organized as follows,Section II presents the causality problem of the feedforward ANC system and analyzes the system performance.Section III proposes the microphone array integrated ANC system and noise source localization algorithm.Section IV shows the simulation and experiment results,and Section V concludes the paper.

    II.PROBLEM STATEMENT

    In the feedforward ANC system configuration illustrated in Fig.1,the primary noise is sensed by a reference microphone.The anti-noise,which is the output of the adaptive filter,is played by the secondary loudspeaker and it passes through the acoustic path,then reaches the error sensor.The acoustic delay AD1from the reference microphone to the error sensor is proportional to the distance from the reference sensor to the error sensor.AD2represents another delay between the secondary loudspeaker and the error sensor.Since the adaptive filter necessarily has a causal response,we must ensure that the acoustic delay between the reference and the error microphones is greater than the electric delay ED,plus the acoustic delay from the secondary loudspeaker[9].Thatis:AD1>AD2+E D,and this condition is called the causality constraint.When this constraint is violated,the response of the ANC system is noncausal,and hence not realizable for broadband noise control.

    Fig.1.The block diagram of a single channel feedforward ANC system.

    Fig.1 shows the block diagram of a single channel feedforward ANC system.The primary path P(z)models the propagation path between the reference sensor and error sensor(including AD1),while S(z)is the secondary path between the anti-noise loudspeaker and the error sensor(including a partof ED and AD2).(z)is the estimation of the secondary path’s transferfunction.In orderto analyze the causality effect,we simplify P(z)and S(z)as pure delays with their impulse response functions,p(n)=δ(n-Δp)and s(n)=δ(n-Δs).Whenτ=Δp-Δs>0,the system is causal.The Z domain signal can be expressed as

    and whenτ= Δp-Δs< 0,the causality constraint is violated,therefore we have

    In this case,adaptive filter W(z)works as a predicator to minimize the residual error:W(z)=zτ.

    The primary broadband noise can be modeled as an autoregressive(AR)model[18],[19]

    where n(n)is a white noise with 0 mean and varianceσ2,andαirepresents the constant coefficients for the AR model.

    We assume thatΔp=0 without loss of generality,so the primary noise at the error sensor becomes

    with w(k)as the desired coefficient for this moving average(MA)model[20].Meanwhile,the anti-noise generated from the adaptive filter W(z)is

    Therefore,the MSE is related withτand the desired modelcoefficients w(k).For the same model w(k),MSE will increase while the degree of causality is increased.

    There are many factors related to causality,and the most criticalone is to selectthe reference sensor thatis close to the noise source.

    III.MICROPHONE ARRAY INTEGRATED ANC SYSTEM

    In this section,we use an infantincubator ANC application as an example.We combine the microphone array technique with a feedforward ANC system.For an ANC application with unknown noise source/sources,The microphone array is used to estimate the noise sources’direction or location,then the proper reference sensor is selected and the ANC algorithm is conducted.

    The ANC system contains K secondary sources and M error sensors,as shown in Fig.2.The microphone array contains J(J=4)microphones,and m1-m4are deployed at the edge orcorners ofthe system.The noise source location or direction is estimated by the microphone array.The reference microphone is selected based on the noise source position for conducting the FXLMS algorithm.

    Fig.2.Integrated ANC system(m1-m4 are the sensors in the microphone array).

    The primary noise is sensed by a reference microphone(m2)close to the noise source[1,2].The adaptive filters use the sensed reference signal rrr(n)=[r(n)...r(n-L+1)]Tto generate the cancelling signal yyy(n)=[y1(n) ... yk(n)]Twith K channels;which is fed to secondary loudspeakers to cancel the primary noise.The M error microphones measure the residualnoise eee(n)=[e1(n)...em(n)]Tand use them to update the filter coefficients.

    The noise source direction or position can be estimated by processing the signals received by the microphone array,as shown in Fig.3.

    Fig.3.Microphone array with 4 sensors.

    Assume that S is a noise source with unknown coordinate(x,y,z),the noise signalis picked up by microphones:m1,...,m4simultaneously.Assume m1is at the coordinate system origin and the position of the i th microphone in the array is(xi,yi,zi)with i=2,3 and 4.Based on the geometry of the microphone array,the coherence and time difference among multiple copies of the same signal can be used to estimate the noise direction or location.

