• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WEIGHTED COMPOSITION OPERATORS ON THE HILBERT SPACE OF DIRICHLET SERIES?

    2018-09-08 07:50:40MaofaWANG王茂發(fā)

    Maofa WANG(王茂發(fā))

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail:mfwang.math@whu.edu.cn

    Xingxing YAO(姚興興)?School of Science,Wuhan Institute of Technology,Wuhan 430205,China

    E-mail:xxyao.math@whu.edu.cn

    Fangwen DENG(鄧方文)

    Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China

    E-mail:fwdeng@wipm.ac.cn

    Abstract In this paper,we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients.The Hermitianness,Fredholmness and invertibility of such operators are characterized,and the spectra of compact and invertible weighted composition operators are also described.

    Key words weighted composition operator;Hermitianness;Fredholmness;invertibility;spectrum

    1 Introduction

    Let H be the Hilbert space of Dirichlet series with square summable coefficients

    By the Cauchy-Schwarz inequality,the functions in H are all analytic on the half-plane C1/2(where,for θ∈ R,Cθ={s∈ C:Res> θ}and C+=C0).In the process,we also encounter the space D of functions f,which in some(possibly remote)half-plane admit representation by a convergent Dirichlet series

    Let f be a Dirichlet series of form(1.1).There are several abscissas attached to it

    It is easy to see that?∞ ≤ σc(f)≤ σu(f)≤ σa(f)≤ +∞ for all f of form(1.1).We will also need the abscissa of regularity and boundedness σb(f),which is the infimum of those σ ∈ R for which the function f defined as in(1.1),possibly by analytic continuation from a smaller half-plane,is analytic and bounded on Cσ.An important result of Bohr[3]is that σu(f)and σb(f)coincide.We also recall that a series in D actually converges absolutely in the half-plane one unit to the right of the half-plane of convergence.

    As usual,we denote by H∞(C+)the set of all bounded analytic functions on C+,and by U the subset of H∞(C+)of functions belonging to D.In particular,Theorem 7 of[1]asserted that the set of multipliers of H is U.

    Throughout this paper,a weighted composition operator WΨ,Φon H takes an analytic function f ∈ H to the analytic function Ψ ·f ? Φ,where Ψ is an analytic function on the halfplane C1/2and an analytic map Φ :C1/2→ C1/2defines a composition operator on H.Clearly,there are two particularly interesting special cases of such operators:the composition operator CΦby taking Ψ =1 and the multiplication operator TΨby putting Φ =id,the identity function of C1/2.It should be mentioned that,by the closed graph theorem,every composition operator CΦ:H→H is automatically bounded(see[8]).Moreover,the following comes from[8,14],which gives some explicit properties of composition symbols.

    Theorem A An analytic function Φ :C1/2→ C1/2determines a bounded composition operator CΦ:H→H if and only if

    where c0is a nonnegative integer,andconverges uniformly in C?for every ?>0 and has the following mapping properties.

    (a)If c0=0,then ?(C+)? C1/2.

    (b)If c0≥ 1,then either ? ≡ 0 or ?(C+)? C+.

    Weighted composition operators,on classical spaces of analytic functions on the unit disk of the complex plane C,were fundamental objects of study in analysis that arise naturally in many situations;e.g.,[7,12,17].Moreover,such operators arose in the study of commutants of multiplication operators,and they played a crucial role in the theory of dynamical systems as well.We refer to monographs by Cowen-MacCluer[6],Shapiro[16]and Zhu[19]for general information of composition operators on classical spaces of analytic functions on the unit disk.The problem of relating operator theoretic properties of WΨ,Φto function theoretic properties of Ψ and Φ was a subject of great interest for quite some time;e.g.,[4,5,9,10],on those classical spaces.The purpose of this paper is to generalize some results on them to the case H.

    This paper is organized as follows.Section 2 includes the background material needed to make this paper as self-contained as possible.Section 3 characterizes the Hermitian weighted composition operators on H.Moreover,the Fredholmness and invertibility of such operators are characterized completely in Section 4.Finally,the spectra of compact and invertible weighted composition operators are described in Section 5.

    2 Background Material

    Assume that Ψ is analytic on C1/2and an analytic map Φ :C1/2→ C1/2defines a composition operator on H.If the weighted composition operator WΨ,Φis bounded on H,then Ψ ∈ H and Φ satisfies the conditions given in Theorem A(call this Φ a c0-symbol).As we know,the reproducing kernel at w∈C1/2for H is given by Kw(s)=ζ(w+s)for Res>1/2,and its norm equals ζ(2Rew)1/2,where ζ is the Riemann zeta functionRecall that the function ζ satisfies the identity

    and has no zeros in C1,where and in the following,we use the notation “Prime” to denote the set of all prime numbers.It has zeros at z= ?2,?4,?6,···called the trivial zeros,and all other zeros lie in 0≤Rez≤1.If we denote by W?Ψ,Φthe adjoint of WΨ,Φwhenever it is bounded,then for w∈C1/2,

    Let Φ be an analytic self-map of C1/2.For all n ∈ N we denote the n-th iterate of Φ by Φn,that is

    For n=0 we set Φ0:=id,the identity function of C1/2.If Φ is a biholomorphic map of C1/2,then we denote Φ?n:=(Φ?1)n.It is easy to check that

    for all n≥1,f∈H and s∈C1/2.Hence(WΨ,Φ)n=Ψ(n)CΦn,where

    Also for n=0 we set Ψ(0)=1 for convenience.

