• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PULLBACK EXPONENTIAL ATTRACTORS FOR THE NON-AUTONOMOUS MICROPOLAR FLUID FLOWS?

    2018-09-08 07:50:28孫文龍,黎野平

    Abstract This paper investigates the pullback asymptotic behaviors for the non-autonomous micropolar fluid flows in 2D bounded domains.We use the energy method,combining with some important properties of the generated processes,to prove the existence of pullback exponential attractors and global pullback attractors and show that they both with finite fractal dimension.Further,we give the relationship between global pullback attractors and pullback exponential attractors.

    Key words micropolar fluid flow;pullback exponential attractor;global pullback attractor;

    1 Introduction

    In this paper,we investigate the following non-autonomous micropolar fluid equations

    where u=(u1,u2,u3)is the velocity,ω =(ω1,ω2,ω3)is the microrotation field interpreted as the angular velocity field of rotation of particles,p represents the pressure,f=(f1,f2,f3)andare the external force and moments,respectively.The positive parameters ν,νr,c0,ca,cdrepresent the viscosity coefficients.Indeed, ν represents the usual Newtonian viscosity and νris called the microrotation viscosity.System(1.1)was introduced in the pioneer work of Eringen[11]in 1966,which can describe a class of non-Newtonian fluid motions with micro-rotational effects and inertial force involved.This model took an important role in the fields of applied and computational mathematics,and we can see more details in[11,16]etc.Note that when the gyration is neglected,the micropolar fluid flows reduce to the Navier-Stokes flows.

    Due to the wide applications in the real world,there is a large literature on the mathematical theory of the micropolar fluid equations(1.1).The existence and uniqueness of solutions for the micropolar fluids was investigated in[12–14,16,17].At the same time,lots of works were devoted to the long time behavior of solutions for the micropolar fluids.More precisely,Chen,Chen and Dong proved the existence of H2-compact global attractors in a bound domain and the existence of uniform attractors in non-smooth domains in[2]and[4],respectively.Lukaszewicz[17]verified the estimates of Hausdor ffand fractal dimension of the L2-global attractor.Later,L ukaszewicz and Tarasin′ska[20]proved the existence of H1-pullback attractor for non-autonomous micropolar fluid equation in a bounded domain.As for the long time behavior of solutions for the micropolar fluid flows on unbounded domains.Dong and Chen[6]discussed the existence and regularity of the global attractors.Later,they[7]obtained the L2time decay rate for global solutions of the 2D micropolar equations via the Fourier splitting method.Chen and Price[3]obtained the L2time decay rate for small solutions of the 3D micropolar equations via Kato’s method.There are also some efforts are focused on the 2D micropolar equations with partial dissipation.Dong and Zhang[8]examined the micro-rotation viscosity,namely ca+cd=0.The global regularity problem for this partial dissipation case is not trivial due to the presence of the term?×ω in the velocity equation.They overcame the difficulty by making full use of the quantity?×u?ω,which obeys a transportdiffusion equation.When the parameters ν =0 and νr6=ca+cd,the global well-posedness of the micropolar fluid equations were obtained in the frame work of Besov spaces in[27].More recently,Dong,Li and Wu[10]studied the global regularity and large time behavior of solutions to the 2D micropolar equations with only angular viscosity dissipation,in which they established the well-posedness of the solutions by fully exploiting the structure of the system and controlling the vorticity via the evolution equation of a combined quantity of the vorticity and the micro-rotation angular velocity,and they obtained suitable decay rates of the solution by combining diagonalization process with the uniformly bounded estimates for the first derivatives of the solutions.For more theories about the micropolar fluid flows and other dynamical systems,one can see[5,9,18,19,22–26,28,29,31,32].So far,to our knowledge,there are no results about pullback exponential attractors of the micropolar fluid equations(1.1)in 2D bounded domains.Here,we will partly give a positive answer for this important problem.