    A.Noise Source Direction Detection

    The time difference of arrival(TDOA)method is widely used in acoustic event localization.The TDOA estimation problem is to measure the time difference between the signals received at different microphones[11],[12].

    Consider an unknown noise source S at(x,y,z),and the sound travel time between S and i th microphone is

    where vsis the speed of sound,and i=1,2,3,4.

    Then,the TDOA between miand m1can be expressed as

    Equation set(7)contains three hyperboloid equations with three unknowns(x,y,z).By solving(7),we can obtain the position of the noise source.

    1)Generalized Cross-Correlation:The generalized crosscorrelation(GCC)algorithm is one of the most popular methods for TDOA estimation[17],which is defined as the expectation of two observed signals

    where F-1[·]is the inverse discrete-time Fourier transform,(f)is the cross spectrum density.v(f)is a frequencydomain weighting function,and(f)is cross-spectrum for two observed signals as

    The maximum possible delay willbe given where r(k)achieves its maximum atτ=k,so the TDOA between mi(t)and mj(t)is obtained as

    where k ∈ [-τmax,τmax],and the τmaxis the maximum possible delay of microphone array.

    The frequency-domain weighting function v(f)is calculated straightforwardly using the norm of(f),because the TDOA information is conveyed in the phase rather than the amplitude of the cross-spectrum[15].We choose frequencydomain weighting function as

    The amplitude has been normalized since it is not related with TDOA,the phase information which is used for calculating TDOA is left.Thus the GCC can be calculated efficiently.

    2)Steered Response Power:In our system,since the noise signal is highly uncorrelated,the accuracy of TDOA we obtained from GCC is low.Therefore,the estimation accuracy of the GCC phase transform(PHAT)algorithm is notacceptable,as shown in Section IV.Therefore,in this subsection,we use the SRP[13],[14]algorithm to improve the estimation accuracy.

    The signal picked up by the i th microphone is denoted as mi(t),the SRP of a finite signal frame is defined as[13]

    where xxx is the 3-D spatial vector of noise source,ωiis the weight of signal mi(t),andτ(xxx,i)is the time delay from the noise source directly to the i th microphone.

    SRP can be calculated by summing the generalized crosscorrelations of all possible microphone pairs of the microphone array[13].Based on Parseval’s theorem,the totalenergy contained in a waveform mi(t)summed across all time t is equalto the totalenergy ofthe waveform’s Fourier Transform,M(f)summed across all of its frequency components f[14].We transfer(12)into frequency domain as follows[13],

    where Wk(ω)and Wl(ω)are frequency-dependent weights,andτ(xxx,l)-τ(xxx,k)is the TDOA for microphones k and l.

    The maximum of Pn(xxx)willbe obtained atthe noise source position xxx;

    Pn(xxx)is a symmetric matrix with fixed energy terms on the diagonal[8],therefore,we only consider(xxx)which contains the lower triangular part of Pn(xxx)and changes with xxx.and changes with xxx needs to be concerned as

    The TDOA information is conveyed in the phase instead of the amplitude of the cross-spectrum[11].Performing phase transform(PHAT),frequency-dependent weights choose inverse of the magnitude of the cross-spectrum as

    andτ(xxx,l)-τ(xxx,k)is the TDOA for microphones k and l.

    Searching in a restricted 3-D spatial area for maximum(xxx),one will get the estimated location of the noise source.The computationalcomplexity is significantly high for searching for the maximumin the whole space when the physical space is large.In order to reduce the computational complexity,a suboptimal stochastic region contraction(SRC)searching algorithm is utilized[13].

    The basic idea of the SRC algorithm is,given an initial rectangular search volume containing the desired number of global optima and gradually,in an iterative process,decrease the search volume until a sufficiently small sub-volume is reached in which the optimal(xxx)is trapped[13].

    Defi ne i as the iteration counter,N as the number of random points need to be evaluated in original search volume,P(P<<N)as the number of optimal points in volume Vi,as the sufficiently smallsub-volume in which the optimal(xxx)is trapped,andas the maximum numberof(xxx)evaluation allowed in sub volume Vi.The SRC algorithm is illustrated in Fig.4.

    Fig.4.3-D SRC search region example.

    The SRC search algorithm can be implemented by following steps:

    1)For the initial iteration i= 0,in original volume V0=,randomly choose N points.