    The following lemmas are from[1]and[8],respectively.

    Lemma 2.1 Let Φ(s)=c0s+?(s)be an analytic self-map of C+.If Φ(s)6=s+iτ,τ∈ R,then there exist η >0 and ?>0 such that Φ(C1/2??) ? C1/2+η.

    Lemma 2.2 Let m be a positive integer,and letbe a Dirichlet series from the class D,starting from the index m.Then msf(s)→amuniformly as Res→+∞.

    If T is an operator on a Hilbert space H,we denote by σ(T)its spectrum

    and σp(T)its point spectrum

    where IHis the identity operator on H.Also we denote by r(T)its spectral radius:r(T)=sup{|λ|:λ ∈ σ(T)}.The following is Lemma 7.17 in[6],which allows us to reduce the eigenvalue problem to a finite dimensional problem.

    Lemma 2.3 Suppose H is a Hilbert space with H=K⊕L,where K is finite dimensional and C is a bounded operator on H that leaves K or L invariant.If the operator C has the matrix representation

    with respect to this decomposition,then σ(C)= σ(X)∪ σ(Z).

    3 Hermitianness

    We first characterize the Hermitian composition operators on H.

    Lemma 3.1 Let Φ be a c0-symbol.Then the composition operator CΦis Hermitian on H if and only if Φ(s)=s+c with c≥ 0.

    Proof The sufficiency is trivial,so it is needed only to prove the necessity.To this end,we assume that CΦis Hermitian on H,then it is normal.It follows from Theorem 15 in[1],Φ(s)=s+c with Rec≥ 0.In this case,it is obvious that

    and thus

    Here,we will distinguish between the two cases c0=0 and c06=0.

    for every prime number p and s∈C1/2.

    Proof Let Kwbe the reproducing kernel for H at w ∈ C1/2.If WΨ,Φis Hermitian on H,then(WΨ,ΦKw)(s)=(W?Ψ,ΦKw)(s),i.e.,

    for each s,w∈C1/2.Since c0=0,then the left hand side of(3.1)is

    for Res large enough.Indeed,it follows from Lemma 2.2 that

    with uniform convergence.In addition,in the case of c0=0,we have Rec1>1/2(see[8],p.319).Hence,in some sufficiently remote half-plane s∈Cθ(θ∈R+),the inequality

    holds with some ?>0,and then

    Also,the right hand side of(3.1)is

    for s in some sufficiently remote half-plane.In fact,it follows from(3.2)that the expressionis uniformly bounded in some half-plane w ∈ C?(? ∈ R+).Then the series ζ(Φ(w)+s)is absolutely convergent in some sufficiently remote half-plane s ∈ Cθ′(θ′∈ R+).Therefore

    Consequently,Ψ(s)=b1ζ(c1+s).Now let Res→ ∞,then again following from Lemma 2.2,b1=b1.Therefore Ψ(s)=b1ζ(c1+s)with b1∈ R.

    Now,(3.1)can be written as

    for each s,w∈C1/2.Note that

    for some dk∈C,in the half-plane of the absolute convergence of the Dirichlet series obtained by expanding above.We now consider the coefficients of form p?wfor every prime number p of both sides in(3.3).It is easy to see that

    Note that ζ(c1+s)6=0 with s ∈ C1/2for Re(s+c1)>1.Then the desired is obtained. ?

    The following corollary may be interesting.

    Proof Clearly,it suffices to show the sufficiency.To this end,assume that cp=0 for some prime number p.If the weighted composition operator WΨ,Φis Hermitian on H and b16=0,then p?Φ(s)=p?c1by Theorem 3.2.Thus ReΦ(s)=Rec1and for each s∈ C1/2,

    with some integer ks.Since Φ is analytic in C1/2,then ImΦ(s)is continuous.Therefore ImΦ(s)=Imc1,which in turn implies that Φ(s)=c1in C1/2. ?

    Next,we consider the case c0≥1.

    Proof The sufficiency is trivial,so it is needed only to prove the necessity.If WΨ,Φis Hermitian on H,then as in the proof of Theorem 3.2,

    for s,w∈C1/2.First,since c0≥1,then it follows from Lemma 2.2 that

    in some sufficiently remote half-plane s∈ Cθ(θ∈ R+).Indeed,it is sufficient to notice that the expressionis uniformly bounded in some half-plane,and

    Next,it is easy to see that the series ζ(Φ(w)+s)in(3.4)is absolutely convergent in some half-plane w∈C?(?∈R+),due to the fact that the analytic function

    for each s∈C1/2.Therefore

    Then letting Rew → ∞ in(3.4)implies that Ψ(s)= Ψ(+∞).Thus b1=b1,and then Ψ is a real-valued constant function on C1/2.If Ψ is nonzero,then WΨ,Φ=TΨCΦis Hermitian on H if and only if CΦis Hermitian on H.In this case,by Lemma 3.1,we have Φ(s)=s+c1with c1≥0.Then the necessity is proved. ?

    The following characterizes the Hermitian isometric weighted composition operators.

    Theorem 3.5 Let Ψ ∈ H and Φ a c0-symbol.Then the weighted composition operator WΨ,Φis a Hermitian isometry on H if and only if Ψ ≡ 1 or ?1 on C1/2,and Φ is the identify function of C1/2.