    In this paper,we consider a two-dimensional micropolar fluid model in a 2D smooth bounded domains ??R2.More precisely,we set a cross section x3=constant of the threedimensional domain ?×R when the external fields and the flow itself do not depend on the x3coordinate.Then,we assume that the velocity component u3in the x3direction is zero and the axes of rotation of particles are parallel to the x3axis.In this case,the form of u,ω,f,f are that

    Hence,equations(1.1)can be reduced to the following two-dimensional non-autonomous dy-namical system

    where α:=ca+cd,x:=(x1,x2)∈??R2,u:=(u1,u2),f:=(f1,f2),ω andf are scalar functions,

    We also give the following initial boundary conditions

    Further,introducing the following three operators

    we can represent(1.2)–(1.4)into the following abstract form

    The purpose of this work is concerned on proving the existence of the pullback exponential attractors being a family of compact and positively invariant sets with finite fractal dimension which pullback attract bounded subsets of the phase space at a uniform exponential rate for the non-autonomous incompressible micropolar fluid flows.In order to state our main results,we first give the following assumption of F in(1.5).

    Now we state our main results in the following theorem.

    Theorem 1.1 Suppose(H1)holds,then the process UF(t,τ)t>τdefined by(2.13)has a pullback exponential attractorcM={MUF(t):t∈R}with finite fractal dimension.

    As a consequence of Theorem 1.1,we also have the following results.

    Theorem 1.2 Suppose(H1)holds,then the process UF(t,τ)t>τhas a global pullback attractor={AUF(t):t∈R}with finite fractal dimension.Furthermore,

    The outline of the proofs for Theorems 1.1 and 1.2 is as follows.First,we recall the definition of weak solutions for(1.5).Then we derive the estimates of the weak solutions by energy methods.Finally,using the arguments of[21]and some important properties of the generated processes,we prove the existence of pullback exponential attractors and global pullback attractors,and show that they both with finite fractal dimension.Further,we also give the relationship between global pullback attractors and pullback exponential attractors.

    Remark 1.3 Compared with the Navier-Stokes equations(w=0,νr=0)in[21],we emphasize that the micropolar fluid flows consist the angular velocity field ω of the micropolar particles,which leads to a different nonlinear term B(u,w)and an additional term N(u)in the abstract equation(see(1.5)).Due to these differences,more delicate estimates and analysis for the solutions are required in our study.

    Throughout this paper,we denote the usual Lebesgue space and Sobolev space by Lp(?)and Wm,p(?)endowed with norms k ·kpand k ·km,p,respectively.

    Especially,we denote Hm(?):=Wm,2(?)and(?)the closure of{? ∈(?)}with respect to H1(?)norm.

    (·,·)? the inner product in L2(?),H orbH,h·,·i? the dual pairing between V and V?or between bV andbV?.Throughout this article,we simplify the notations k·k2,k·kHand k·kbHby the same notation k·k if there is no confusion.Furthermore,we denote

    The rest of the paper is organized as follows.In Section 2,we make some necessary preliminaries.That is,we introduce several important definitions and recall some known results of non-autonomous micropolar fluid flows.Section 3 is devoted to investigating some useful estimates of the solutions of the micropolar fluid flows.Finally,we give the proof of Theorems 1.1 and 1.2 by the estimates of the solutions and the properties of the generated process in Section 4.

    2 Preliminaries

    In this section,we make some necessary preliminaries.That is,we will give some definitions and recall some known results about the non-autonomous micropolar fluid model.To begin with,we list some useful estimates with respect to the operators A,B(·,·)and N(·)as follows.

    Lemma 2.1(see[17,18,28,30]) (1)There are two positive constants c1and c2such that

    In addition,for any w∈D(A),there holds

    where δ=min{ν + νr,α}and λ1is the constant from(3.1).

    (2)There exists a positive constant λ which depends only on ?,such that for any(u,w,?) ∈V×bV×bV,there holds

    Furthermore,for(u,w,?)∈V ×D(A)×and(u,w,?)∈ V ×D(A)×D(A),then the following inequalities hold,respectively,

    (3)There exists a positive constant c(νr)such that

    where δ1:=min{ν,α}.Moreover,for any w ∈ D(A),there holds

    Based on Lemma 2.1,we immediately have

    Lemma 2.2 (1)The operator A is a linear continuous operator both fromto?and fromto,and so is for the operator N(·)fromto

    (2)The operator B(·,·)is continuous from V ×to.Moreover,for any u ∈ V,w ∈ bV,there holds

    Proof (1)The continuity of the operators A and N(·)follows directly from(2.1)–(2.2)and(2.6),respectively.The linearity of the operator A is evident.So we only need check the linearity of the operator N(·).Indeed,by the definitions of? × u(t),? × ω(t)and N(·),for anywe see that

    (2)The continuity of the operators B(·,·)follows directly form(2.3).We only need to verify(2.9).In fact,for any u∈V,w∈bV,we have

    Hence(2.9)is valid as a consequence of(2.10).This completes the proof. ?