    4)Contract the search region to a smaller volume with boundarywhich is determined by the locations of the biggest P points,and compute new region volume Vi.

    5)If Vi<Vminstop search and find the optimum locationas:=argmaxxxx(xxx)

    6)Else,calculate the mean valueμiof(xxx)for those P points,save m good points at which(xxx)> μi.

    7)Continue searching for other n=P-m points in the same region B i,till sufficient n points have been found or the evaluation times for i th iteration ci<

    8)i=i+1,go to Step 4.

    3)Reference Microphone Selection and ANC Algorithm:In this paper,we simply choose the microphone close to the noise source as the reference microphone expressed as

    Then,the FXLMS algorithm can be utilized to reduce the noise level,the secondary sources are driven by the adaptive filters output signals,

    where AAAk,iis the adaptive filter matrix from i th reference microphone to k th secondary source.

    The error signal vector measured by the error microphones is

    where ddd(n)is the primary noise vector and yyy′(n)is the canceling signal vector at the error sensors.

    whereμis the step size,

    and SSS(n)is the secondary paths matrix among the secondary loudspeakers and error microphones.

    IV.CASE STUDY AND EXPERIMENT RESULTS

    In this paper,an ANC application for an infantincubator is used as an example of the proposed integrated system.In this system,the microphone array consists of four omnidirectional microphones and is placed at the four corners outside of incubator,as shown in Fig.5.Recorded neonatalintensive care unit(NICU)noise is used as the noise source is played by a loudspeaker.The TASCAM HS-P82 multi-track recorder is used to record the 4-channel noise signals from the 4 microphones,sampling frequency is 48 kH,which is down sampled to 6.4 kHz.

    Fig.5. The experimental set up of noise source direction detection.

    Fig.6.Searching result(2-D)for maximum.

    Fig.7.Estimation of 100 noise source positions by using GCC-PHAT method.

    The position of microphone m2is assigned as the origin of the coordinate system,and the microphone array locates at[(0.85,0,0);(0,0,0);(0,-0.55,0);(0.85,-0.55,0)].In every quadrant,we randomly change noise source location 25 times and record 4-channel synchronous signals.These recorded signals are processed using GCC-PHAT and SRPPHAT algorithms.

    Fig.6 shows 2-D searching result for maximum(xxx).It is shown that the SRP achieves the highest value at the noise source position.The location of peak SRP’s value is the position of the noise source.

    In each quadrant,the estimated position for unknown noise sources are plotted in 2-D plane using different color marks as shown in Fig.7.We find that 16 points are misestimated.For example,some green points fall in quadrant IV and some estimated locations of the noise sources are inside the range of the microphone array.

    The detailed localization estimation results of the GCCPHAT algorithm are tabulated in Table I.In the computer simulation,29 of 100 recordings have no realsolutions which are indicated as N/A in the table,and 55 outof 71 estimated noise source points are in the rightquadrantas highlighted in shaded cells of Table I.The correct rate of noise source localization using GCC algorithm is 55%and it is not acceptable.

    TABLE I NOISE SOURCE LOCALIZATION BY USING GCC METHOD

    For the SRP algorithm,the estimated results of the same total 100 positions are shown in the 2-D plane of the microphone array in Fig.8.It is well noticed that the quantity of the wrong estimation for unknown noise sources is reduced.For example,only 5 points fall in other quadrants.

    Fig.8.Estimation of 100 noise source positions by using SRP-PHAT method.

    The performance of the SRP algorithm is summarized in Table II.There are 10 estimated locations inside the microphones array area,so these results are invalid and indicated as N/A.There are 5 estimated noise source locations in the wrong quadrant,thus the correct rate of noise source localization using SRP algorithm is 85%.

    Based on the results obtained from SRP algorithm,we selected the microphone close to the noise source to act as reference microphone.The 1X2X2 feedforward ANC system with two error sensors and two secondary loudspeakers is used.We use the recorded NICU noise as the primary noise.

    TABLE II NOISE SOURCE LOCALIZATION BY USING SRP METHOD

    Table III presents the experimental results of the microphone-array-integrated ANC system’s performance when the reference microphone is chosen properly and improperly.When the wrong reference microphone is chosen,the causality of the ANC system is invalid and the performance is degraded.When the ANC system is causal,the performance is improved by around 5 dB.