    Proof Clearly,it is needed only to show the necessity.To complete the proof,we first claim that the Hermitian weighted composition operator WΨ,Φon H can never be isometric in case c0=0.In fact,if c0=0 and WΨ,Φis Hermitian on H,then by Theorem 3.2,Ψ(s)=b1ζ(c1+s)with some b1∈ R.Thus for each w ∈ C1/2,we have

    If WΨ,Φis an isometry on H,then kWΨ,Φ(Kw)k=kKwk,and thus

    for each w ∈ C1/2.But it follows from Lemma 2.1 that there exist η >0 and ?>0 such that Φ(C1/2??)? C1/2+η.Now take a sequence of points wnin C1/2satisfying that wn→ w0with Rew0=1/2,as n→∞.And set Φ(wn)→as n→∞.So Re>1/2+η.Replacing w by wnand letting n→∞in(3.5)yield that the right hand side tends to the infinity,but the left hand side is

    because of Rec1>1/2.This is a contradiction,which implies the claim.

    Next,assume that c0≥1,due to the Hermitianness of the weighted composition operator WΨ,Φand Theorem 3.4,then Ψ ≡ 0,or Ψ(s) ≡ b1on C1/2with b1a nonzero real constant,and Φ(s)=s+c1with c1≥ 0.Note that Ψ can never be a zero constant function.So in this case,WΨ,Φ(f)(s)=b1f(s+c1)for all f ∈ H.Since WΨ,Φis an isometry on H,

    At the end of this section,we characterize the spectra of Hermitian weighted composition operators on H in case c0≥1.

    Proof Under the hypothesis,it follows from Theorem 3.4 that either Ψ ≡ 0,or Ψ is a nonzero real-valued constant function on C1/2,and Φ(s)=s+c1with c1≥ 0.It is only needed to consider the case that Ψ(s)≡ b1with b1∈ R{0}.In this case,CΦ:H → H is Hermitian and Φ(s)=s+c1with c1≥ 0.Then WΨ,Φ(f)=b1CΦ(f)for all f ∈ H.Notice that we can obtainand σp(CΦ)={n?c1:n ≥ 1}by the same method as in the proof of Theorem 3.1 in[18].Soby the spectral mapping theorem. ?

    4 Fredholmness and Invertibility

    Let X be a Banach space,and denote by B(X)the space of all bounded linear operators on X.Recall that an operator T∈B(X)is said to be Fredholm if both the dimension of its kernel and the codimension of its range are finite.This occurs if and only if both KerT and KerT?are finite dimensional.Equivalently,T is Fredholm if and only if T is invertible modulo compact operators,that is,there is a bounded operator S∈B(X)such that both TS?IXand ST?IXare compact on X,where IXis the identity operator on X.It is well-known that an operator T is Fredholm if and only if its adjoint T?is Fredholm;see[13]for more details on Fredholm operators.

    Lemma 4.1 Let Φ be a c0-symbol.If the weighted composition operator WΨ,Φis Fredholm on H,then Φ(s)=s+iτ with τ∈ R.

    Proof We argue by contradiction.If Φ(s)6=s+iτ, τ ∈ R,then by Lemma 2.1,Φ(C1/2??) ? C1/2+ηfor some ?,η >0.To complete the proof,we choose a sequence of complex numbers wnin C1/2such that wn→w0with Rew0=1/2,as n→∞.And then let Φ(wn)→with Re>1/2+η,as n→∞.Also notice that for each w∈C1/2,

    where kwis the normalized reproducing kernel at w given by kw:=Kw/kKwk,and

    because of Ψ∈H.While

    for each w∈C1/2,since kw=Kw/kKwk converges weakly to zero as Rew→1/2 and Ψ∈H,then k(kwn)k→0,as n→∞.

    On the other hand,since WΨ,Φis Fredholm,there are operators S and K on H with K compact such that WΨ,ΦS=I?K,where I is the identity operator on H.Hence S?=I?K?,and also

    as n→∞.Thus we get k(S?)kwnk→1 as n→∞.As this is a contradiction,we conclude that Φ(s)=s+iτ with τ∈ R. ?

    Now we can characterize the Fredholm weighted composition operators.

    Theorem 4.2 Let Φ be a c0-symbol.The weighted composition operator WΨ,Φis Fredholm on H if and only if the multiplication operator TΨis Fredholm and Φ(s)=s+iτ with τ∈R.

    Proof We first assume that WΨ,Φis Fredholm on H.Lemma 4.1 asserts that Φ(s)=s+iτ with τ∈ R.Then by Theorem 14 in[1],CΦis invertible on H,and=CΦ?1.Therefore the operator TΨ=WΨ,Φis bounded on H.Furthermore,

    and

    Thus TΨis Fredholm.

    Conversely,suppose that TΨis Fredholm and Φ(s)=s+iτ with τ∈ R.Then CΦis invertible.Since WΨ,Φ=TΨCΦ,KerWΨ,Φ=KerTΨand KerW?Ψ,Φ=KerT?Ψ,then the claim follows. ?

    Next we consider the invertible weighted composition operators.

    Lemma 4.3 Let Φ be a c0-symbol.If the weighted composition operator WΨ,Φis invertible on H,then Φ(s)=s+iτ with τ∈ R,and Ψ is bounded on C+and bounded away from zero on the half-plane C1/2.