    Moreover,we give the definition and existence result of weak solutions for(1.5).

    Definition 2.3(see[17,28]) For any T> τ,τ∈R,function w is called a weak solution of(1.5)if,w=(u,ω)∈ L2(τ,T;)∩ L∞(τ,T;satisfies

    in the sense of distribution in D′(τ,T;).

    Lemma 2.4(see[17,28])Assume F(t,x)

    And w depends continuously on the initial value wτwith respect to thebH norm.

    (2)If wτ∈problem(1.5)has a unique solution w satisfying

    (1)If wτ∈then system(1.5)has a unique solution w satisfying

    Moreover,the solution w depends continuously on the initial value wτwith respect to thebV norm.

    Next,we state the definitions of the process.

    Definition 2.5 A biparametric family of maps{U(t,τ)}t>τis called a process on X,which satisfies the following properties

    ?U(t,s):X 7→X, for any s 6 t;

    ?U(s,s)=identity;

    ?U(t,r)U(r,s)=U(t,s) for any s 6 r 6 t.

    Moreover,{U(t,s)}t>sis a continuous process on X if,for any t>s,U(t,s)is continuous on X.

    Therefore,we have the following facts about the weak solutions of system(1.5):let w be the weak solution of system(1.5),then

    (i)w satisfies the “enstrophy equality”

    (ii)from Lemma 2.4,the maps defined by

    generate a continuous process{UF(t,τ)}t>τinandrespectively.

    To end this section,we restate the definitions of the pullback exponential attractor and the global pullback exponential attractor for non-autonomous dynamical systems in the following.Denote by P(X)the family of all nonempty subsets of X.

    Definition 2.6(see[21]) A family of sets={M(t):t∈R}?P(X)is called a pullback exponential attractor for the process{U(t,τ)}t>τon X if it has the following properties

    ? Compactness:for any t∈R,M(t)is a nonempty compact subset of X.

    ? Positive invariance:U(t,τ)M(τ)? M(t),?t> τ.

    ?Pullback exponentially attracting:pullback exponentially attracts bounded subsets of X,that is,there exists a positive constant c>0,for every t∈R and any bounded subset D?X,there exists k>0 such that

    ? Finite fractal dimension:the fractal dimension in X of the sections M(t)is uniformly bounded,that is

    where N?(M(t),X)is the minimal number of cubes with length ? in X which are necessary to cover M(t).

    Definition 2.7(see[21]) A family of sets={A(t):t∈R}?P(X)is called a global pullback attractor for the process{U(t,τ)}t>τon X if it has the following properties.

    ?Compactness:for any t∈R,A(t)is a nonempty compact subset of X.

    ? Invariance:U(t,τ)A(τ)=A(t),?t> τ.

    ? Minimality:the family of setsbA is minimal in the sense that ifbO={O(t):t∈R}?P(X)is another family of closed sets such that

    then A(t)?O(t)for t∈R.

    3 The Key Estimates

    In this section,we are going to give the estimates of weak solutions for(1.5).To begin with,let us recall the following Poincaré’s inequality

    where λ1>0 represents the first eigenvalue of the operator?? in L2(?)with domain(?)∩H2(?)and satisfies the Dirichlet boundary condition,and λ1is a constant depending only on?.

    Moreover,we also give a weaker assumption of F as follows

    It is obvious that assumption(H1)implies(H2).Then we have the following estimates of the solutions of system(1.5).

    Lemma 3.1 Suppose(H2)holds,and let D?bH be a bounded subset,then,for any t0∈R,t 6 t0,w0∈D,we have

    where

    Proof Let w(t)=(u(t),ω(t))be the unique solution of(1.5)corresponding to initial data wτ=(uτ,ωτ) ∈ D.Multiplying(1.5)by w(t)and integrating the resultant equality over ?,then from(2.7),(2.10),(3.1),Schwartz’s inequality and Young inequality,we have

    which yields that

    Multiplying(3.7)by eδ1λ1t,then integrating with respect to t,we obtain

    Note that

    which together with(3.8)yields

    Further,for all t 6 t0,τ 6 t? 2(δ1λ1)?1ln|D|,from(3.9),we have

    which immediately implies(3.2).

    Next,from(3.6),we also have

    Integrating above inequality with respect to t,leads to

    which implies

    Therefore,from(3.2),it holds that,for any bounded subset D ? bH,t 6 t0,τ 6 t?1?2(δ1λ1)?1ln|D|,w0∈ D,

    This completes the proof of(3.4).