    TABLE IIINOISE REDUCTION LEVELS FOR DIFFERENT REFERENCE SELECTION(THE BOLD ONES ARE CAUSAL ANC SYSTEMS)

    V.CONCLUSION

    We proposed to develop the microphone array integrated ANC system.The performance of a feedforward ANC system is analyzed when the causality condition is violated.A microphone array with 4 microphones is used to pick up the noise signal simultaneously;the GCCT algorithm and SRP algorithm are used to estimate the noise source location and direction for selecting the proper reference sensor.The simulation and experiment results show that the proposed technique can locate the noise sources with high accuracy.The SRC search algorithm is utilized to reduce the computational complexity of the SPR algorithm.The FXLMS algorithm was conducted using the properly selected reference microphone.Our future work includes:multiple noise source detection and reference microphone signals processing for feed forward ANC systems,and conduct a case study for the moving noise source problem with real NICU.

    九九在线视频观看精品| 精品一区在线观看国产| 国产一区二区在线观看av| 成人国产av品久久久| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 久久99热这里只频精品6学生| 水蜜桃什么品种好| 成人美女网站在线观看视频| 亚洲欧美一区二区三区黑人 | 大又大粗又爽又黄少妇毛片口| 成人亚洲欧美一区二区av| 欧美日韩在线观看h| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的| 亚洲丝袜综合中文字幕| 亚洲av日韩在线播放| av免费在线看不卡| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 人人妻人人看人人澡| 两个人的视频大全免费| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 成人综合一区亚洲| 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 久久国产精品男人的天堂亚洲 | 在线观看人妻少妇| av黄色大香蕉| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 欧美性感艳星| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 美女内射精品一级片tv| 国产一区有黄有色的免费视频| 成人亚洲欧美一区二区av| 国产伦精品一区二区三区视频9| 亚洲,一卡二卡三卡| 成人二区视频| 国产在线免费精品| 免费观看a级毛片全部| 国产亚洲91精品色在线| 狂野欧美激情性bbbbbb| 午夜福利,免费看| 在线观看免费日韩欧美大片 | 国产黄色视频一区二区在线观看| 大又大粗又爽又黄少妇毛片口| 高清黄色对白视频在线免费看 | 亚洲国产精品999| 亚洲av中文av极速乱| 免费av中文字幕在线| 欧美日韩av久久| h视频一区二区三区| 国产精品一区二区性色av| 777米奇影视久久| av不卡在线播放| 久久久国产欧美日韩av| 中文天堂在线官网| 在线观看国产h片| 国产黄色视频一区二区在线观看| 伊人久久精品亚洲午夜| 亚洲伊人久久精品综合| 五月天丁香电影| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片 | 18禁动态无遮挡网站| 国产精品一区二区三区四区免费观看| 99久久中文字幕三级久久日本| 人妻人人澡人人爽人人| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久人人人人人人| 777米奇影视久久| 简卡轻食公司| 伦精品一区二区三区| 黄片无遮挡物在线观看| 热re99久久国产66热| 亚洲精品国产av蜜桃| 成年人免费黄色播放视频 | 99热6这里只有精品| 人人妻人人看人人澡| 日本与韩国留学比较| 综合色丁香网| 国产乱人偷精品视频| 你懂的网址亚洲精品在线观看| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 国产精品一二三区在线看| 