    Proof Since every invertible linear operator is Fredholm and WΨ,Φis invertible on H,then Φ(s)=s+iτ with τ∈ R by Theorem 4.2.Thus by[1,Theorem 14],CΦis invertible onSo WΨ,ΦCΦ?1is also bounded.Note that for f ∈ H,

    Hence WΨ,ΦCΦ?1is the multiplication operator whose multiplier is Ψ.By Theorem 7 in[1],Ψ is in U,which implies that Ψ is bounded on C+.

    Moreover,since WΨ,Φis invertible on H,the adjoint W?Ψ,Φis bounded from below.Then

    and hence

    for all w∈C1/2and some positive constant M.Note that

    which implies that Ψ is bounded away from zero on the half-plane C1/2. ?

    In the next theorem the inverse of weighted composition operators are formulated.

    Theorem 4.4 Let Φ be a c0-symbol.The weighted composition operator WΨ,Φis invertible on H if and only if the following statements hold

    (1) Φ(s)=s+iτ,τ∈ R.

    (2)Ψ is bounded on C+and bounded away from zero on the half-plane C1/2.Moreover,(WΨ,Φ)?1=W1/Ψ?Φ?1,Φ?1.

    Proof The necessity is Lemma 4.3,so it is needed only to show the sufficiency.To this end,assume that Φ(s)=s+iτ(τ∈ R),then CΦis invertible on H andis a bounded operator with Φ?1(s)=s ? iτ,τ∈ R.Also assume that Ψ is bounded on C+and bounded away from zero on the half-plane C1/2,then Ψ?Φ?1is also analytic and bounded away from zero on C1/2.Hence 1/Ψ?Φ?1is bounded on C1/2.We now claim that 1/Ψ?Φ?1∈ H.Indeed,by Bohr’s theorem,it suffices to show that 1/Ψ?Φ?1∈ D.For this,supposethen it is clear to see that b16=0,by the assumption that Ψ is bounded away from zero on C1/2.Note that

    It follows from Lemma 2.2 that there exists a positive constant r<1,such that

    in some possibly remote half-plane Cθ(θ∈R+).So

    converges absolutely on Cθ,which implies the desired.

    Then T1/Ψ?Φ?1CΦ?1=W1/Ψ?Φ?1,Φ?1is a bounded operator on H.Moreover,a computation implies that

    for any f∈H,which yields the desired result.?

    5 Spectrum

    Here,we will also distinguish the cases c0=0 and c06=0.Recall that,if c0=0,then Φ(+∞)6=+∞.In particular,Φ admits a fixed point in C1/2.

    Lemma 5.1 Let Φ be a c0-symbol with c0=0.Then the spectrum of the bounded weighted composition operator WΨ,Φon H contains the number Ψ(α)(Φ′(α))jfor any nonnegative integer j,where α is the fixed point of Φ in C1/2.

    Proof The proof uses the ideas from Lemmas 2 and 3 in[9]and Theorem 4 in[2].We denote by Kαthe reproducing kernel at α∈C1/2and by K[m]αits m-th derivative.Ifthen

    where f(m)(α)is m-th derivative of f at α.Set Km=span{Kα,,···,}.Then we claim that Kmis an invariant subspace ofin H.In fact,for any f∈H,

    Now take is the n-th derivative of Ψ ·f(Φ)at α,that is,

    where β?(α)∈ C for ?=0,1,···,n ? 1.So

    which implies that

    Notice that the order of the highest derivative on the right hand side does not exceed n.So the desired result is obtained.

    Next,for each m,let Xmbe the restriction ofto Km.Then by the above argument,the matrix Amof the operator Xmwith respect to this basis is upper-triangular,and the elements on the diagonal arefor integers 1 ≤ j ≤ m.

    Moreover,it is obvious that the subspace Kmis finite dimensional and therefore is closed.Then Amis a finite-dimensional upper-triangular matrix,whose spectrum consists of the diagonal values.Therefore by Lemma 2.3,the spectrum ofcontains the set

    Since m is arbitrary,any number of the form,for any nonnegative integer j,is in the spectrum of the adjoint operatoSo the spectrum of the operator WΨ,Φcontains the numbers of the form Ψ(α)(Φ′(α))jfor any nonnegative integer j,which completes the proof.?

    Now we completely describe the spectra of compact weighted composition operators in case c0=0.

    Theorem 5.2 Let Φ be a c0-symbol with c0=0.If the weighted composition operator WΨ,Φis compact on H,then

    where α is the fixed point of Φ in C1/2.

    Proof By Lemma 5.1,it is sufficient to prove that the spectrum of the compact weighted composition operator WΨ,Φis contained in the set

    where α is the fixed point of Φ in C1/2.To end the proof,here we continue to use the same notation as in the proof of Lemma 5.1.For each fixed m∈N,let Lmbe the orthogonal complement of Kmin H.Then we can give the block matrix for W?Ψ,Φ

    where the first two terms are in Kmand the last is in Lm.In particular,

    which contradicts the compactness of

    The following two lemmas concern the point spectrum of weighted composition operators in case c06=0.