    Now let us deal with(3.3).First,for τ0 with τ+ ε

    Moreover,using Young inequality and taking(2.5)and the fact

    into account,we can obtain

    Therefore,equality(3.13)implies

    Further,using(2.1),we have

    Then we can rewrite(3.17)as

    which together with Grownwall’s inequality,we have

    Integrating(3.18)with respect to s from t?1 to t,one has

    Therefore,from(2.1)and(3.11),we have

    which is(3.3).

    Finally,similar as(3.16),we have

    which implies

    Integrating the above inequality with respect to t and using(2.1),we obtain

    for any t 6 t0,τ

    In the following,we give the estimates of the difference of solutions and initial data,and that of two solutions.

    Lemma 3.2 Assume two functions Fi∈and two initial datum w0i∈i=1,2,and we denote by wi(t)=UFi(t,τ)w0i,i=1,2,the corresponding solution of(1.5).Then,for all τ 6 t,it holds

    For the difference of two solutions of(1.5),we have the following three estimates

    here ci(i=1,···,9)are positive constants,ν comes from(3.28).

    with the aid of(2.7).In the following,we estimate the terms on the right-half side of(3.27)one by one.First,we have

    whereν:=max{ν+νr,α}.From(2.3),(2.10)and(3.14),we obtain

    Next,it is easy to know from(2.6)and Schwartz’s inequality that

    Finally,from(3.1),we get

    Substitution of above four inequalities into(3.27),yields

    Using Gronwall’s inequality,we deduce that

    This is(3.22).

    In order to deal with(3.23),we set w(t)=(u(t),ω(t))=w1(t)? w2(t),then the following equation holds

    Multiplying(3.29)by w(θ)and integrating the resultant equality over ?,we have

    From(2.3),(2.9)and(3.14),we can deduce

    Moreover,from(3.1),it holds that

    Combining(2.7)and(3.30)–(3.32),we have

    Using Gronwall’s inequality to(3.33),we can get for all t> τ that

    which together with(3.11)implies

    Next,multiplying(3.29)by Aw(θ),we obtain

    Due to(2.5),(2.6),(3.1)and(3.14),it holds that

    and

    Therefore,using(2.1)and(3.34)–(3.36),we obtain

    Finally,let us derive(3.25).Without loss of generality,we let τ=0.Then multiplying(3.29)by θAw(θ),we have

    Similar as(3.35)and(3.36),it is easy to see

    and

    From the above three inequalities and(2.1),we obtain

    where c7is given in(3.37).Using Gronwall’s inequality,we have

    Moreover,from(3.33),we obtain

    From(3.10)and(3.23),we also have

    Hence,the above two inequalities gives

    where c8comes from(3.38).Further,combining(2.1)and(3.39)–(3.41),we have

    which implies(3.25).Therefore,we complete the proof of Lemma 3.2.

    From(3.24)and(3.25)in Lemma 3.2,we immediately have the following results.

    Corollary 3.3 Assume function F∈(R;),then there exists a positive function G:=G(r1,r2,r3,r4),depending also on ? and positive constants ν,νr,α,but not on F,such that G ∈ C∞(R4),is increasing in each of the four variables ri,i=1,2,3,4,and for all τ 6 t,w01,w02∈,satisfies

    4 The Proof of Theorems 1.1 and 1.2

    In this section,we are going to prove the main result.That is,the existence of pullback exponential attractors with finite fractal dimension for the micropolar fluid flows is shown.To begin with,we consider the family of maps

    where the process UF(t,τ)defined by(2.13)is restricted toAnd,UF(t,τ):7→is continuous for any τ 6 t,which could be known from estimate(3.24).Then we have

    Proposition 4.1 Suppose(H2)holds,then there exists a bounded and closed set B?and a time sD>0 such that,for all s>sDand any bounded subset D?,

    Proof It is not difficult to get from(3.3)in Lemma 3.1 that

    Thus,the proof is complete.

    Further,we obtain

    Proposition 4.2 Suppose(H2)holds,

    Proof It follows from(3.3)in Lemma 3.1 and(3.43)in Corollary 3.3.

    In the following,we also show the following important results with respect to the maps{UF(t,τ)}t>τ.