亚洲性久久影院| 欧美日韩视频精品一区| 嫩草影院入口| 免费人成在线观看视频色| 久久免费观看电影| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 人妻制服诱惑在线中文字幕| 97超视频在线观看视频| 97精品久久久久久久久久精品| 人妻 亚洲 视频| 久久久国产精品麻豆| 搡女人真爽免费视频火全软件| 美女福利国产在线| 男人添女人高潮全过程视频| 寂寞人妻少妇视频99o| 亚洲天堂av无毛| 亚洲欧美日韩卡通动漫| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 一级av片app| 五月开心婷婷网| 亚洲伊人久久精品综合| 亚洲精品第二区| 久久狼人影院| 高清视频免费观看一区二区| 蜜臀久久99精品久久宅男| 天美传媒精品一区二区| 91成人精品电影| 国产免费福利视频在线观看| 综合色丁香网| 国产色爽女视频免费观看| 22中文网久久字幕| av国产精品久久久久影院| 久久精品国产a三级三级三级| 国产精品一区二区在线观看99| 女人精品久久久久毛片| 熟女人妻精品中文字幕| 在线播放无遮挡| 69精品国产乱码久久久| 精品久久久精品久久久| 国产又色又爽无遮挡免| 日本wwww免费看| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品一区二区| 欧美亚洲 丝袜 人妻 在线| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲 | 永久免费av网站大全| 亚洲精品国产色婷婷电影| 美女视频免费永久观看网站| 中国美白少妇内射xxxbb| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 婷婷色av中文字幕| 在线播放无遮挡| 国产欧美日韩综合在线一区二区 | 精品少妇久久久久久888优播| 美女视频免费永久观看网站| 国产成人精品无人区| 日韩强制内射视频| 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 日本与韩国留学比较| 大片免费播放器 马上看| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 久久6这里有精品| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 国产视频首页在线观看| 久久久国产欧美日韩av| 国产亚洲5aaaaa淫片| 一二三四中文在线观看免费高清| 国产欧美日韩精品一区二区| 久久精品久久久久久噜噜老黄| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 男人爽女人下面视频在线观看| 国产毛片在线视频| av又黄又爽大尺度在线免费看| 午夜激情福利司机影院| 久久国产精品大桥未久av | 日韩成人伦理影院| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 午夜福利,免费看| 亚洲av男天堂| 亚洲精品中文字幕在线视频 | 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 国产精品国产三级国产av玫瑰| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 亚洲情色 制服丝袜| av线在线观看网站| 日本与韩国留学比较| 人妻人人澡人人爽人人| av专区在线播放| 69精品国产乱码久久久| 亚洲av免费高清在线观看| 尾随美女入室| 777米奇影视久久| 香蕉精品网在线| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 高清在线视频一区二区三区| 国产真实伦视频高清在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 日韩一区二区三区影片| 国产免费福利视频在线观看| 热re99久久国产66热| 日韩欧美一区视频在线观看 | 新久久久久国产一级毛片| a级毛片在线看网站| 91精品国产国语对白视频| 黄色欧美视频在线观看| 观看av在线不卡| 99久国产av精品国产电影| 午夜福利,免费看| 久久久久视频综合| 内地一区二区视频在线| 免费人妻精品一区二区三区视频| 一本一本综合久久| 久久久久久久久久人人人人人人| 在线观看国产h片| av在线老鸭窝| 亚洲欧洲国产日韩| a级毛色黄片| 在线天堂最新版资源| 欧美性感艳星| 赤兔流量卡办理| 亚洲av.av天堂| a级毛色黄片| 精品熟女少妇av免费看| 18禁在线无遮挡免费观看视频| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 日本91视频免费播放| 自拍偷自拍亚洲精品老妇| 精品少妇内射三级| 久久久久久久久久成人| 国国产精品蜜臀av免费| 午夜影院在线不卡| 七月丁香在线播放| 国产爽快片一区二区三区| 男人舔奶头视频| 亚洲欧美清纯卡通| 少妇高潮的动态图| 天堂8中文在线网| 久久狼人影院| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 插阴视频在线观看视频| 亚洲中文av在线| 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 国产午夜精品久久久久久一区二区三区| 