    Proof Assume that the weighted composition operator WΨ,Φis bounded on H.Let f(s)=be an eigenvector of WΨ,Φfor λ,so that

    In the above equation,we first take s=+∞.Then we have either λ =b1,or λ 6=b1and a1=0.Next writewith ?≥ 2 and a?6=0,and consider the coefficient of ??sin Ψ(s)f(Φ(s)).Note that the Dirichlet series of Ψ(s)f(Φ(s))can be obtained by expanding the product in the representation

    in some(possibly remote)half-plane Cθ′(θ′∈ R+).In particular,if c0>1,there is no term involving ??s,and then σp(WΨ,Φ) ? {b1}.If c0=1,the coefficient of ??sis b1a???c1.Hence λa?=b1a???c1,and λ =b1??c1. ?

    (1){b1}∪{b1n?c1:n ≥ 2}? σ(WΨ,Φ),if c0=1.

    (2){b1} ? σ(WΨ,Φ),if c0>1.

    Proof(1)For c0=1,let Km=Span{1,2?s,···,m?s}and Lm=Km⊥.Then Lmis invariant under WΨ,Φand we have the block decomposition

    with respect to the decomposition H=Km⊕ Lm,which ensures that σ(X)? σ(WΨ,Φ).Note that

    in some(possibly remote)half-plane Cθ(θ ∈ R+).In particular,the matrix of X is lowertriangular and the subspace generated by Kmis finite dimensional,and therefore σ(X)={b1,b12?c1,···,b1m?c1}.By the arbitrariness of m,{b1} ∪ {b1k?c1:k ≥ 2} ? σ(WΨ,Φ).

    (2)For c0>1,one can use the similar argument as above to get that{b1} ? σ(WΨ,Φ).?

    In the next theorem we summarize the preceding results to characterize the spectrum of the compact weighted composition operator on H.

    (1)If c0=0,σ(WΨ,Φ)={0,Ψ(α),Ψ(α)(Φ′(α))1,Ψ(α)(Φ′(α))2,···},where α is the fixed point of Φ in C1/2.

    (2)If c0=1,σ(WΨ,Φ)={0,b1}∪ {b1n?c1:n ≥ 2}.

    (3)If c0>1,σ(WΨ,Φ)={0,b1}.

    At the end of this section,we consider the spectra of the invertible weighted composition operators.

    Theorem 5.6 Assume that Φ(s)=s+iτ with τ∈ R and the weighted composition operator WΨ,Φis invertible on H.Then

    where kΨkinfis the infimum of Ψ on C1/2.

    which implies that kf ? Φnk=kfk.Also(WΨ,Φ)n(f)(s)= Ψ(n)(s)f(Φn(s)),then

    which implies that k(WΨ,Φ)nk ≤ kΨkn∞.Therefore

    Similarly,we can get

    where kΨ ? Φ?1kinf=inf{|Ψ(Φ?1)(s)|:s ∈ C1/2}.It is obvious that kΨ ? Φ?1kinf=kΨkinf.Thereforefor any λ ∈ σ(WΨ,Φ),then|λ|≥kΨkinf.So

    Recall that a well-known fact that,for a bounded analytic function F in Cθ,the associated function

    is decreasing and logarithmically convex(see[15,Theorem 12.8]).We apply the fact above to the function Ψ,then which completes the proof.