    Proposition 4.3 Assume(H1)holds.(I)Continuity with respect to the initial data:There exists a constant CB>0,such that,?v,w ∈ B,t 6 t0,0 6 s 6 2τ0,

    (II)Future continuity with respect to the initial data:There exists a constantG(t,D1,D2)>0,such that,for D1,D2bounded subsets ofbV and for any t>t0,v∈D1,w∈D2,

    (III)Continuity with respect to the forcing terms:There exist C0>0,0< ε06 τ0and γ >0 such that,for all t 6 t0,τ06 r 6 2τ0,0 6 s 6 ε0,v ∈ Oσ(B),

    (IV)Continuity with respect to the final time:There existsuch that,for all t 6 t0,τ06 r 6 2τ0,0 6 s 6 ε0,v ∈ B,

    Proof First,from Corollary 3.3,we have,for all t∈R,s>

    In particular,for all t 6 t0,s∈ [0,2τ0],v,w ∈ B,

    Therefore,UFsatisfies(I)with

    Next,UFsatisfies(II)could be got easily from(3.42)in Corollary 3.3.

    For(III),setting w(t)=UF(t,τ)w0,for any 0 6 s,t? s 6 τ,we have

    which implies,

    Moreover,it is easy to get from(2.4),(3.1)and(3.14)that

    Noting that

    further,we have

    From(4.3)and(4.4),therefore,for any t 6 t0,0 6 s 6 1,τ06 r,w0∈ O1(B),we have

    Obviously,

    which together with(3.22),(3.23)and the fact?s∈[0,1],implies that,for any

    Hence(4.5)–(4.7)yield that there exists a positive constantsuch that,for any t 6 t0,0 6 s 6 1,τ06 r 6 2τ0,w0∈

    In the following we verify a bound of the norm of UF(t,τ)w0in,for any t 6 t0,τ 6 t? 1? τ0,w0∈ O1(B).First,from(4.4),we have τ 6 t? 3?ln|O1(B)|.Moreover,from(3.3)and(3.5)in Lemma 3.1,we have

    which together with(4.2)and H?lder’s inequality,similar as(4.3),yields that there exists a positive constantindependent of t,τ and w0,such that the function

    Set v(θ)=(θ? t+2)w(θ).It is obvious that v satisfies

    therefore,from Theorem 2.1 in[15],we deduce that there exists a positive constant C=C(ν,νr,α,?,q),independent of t,τ and w0,such that

    moreover,we also note that

    Therefore,we deduce from(4.11)and(4.12)that

    which together with(4.9)and(4.10)implies that there exists a positive constantbC4,independent of t,τ and w0,such that

    Due to the equivalence of kAwk and kwk(H2(?))3,(4.13)implies w′(θ) ∈ Lq(t? 1,t;bH)and w(θ)∈ Lq(t?1,t;D(A)).Then,from Theorem 1.4 in[1]and the compact embedding relationship:

    Therefore,for any t 6 t0?1,τ 6 t?τ0,w0∈ O1(B),

    Applying the interpolation inequality,we have

    Finally,let us deal with(IV).Similarly,it follows from(4.5)and(4.14)–(4.15)that,for any t 6 t0?1,0 6 s 6 1,τ06 r 6 2τ0,w0∈ O1(B),

    On the basis of the above three propositions and using Theorem 2.3 in[21],we immediately have the following results.

    Lemma 4.4 Assume(H1)holds,UF,t0defined by(4.1)is a process onbV,then the family cM={MUF(t):t∈R}defined by satisfies

    (1)UF(t,τ)MUF(τ) ? MUF(t)for all τ 6 t.

    (2)MT?τUF(t)=MUF(t? τ)for all τ>0 and any t 6 t0? 1,where T?τUF(t,s):=UF(t?τ,s?τ).

    Proof Under assumption(H1),Propositions 4.1–4.3 are valid.From Propositions 4.2 and 4.3(I),one can verify(1)and(2).Propositions 4.2 and 4.3(I)(II)imply(3).Proposition 4.1 together with Proposition 4.3 yields(4).For the detailed proof one can see the proof of Theorem 2.3 in[21],we omit here.This completes the proof. ?

    Now let us give the proofs of our main results as follows.

    Proof of Theorem 1.1 According to the Definition 2.6,Theorem 1.1 follows directly from Lemma 4.4. ?