色婷婷久久久亚洲欧美| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 日韩一区二区视频免费看| 国产伦精品一区二区三区视频9| 久久99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 99久国产av精品国产电影| 久久亚洲国产成人精品v| 黑人高潮一二区| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 男人爽女人下面视频在线观看| av福利片在线观看| 中文字幕av电影在线播放| 少妇的逼水好多| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| av在线观看视频网站免费| 久久久久网色| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 人人妻人人看人人澡| 亚洲自偷自拍三级| 成年av动漫网址| 国产精品成人在线| 国产中年淑女户外野战色| 国产成人精品久久久久久| 久久6这里有精品| a级片在线免费高清观看视频| xxx大片免费视频| 熟妇人妻不卡中文字幕| 精品久久久久久久久亚洲| 人妻系列 视频| 在线看a的网站| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 丰满迷人的少妇在线观看| 青春草视频在线免费观看| 国产伦精品一区二区三区视频9| 亚洲成人一二三区av| 男人舔奶头视频| 婷婷色综合www| 在线观看免费视频网站a站| 亚洲美女黄色视频免费看| 美女内射精品一级片tv| 亚洲成色77777| 亚洲精品久久午夜乱码| 久久久久久久久久成人| 青青草视频在线视频观看| 在线观看一区二区三区激情| 欧美xxⅹ黑人| 午夜免费鲁丝| 国产精品99久久久久久久久| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 国产一区亚洲一区在线观看| 久久久a久久爽久久v久久| 亚洲怡红院男人天堂| 国产精品伦人一区二区| freevideosex欧美| 六月丁香七月| 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 久久av网站| 国产精品免费大片| 成年av动漫网址| 一区在线观看完整版| 天堂俺去俺来也www色官网| 大香蕉97超碰在线| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 丝瓜视频免费看黄片| 久久女婷五月综合色啪小说| 搡女人真爽免费视频火全软件| 黄色怎么调成土黄色| 伊人久久国产一区二区| 大香蕉久久网| 最新的欧美精品一区二区| 亚洲综合精品二区| 人妻一区二区av| 国产精品无大码| 大片免费播放器 马上看| 国产淫语在线视频| 99热国产这里只有精品6| 97精品久久久久久久久久精品| 亚洲中文av在线| 免费不卡的大黄色大毛片视频在线观看| 日韩亚洲欧美综合| 久久鲁丝午夜福利片| 黑人高潮一二区| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 三级国产精品片| 精品国产一区二区三区久久久樱花| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| 我的老师免费观看完整版| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 亚洲美女黄色视频免费看| 最后的刺客免费高清国语| kizo精华| 少妇人妻久久综合中文| 国产精品一区www在线观看| 成人免费观看视频高清| 有码 亚洲区| 午夜精品国产一区二区电影| 22中文网久久字幕| 国产精品久久久久久av不卡| 国产又色又爽无遮挡免| 一级毛片 在线播放| 麻豆乱淫一区二区| 大陆偷拍与自拍| 久久人人爽av亚洲精品天堂| 国产高清三级在线| 美女主播在线视频| 久久精品夜色国产| 亚洲成色77777| 亚洲国产精品一区三区| 99热这里只有是精品50| 欧美日韩精品成人综合77777| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 男女国产视频网站| videos熟女内射| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久av不卡| 精品一区二区三卡| 69精品国产乱码久久久| 女性被躁到高潮视频| 亚洲国产日韩一区二区| 国产成人精品婷婷| 国产精品伦人一区二区| 久久久亚洲精品成人影院| 亚洲成人手机| 岛国毛片在线播放| 国产免费一区二区三区四区乱码| 插逼视频在线观看| 一本一本综合久久| 亚洲一区二区三区欧美精品| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 亚洲精品第二区| av播播在线观看一区| 超碰97精品在线观看| 日韩中字成人| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| 丁香六月天网| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 欧美精品高潮呻吟av久久| 日本vs欧美在线观看视频 | 美女脱内裤让男人舔精品视频| 免费av不卡在线播放| 视频区图区小说| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花| 日本av手机在线免费观看| 青春草视频在线免费观看| 亚洲精品,欧美精品| 