    一边摸一边抽搐一进一出视频| 18禁黄网站禁片午夜丰满| 长腿黑丝高跟| 日韩免费av在线播放| 丁香六月欧美| 日韩大码丰满熟妇| 国产精品国产av在线观看| 好看av亚洲va欧美ⅴa在| 久久久久精品国产欧美久久久| 久久香蕉激情| 亚洲人成77777在线视频| 男女做爰动态图高潮gif福利片 | 国产一区二区激情短视频| 搡老岳熟女国产| 超碰97精品在线观看| 女性被躁到高潮视频| 国产成人免费无遮挡视频| www国产在线视频色| 欧美人与性动交α欧美精品济南到| 俄罗斯特黄特色一大片| 精品一区二区三卡| 欧美日韩亚洲高清精品| 成年版毛片免费区| 国产精品电影一区二区三区| 一级毛片高清免费大全| 97人妻天天添夜夜摸| 夜夜看夜夜爽夜夜摸 | 国产精品秋霞免费鲁丝片| 高清黄色对白视频在线免费看| 国产精品免费一区二区三区在线| 亚洲精品在线美女| 窝窝影院91人妻| 亚洲男人的天堂狠狠| 免费在线观看亚洲国产| 一区二区三区精品91| 亚洲狠狠婷婷综合久久图片| 亚洲av美国av| 国产免费av片在线观看野外av| 波多野结衣av一区二区av| 老司机靠b影院| 侵犯人妻中文字幕一二三四区| 亚洲av成人一区二区三| 伦理电影免费视频| 十分钟在线观看高清视频www| 男人操女人黄网站| 满18在线观看网站| 国产一区二区三区在线臀色熟女 | 最新在线观看一区二区三区| 国产精品久久视频播放| 狠狠狠狠99中文字幕| 女性生殖器流出的白浆| 欧美+亚洲+日韩+国产| 亚洲国产欧美日韩在线播放| 亚洲成人免费电影在线观看| 日韩精品中文字幕看吧| av电影中文网址| 在线国产一区二区在线| 亚洲精品av麻豆狂野| 脱女人内裤的视频| 亚洲 欧美一区二区三区| 久久人人爽av亚洲精品天堂| 天堂影院成人在线观看| 国产日韩一区二区三区精品不卡| 国产日韩一区二区三区精品不卡| 精品久久久久久久久久免费视频 | 99国产精品一区二区三区| 黄色视频不卡| 男女做爰动态图高潮gif福利片 | 久久人人爽av亚洲精品天堂| 夫妻午夜视频| 欧美中文综合在线视频| 欧美中文日本在线观看视频| 午夜精品久久久久久毛片777| 亚洲一卡2卡3卡4卡5卡精品中文| 成年人黄色毛片网站| 久久性视频一级片| 色精品久久人妻99蜜桃| 女人十人毛片免费观看3o分钟| 国产高清有码在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线在线观看| 亚洲最大成人av| 一二三四社区在线视频社区8| 丰满乱子伦码专区| 丰满乱子伦码专区| 在线观看美女被高潮喷水网站 | 国产麻豆成人av免费视频| 好男人在线观看高清免费视频| 国产真实乱freesex| 国产成人aa在线观看| 在现免费观看毛片| 日韩高清综合在线| 成人无遮挡网站| 国产成人福利小说| 丰满人妻一区二区三区视频av| 久久精品91蜜桃| 亚洲av二区三区四区| 国产老妇女一区| 少妇熟女aⅴ在线视频| 赤兔流量卡办理| 成人欧美大片| 国产精品野战在线观看| 午夜福利成人在线免费观看| 美女高潮的动态| 欧美丝袜亚洲另类 | 亚洲最大成人av| 国产精品精品国产色婷婷| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 亚洲精华国产精华精| 欧美黑人巨大hd| 欧美zozozo另类| 一个人观看的视频www高清免费观看| 少妇裸体淫交视频免费看高清| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品影视一区二区三区av| 给我免费播放毛片高清在线观看| 亚洲国产精品成人综合色| 俄罗斯特黄特色一大片| 99国产综合亚洲精品| 色播亚洲综合网| 男女视频在线观看网站免费| 午夜福利在线观看吧| 久久久久国内视频| 国产淫片久久久久久久久 | 精品久久久久久久久久久久久| 欧美日韩亚洲国产一区二区在线观看| x7x7x7水蜜桃| 欧美黄色淫秽网站| 老司机福利观看| 直男gayav资源| 国产成人啪精品午夜网站| 久久久久性生活片| 精品人妻熟女av久视频| 国产麻豆成人av免费视频| 99热这里只有是精品在线观看 | 网址你懂的国产日韩在线| 国产老妇女一区| 久久欧美精品欧美久久欧美| 一区福利在线观看| 国产精品一及| 国产精品爽爽va在线观看网站| 欧美日韩乱码在线| 男人的好看免费观看在线视频| 可以在线观看的亚洲视频| 性欧美人与动物交配| 中文字幕人妻熟人妻熟丝袜美| 成人精品一区二区免费| 国产熟女xx| 国产乱人伦免费视频| 欧美一区二区精品小视频在线| 精品人妻视频免费看| 国产蜜桃级精品一区二区三区| 国产一区二区激情短视频| 国产三级黄色录像| 两个人视频免费观看高清| 久久性视频一级片| 两人在一起打扑克的视频| 婷婷丁香在线五月| 国产综合懂色| 日本在线视频免费播放| 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 精品国产亚洲在线| 国产亚洲精品久久久久久毛片| 久久久久久九九精品二区国产| 91av网一区二区| 丰满的人妻完整版| 久久久久久国产a免费观看| 俄罗斯特黄特色一大片| 毛片一级片免费看久久久久 | 免费看a级黄色片| 免费电影在线观看免费观看| 哪里可以看免费的av片| 亚州av有码| 超碰av人人做人人爽久久| 男插女下体视频免费在线播放| 国产精品女同一区二区软件 | 国产精品不卡视频一区二区 | 尤物成人国产欧美一区二区三区| 欧美午夜高清在线| 精品久久久久久久久亚洲 | 国内精品美女久久久久久| 成人毛片a级毛片在线播放| 深夜a级毛片| 哪里可以看免费的av片| 久久婷婷人人爽人人干人人爱| 色吧在线观看| 嫩草影视91久久| 美女大奶头视频| 高清日韩中文字幕在线| 国产av不卡久久| 噜噜噜噜噜久久久久久91| 亚洲精品影视一区二区三区av| 亚洲人与动物交配视频| 亚洲久久久久久中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老司机深夜福利视频在线观看| 日韩精品中文字幕看吧| 欧美+亚洲+日韩+国产| 日韩欧美精品v在线| 亚洲精品色激情综合| 岛国在线免费视频观看| 国产亚洲av嫩草精品影院| 美女高潮的动态| 精品人妻一区二区三区麻豆 | 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 