    Proof of Theorem 1.2 The existence of the global pullback attractorsbA for UFis based on the definition 2.7 and Lemma 4.4.Further,by comparing Definition 2.6 and Definition 2.7,one has

    In particular,as a consequence of Theorem 1.1,it holds that

    Therefore,the proof of Theorem 1.2 is completed.

    制服人妻中文乱码| 久久久久国产一级毛片高清牌| 欧美一区二区国产精品久久精品 | 久久 成人 亚洲| 99国产精品一区二区蜜桃av| 欧美日本视频| 天堂影院成人在线观看| 日韩高清综合在线| 神马国产精品三级电影在线观看 | 一边摸一边做爽爽视频免费| 久久国产精品人妻蜜桃| 岛国视频午夜一区免费看| 成人av一区二区三区在线看| 欧美 亚洲 国产 日韩一| 亚洲免费av在线视频| 女生性感内裤真人,穿戴方法视频| 午夜影院日韩av| 色综合婷婷激情| 国产成人aa在线观看| 午夜福利免费观看在线| 亚洲欧美日韩无卡精品| 亚洲一区中文字幕在线| 99精品在免费线老司机午夜| 日本三级黄在线观看| 性欧美人与动物交配| 一二三四社区在线视频社区8| 亚洲人成网站在线播放欧美日韩| 日韩欧美国产在线观看| 麻豆成人午夜福利视频| 午夜福利免费观看在线| 国产精品香港三级国产av潘金莲| 国产午夜福利久久久久久| 欧美高清成人免费视频www| 91大片在线观看| 国产av又大| 国产黄色小视频在线观看| 亚洲狠狠婷婷综合久久图片| 哪里可以看免费的av片| 亚洲精品美女久久久久99蜜臀| 成人三级黄色视频| 国产精品电影一区二区三区| 亚洲avbb在线观看| 18美女黄网站色大片免费观看| 九色成人免费人妻av| 久久精品国产亚洲av香蕉五月| 亚洲av成人不卡在线观看播放网| 亚洲国产精品合色在线| 国产单亲对白刺激| av超薄肉色丝袜交足视频| 亚洲av日韩精品久久久久久密| 一进一出好大好爽视频| 午夜福利在线在线| 亚洲熟女毛片儿| 国产99久久九九免费精品| 午夜激情福利司机影院| 精品免费久久久久久久清纯| 在线永久观看黄色视频| 每晚都被弄得嗷嗷叫到高潮| 欧美乱码精品一区二区三区| 色综合欧美亚洲国产小说| 这个男人来自地球电影免费观看| 国产三级黄色录像| 村上凉子中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻av系列| 亚洲av第一区精品v没综合| 他把我摸到了高潮在线观看| 99久久久亚洲精品蜜臀av| 亚洲国产日韩欧美精品在线观看 | 国产亚洲精品一区二区www| 熟女少妇亚洲综合色aaa.| 午夜激情福利司机影院| 国产欧美日韩一区二区精品| 国产亚洲精品久久久久5区| 日韩精品免费视频一区二区三区| 亚洲全国av大片| 亚洲欧美日韩东京热| 久久久久久久久中文| 国产成人av激情在线播放| 精品久久久久久成人av| a在线观看视频网站| 嫩草影院精品99| 国产精品日韩av在线免费观看| 国产在线观看jvid| 成人18禁在线播放| 99在线人妻在线中文字幕| 亚洲一区二区三区不卡视频| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 三级毛片av免费| 国产蜜桃级精品一区二区三区| 黄色a级毛片大全视频| 亚洲aⅴ乱码一区二区在线播放 | 在线视频色国产色| 麻豆一二三区av精品| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 久久午夜综合久久蜜桃| 国产视频内射| www.www免费av| 嫩草影院精品99| 91麻豆精品激情在线观看国产| 日本免费一区二区三区高清不卡| 91九色精品人成在线观看| 99精品在免费线老司机午夜| 黑人欧美特级aaaaaa片| 欧美国产日韩亚洲一区| 中文字幕精品亚洲无线码一区| 俺也久久电影网| 在线观看免费日韩欧美大片| 亚洲九九香蕉| 国产一区二区激情短视频| АⅤ资源中文在线天堂| 最近最新免费中文字幕在线| 精品国产美女av久久久久小说| 亚洲全国av大片| 亚洲国产高清在线一区二区三| 欧美日韩精品网址| 亚洲午夜精品一区,二区,三区| 欧美激情久久久久久爽电影| 日日夜夜操网爽| 老司机午夜福利在线观看视频| 