男人和女人高潮做爰伦理| 精品酒店卫生间| 亚洲国产精品一区三区| 久久久a久久爽久久v久久| 国产精品一区二区三区四区免费观看| av天堂中文字幕网| 国产男女内射视频| 老女人水多毛片| 国产精品国产三级专区第一集| 久久午夜福利片| kizo精华| 啦啦啦在线观看免费高清www| 91精品国产九色| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 久久青草综合色| 赤兔流量卡办理| 国产亚洲91精品色在线| 极品少妇高潮喷水抽搐| 日韩精品有码人妻一区| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 美女中出高潮动态图| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 女人精品久久久久毛片| 国产av一区二区精品久久| 久久人人爽av亚洲精品天堂| 黑丝袜美女国产一区| 久久久久网色| 欧美精品一区二区免费开放| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 亚洲精品一二三| 久久 成人 亚洲| 国产av码专区亚洲av| 国产成人aa在线观看| 黄片无遮挡物在线观看| 新久久久久国产一级毛片| 有码 亚洲区| 久久久久久久久久成人| 一区二区三区乱码不卡18| 欧美精品人与动牲交sv欧美| 欧美丝袜亚洲另类| 一区二区三区精品91| 免费看av在线观看网站| 色婷婷av一区二区三区视频| 成人午夜精彩视频在线观看| 午夜免费鲁丝| av.在线天堂| 水蜜桃什么品种好| 最黄视频免费看| 久久久久久久亚洲中文字幕| av天堂久久9| 国产白丝娇喘喷水9色精品| 亚洲av免费高清在线观看| 国产极品天堂在线| 国产爽快片一区二区三区| 大码成人一级视频| 日韩成人伦理影院| 一级毛片我不卡| a级毛片在线看网站| 晚上一个人看的免费电影| 亚洲精品乱久久久久久| 亚洲无线观看免费| 国产精品女同一区二区软件| 欧美精品一区二区免费开放| 91成人精品电影| 亚洲精品国产色婷婷电影| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 国产爽快片一区二区三区| 国产成人精品婷婷| 国产在线视频一区二区| 亚洲av免费高清在线观看| 日本与韩国留学比较| 亚洲精品国产av蜜桃| 免费播放大片免费观看视频在线观看| 亚洲不卡免费看| 日韩制服骚丝袜av| 97在线人人人人妻| 日韩av免费高清视频| 亚洲,欧美,日韩| 亚洲精品国产av成人精品| 国产精品国产三级专区第一集| av线在线观看网站| 精品一区在线观看国产| av天堂中文字幕网| 免费在线观看成人毛片| 国产精品秋霞免费鲁丝片| 人妻 亚洲 视频| 久久韩国三级中文字幕| 久久久久久久久久久久大奶| 18禁动态无遮挡网站| 久久人人爽人人爽人人片va| 国产一区二区三区综合在线观看 | 日韩,欧美,国产一区二区三区| 精品国产国语对白av| 日韩av在线免费看完整版不卡| 亚洲人成网站在线播| 午夜激情久久久久久久| 欧美日本中文国产一区发布| 男人爽女人下面视频在线观看| 观看av在线不卡| 中文字幕久久专区| 久久6这里有精品| 亚洲精品aⅴ在线观看| 纯流量卡能插随身wifi吗| 大片电影免费在线观看免费| 黄色一级大片看看| 久久久久精品性色| 亚洲欧美成人综合另类久久久| 成人午夜精彩视频在线观看| 国产免费一区二区三区四区乱码| 汤姆久久久久久久影院中文字幕| 乱码一卡2卡4卡精品| 中国国产av一级| 高清午夜精品一区二区三区| 啦啦啦啦在线视频资源| 日韩中文字幕视频在线看片| 久久鲁丝午夜福利片| 久久久久精品性色| 精品国产一区二区久久| 亚洲三级黄色毛片| 91精品国产国语对白视频| 一级,二级,三级黄色视频| 久久精品国产鲁丝片午夜精品| av天堂久久9| 夜夜看夜夜爽夜夜摸| 成人二区视频| 国产男女内射视频| 国产精品一区二区在线观看99| 国产日韩欧美视频二区| 桃花免费在线播放| 亚洲,欧美,日韩| 在线 av 中文字幕| 国产欧美日韩综合在线一区二区 | 日韩中文字幕视频在线看片| 久久鲁丝午夜福利片| 熟女人妻精品中文字幕| 国产成人91sexporn| 尾随美女入室| 女性被躁到高潮视频| 最新中文字幕久久久久| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 欧美日韩精品成人综合77777| 日韩欧美一区视频在线观看 | 男人舔奶头视频| 日本91视频免费播放| 91在线精品国自产拍蜜月| 久久久久久久久久久久大奶| 高清在线视频一区二区三区| 在线观看美女被高潮喷水网站| 成人毛片60女人毛片免费| 亚洲不卡免费看| 偷拍熟女少妇极品色| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看| 蜜桃久久精品国产亚洲av| 欧美少妇被猛烈插入视频| 99精国产麻豆久久婷婷| 另类精品久久| 一级a做视频免费观看| 国产av精品麻豆| 极品教师在线视频| a级毛片免费高清观看在线播放| 高清午夜精品一区二区三区| 国产视频内射| 视频区图区小说| 亚洲三级黄色毛片| 亚洲情色 制服丝袜| 久久久久久久久久人人人人人人| 另类精品久久| 国国产精品蜜臀av免费| 日本免费在线观看一区| 18禁动态无遮挡网站| 搡老乐熟女国产| 成年美女黄网站色视频大全免费 | 免费av不卡在线播放| 成人二区视频| 欧美另类一区| 永久网站在线| 99久久人妻综合| 欧美日韩视频高清一区二区三区二|