69人妻影院| 男人和女人高潮做爰伦理| 超碰av人人做人人爽久久| 嫁个100分男人电影在线观看| 51国产日韩欧美| 亚洲人成网站高清观看| 国产探花极品一区二区| 亚洲精品在线美女| 精华霜和精华液先用哪个| 国产精品,欧美在线| 国内毛片毛片毛片毛片毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲精品456在线播放app | 99热这里只有精品一区| 怎么达到女性高潮| 成人永久免费在线观看视频| 色哟哟哟哟哟哟| 色吧在线观看| av视频在线观看入口| 国产成人av教育| 欧美最黄视频在线播放免费| 欧美最新免费一区二区三区 | 国产精品女同一区二区软件 | 可以在线观看的亚洲视频| 精品久久久久久久久久免费视频| 91九色精品人成在线观看| 午夜福利在线观看免费完整高清在 | 夜夜夜夜夜久久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品一区二区三区四区免费观看 | 久久久久久国产a免费观看| a在线观看视频网站| 又爽又黄无遮挡网站| 国产在线男女| 悠悠久久av| 国产免费av片在线观看野外av| 午夜亚洲福利在线播放| 亚洲人成电影免费在线| 国产精品永久免费网站| 可以在线观看毛片的网站| 成人永久免费在线观看视频| 国产亚洲精品久久久久久毛片| 91av网一区二区| 99国产综合亚洲精品| 国产成人av教育| 久久久久久久久大av| АⅤ资源中文在线天堂| 亚洲精华国产精华精| 亚洲第一欧美日韩一区二区三区| 亚洲av中文字字幕乱码综合| 精品一区二区三区视频在线观看免费| www.色视频.com| 夜夜爽天天搞| 国产精品久久久久久久久免 | 久久精品人妻少妇| 亚洲国产欧洲综合997久久,| 在线观看午夜福利视频| 日本在线视频免费播放| netflix在线观看网站| 欧美日韩综合久久久久久 | 亚洲狠狠婷婷综合久久图片| 女人十人毛片免费观看3o分钟| 男人和女人高潮做爰伦理| 精品一区二区三区av网在线观看| 国产精品1区2区在线观看.| 波多野结衣高清无吗| 精品午夜福利在线看| а√天堂www在线а√下载| 亚洲av电影不卡..在线观看| 久久久久久久久久成人| 91久久精品电影网| 日本 av在线| 最近中文字幕高清免费大全6 | 成年女人永久免费观看视频| 国产精华一区二区三区| 成人亚洲精品av一区二区| 国产午夜精品论理片| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 久久久久久国产a免费观看| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 成人毛片a级毛片在线播放| 亚洲熟妇中文字幕五十中出| 亚洲成av人片免费观看| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 成人特级av手机在线观看| 亚洲成人久久爱视频| 日韩欧美在线乱码| av天堂在线播放| 俄罗斯特黄特色一大片| 日本黄色片子视频| 国产精品电影一区二区三区| 国产一级毛片七仙女欲春2| av国产免费在线观看| 欧美日韩乱码在线| 少妇人妻精品综合一区二区 | 丝袜美腿在线中文| 一级作爱视频免费观看| 在线播放国产精品三级| 国产精品1区2区在线观看.| 午夜a级毛片| 中亚洲国语对白在线视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 久久精品国产99精品国产亚洲性色| 午夜日韩欧美国产| 亚洲 国产 在线| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播| 每晚都被弄得嗷嗷叫到高潮| 国产精品一及| 一区二区三区免费毛片| 午夜福利成人在线免费观看| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| 国内精品久久久久久久电影| 99精品在免费线老司机午夜| 亚洲成人久久性| 国产精品一及| 欧美成狂野欧美在线观看| 国产综合懂色| 在线a可以看的网站| 亚州av有码| 成年人黄色毛片网站| 精品久久久久久久久久免费视频| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久久久久| 精品国产亚洲在线| 色哟哟·www| xxxwww97欧美| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 精品久久久久久久末码| 午夜久久久久精精品| 亚洲 欧美 日韩 在线 免费| 亚洲av免费在线观看| 日韩 亚洲 欧美在线| 国产成+人综合+亚洲专区| 午夜a级毛片| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕 | 日韩av在线大香蕉| 观看免费一级毛片| 好男人电影高清在线观看| 免费观看人在逋| 日韩欧美在线二视频| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 国产真实乱freesex| 午夜福利在线观看吧| 日韩欧美国产在线观看| 亚洲av.av天堂| 丰满人妻熟妇乱又伦精品不卡| 一a级毛片在线观看| 久久草成人影院| 亚洲成人中文字幕在线播放| 欧美色欧美亚洲另类二区| 久久精品91蜜桃| 美女xxoo啪啪120秒动态图 | 亚洲,欧美精品.| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 午夜激情欧美在线| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| 欧美日韩国产亚洲二区| 亚洲欧美日韩卡通动漫| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 又紧又爽又黄一区二区| 性色avwww在线观看| 亚洲中文字幕日韩| 国产真实乱freesex| 亚洲专区中文字幕在线| 久久久久性生活片| 日韩中字成人| 成熟少妇高潮喷水视频| 丰满的人妻完整版| 欧美黄色淫秽网站| 精品国产三级普通话版| 十八禁国产超污无遮挡网站| 欧美黄色片欧美黄色片| 久久久精品大字幕| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 亚洲av二区三区四区| 性色avwww在线观看| 国产极品精品免费视频能看的| 性色avwww在线观看| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 欧美日韩黄片免| 麻豆国产av国片精品| 亚洲第一区二区三区不卡| 成年人黄色毛片网站| 成人毛片a级毛片在线播放| 精品无人区乱码1区二区| 国产野战对白在线观看| 成年女人毛片免费观看观看9| 丁香欧美五月| 校园春色视频在线观看| 亚州av有码| 国产伦精品一区二区三区四那| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| av在线天堂中文字幕| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| av黄色大香蕉| 宅男免费午夜| 99精品在免费线老司机午夜| 十八禁网站免费在线| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| av黄色大香蕉| www.999成人在线观看| 丁香六月欧美| 乱人视频在线观看| 欧美乱色亚洲激情| 成人无遮挡网站| 久久久久久久久久黄片| 最近最新中文字幕大全电影3| 国产欧美日韩一区二区三| 国产高清三级在线| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 亚洲欧美日韩卡通动漫| 在线天堂最新版资源| 久9热在线精品视频| 国产高清视频在线播放一区| 一进一出抽搐动态| 3wmmmm亚洲av在线观看| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 窝窝影院91人妻| 欧美性猛交黑人性爽| 国产伦一二天堂av在线观看| 69av精品久久久久久| 日本成人三级电影网站| av女优亚洲男人天堂| 国产高清视频在线播放一区| 欧美色视频一区免费| 免费在线观看影片大全网站| 少妇人妻精品综合一区二区 | 亚洲人与动物交配视频| 成人三级黄色视频| 又爽又黄a免费视频| 九色成人免费人妻av| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 成人国产综合亚洲| 毛片女人毛片| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 高清日韩中文字幕在线| 免费在线观看日本一区| 性色av乱码一区二区三区2| 欧美精品啪啪一区二区三区| 十八禁人妻一区二区| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 久久精品综合一区二区三区| 成人国产综合亚洲| 亚洲欧美清纯卡通| 人人妻人人澡欧美一区二区| 一卡2卡三卡四卡精品乱码亚洲| 免费电影在线观看免费观看| av专区在线播放| 51午夜福利影视在线观看| 久久国产精品影院| 可以在线观看的亚洲视频| 一级a爱片免费观看的视频| 欧美极品一区二区三区四区| 亚洲自偷自拍三级| 亚洲av中文字字幕乱码综合| 日韩av在线大香蕉| 久久精品91蜜桃| 国产成人aa在线观看| 国产一区二区在线观看日韩| 久久久久精品国产欧美久久久| 女生性感内裤真人,穿戴方法视频| 91九色精品人成在线观看| 两个人视频免费观看高清| 亚洲中文字幕日韩| 热99re8久久精品国产| www日本黄色视频网| 欧美国产日韩亚洲一区| 99在线人妻在线中文字幕| 久久久久久久久久成人| 午夜福利在线观看吧| 中文字幕av成人在线电影| 国产单亲对白刺激| 天堂动漫精品| 久久久久免费精品人妻一区二区| 性色avwww在线观看| 欧美+亚洲+日韩+国产| 亚洲av电影不卡..在线观看| www.999成人在线观看| 看黄色毛片网站| 性插视频无遮挡在线免费观看| 日韩中文字幕欧美一区二区| 一本一本综合久久| 人人妻人人澡欧美一区二区| av黄色大香蕉| 亚洲最大成人av| 国产精品1区2区在线观看.| 国产精品美女特级片免费视频播放器| 深夜a级毛片| 成人美女网站在线观看视频| 极品教师在线免费播放| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 欧美激情久久久久久爽电影| 欧美乱妇无乱码| 国产野战对白在线观看| 一本精品99久久精品77| 一级毛片久久久久久久久女| 精品不卡国产一区二区三区| 一级黄片播放器| 欧美午夜高清在线| 91在线观看av| 国产亚洲av嫩草精品影院| 亚洲乱码一区二区免费版| 国产高清三级在线| 观看美女的网站| 麻豆久久精品国产亚洲av| 久久草成人影院| 国产精品一区二区三区四区久久| 亚洲一区二区三区不卡视频| 午夜福利视频1000在线观看| 亚洲精品一区av在线观看| av在线老鸭窝| 欧美一区二区亚洲| 国内精品美女久久久久久| 色视频www国产| 亚洲18禁久久av| 欧美乱色亚洲激情| 久9热在线精品视频| 午夜福利在线在线| 日韩欧美在线二视频| 亚洲最大成人av| 婷婷精品国产亚洲av| 国产乱人视频| 一本精品99久久精品77| 国产精品爽爽va在线观看网站| 女同久久另类99精品国产91| 中文字幕精品亚洲无线码一区| 国产私拍福利视频在线观看| 在线播放无遮挡| 俺也久久电影网| 亚洲精品一区av在线观看| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 伦理电影大哥的女人| 日韩 亚洲 欧美在线| 久久婷婷人人爽人人干人人爱| 亚洲国产日韩欧美精品在线观看| 男人的好看免费观看在线视频| 美女免费视频网站| 窝窝影院91人妻| 中国美女看黄片| 免费看a级黄色片| 高潮久久久久久久久久久不卡| 国产伦人伦偷精品视频| 久久久久久九九精品二区国产| 日韩欧美在线二视频| 欧美性感艳星| 身体一侧抽搐| 欧美另类亚洲清纯唯美| 久久久久久久午夜电影| 少妇高潮的动态图| 午夜激情福利司机影院| 亚洲成人中文字幕在线播放| 国产av麻豆久久久久久久| 日韩欧美精品免费久久 | 中文字幕免费在线视频6| 国产黄a三级三级三级人| 又紧又爽又黄一区二区| 国产日本99.免费观看| 亚州av有码| 两性午夜刺激爽爽歪歪视频在线观看| 国产淫片久久久久久久久 | 很黄的视频免费| 亚洲av美国av| 日韩精品中文字幕看吧| 少妇人妻精品综合一区二区 | 免费看日本二区| 国产三级黄色录像|