午夜福利视频1000在线观看| av在线天堂中文字幕| 国产精品久久久久久精品电影| 国产精品综合久久久久久久免费| 欧美性长视频在线观看| 精品第一国产精品| 99久久精品国产亚洲精品| 日本 欧美在线| 少妇人妻一区二区三区视频| xxx96com| 极品教师在线免费播放| 国产亚洲精品久久久久久毛片| 美女 人体艺术 gogo| 欧美在线黄色| 国产亚洲精品av在线| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲无线在线观看| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 性色av乱码一区二区三区2| 久久精品综合一区二区三区| 国产免费av片在线观看野外av| 国产精品影院久久| 麻豆久久精品国产亚洲av| 成年版毛片免费区| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久av美女十八| 悠悠久久av| 欧美精品亚洲一区二区| 欧美乱码精品一区二区三区| 欧美最黄视频在线播放免费| 成人18禁在线播放| 色综合欧美亚洲国产小说| x7x7x7水蜜桃| 真人一进一出gif抽搐免费| 国产精华一区二区三区| 免费看美女性在线毛片视频| av视频在线观看入口| 中亚洲国语对白在线视频| 亚洲成av人片免费观看| bbb黄色大片| xxxwww97欧美| 午夜精品久久久久久毛片777| 国产精品 国内视频| а√天堂www在线а√下载| 国产精品av久久久久免费| 91成年电影在线观看| 黄色视频不卡| 一二三四社区在线视频社区8| 亚洲熟妇中文字幕五十中出| 1024香蕉在线观看| 香蕉av资源在线| 欧美一区二区国产精品久久精品 | 人成视频在线观看免费观看| 国内毛片毛片毛片毛片毛片| 日韩精品免费视频一区二区三区| 九色成人免费人妻av| av视频在线观看入口| 搡老妇女老女人老熟妇| 亚洲人成77777在线视频| 一夜夜www| 日本a在线网址| 搡老妇女老女人老熟妇| 99久久无色码亚洲精品果冻| 亚洲aⅴ乱码一区二区在线播放 | 两个人看的免费小视频| 黑人操中国人逼视频| 久热爱精品视频在线9| 午夜视频精品福利| 三级国产精品欧美在线观看 | 国产av一区在线观看免费| 两人在一起打扑克的视频| 国产麻豆成人av免费视频| 国产熟女午夜一区二区三区| 香蕉国产在线看| 国产亚洲av嫩草精品影院| 麻豆av在线久日| 亚洲国产欧美一区二区综合| 成人午夜高清在线视频| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 久久人妻福利社区极品人妻图片| 一个人免费在线观看的高清视频| 国产亚洲欧美在线一区二区| 日韩三级视频一区二区三区| 变态另类丝袜制服| 99在线人妻在线中文字幕| 免费高清视频大片| 中文字幕人妻丝袜一区二区| 99精品欧美一区二区三区四区| 亚洲精品国产精品久久久不卡| 日韩欧美三级三区| 1024香蕉在线观看| 国产精品九九99| 搡老岳熟女国产| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐gif免费好疼| 日韩精品免费视频一区二区三区| 久久精品影院6| 久久精品国产亚洲av高清一级| 禁无遮挡网站| 午夜福利视频1000在线观看| 青草久久国产| 亚洲色图 男人天堂 中文字幕| 麻豆国产av国片精品| 99在线视频只有这里精品首页| 亚洲成人久久爱视频| 中文字幕精品亚洲无线码一区| 99久久精品国产亚洲精品| 国产69精品久久久久777片 | 大型av网站在线播放| 久久天躁狠狠躁夜夜2o2o| 嫁个100分男人电影在线观看| 国产精华一区二区三区| 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 欧美性长视频在线观看| 黄色成人免费大全| 亚洲乱码一区二区免费版| 精华霜和精华液先用哪个| 免费在线观看完整版高清| 少妇裸体淫交视频免费看高清 | 欧美日韩乱码在线| 国内毛片毛片毛片毛片毛片| 色噜噜av男人的天堂激情| 日本黄色视频三级网站网址| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 久久人人精品亚洲av| 国产精品亚洲一级av第二区| 亚洲欧美精品综合一区二区三区| 国产精品一区二区精品视频观看| 天天一区二区日本电影三级| 国产精品亚洲美女久久久| 久久久久久久久中文| xxx96com| 国产成人啪精品午夜网站| 校园春色视频在线观看| 国产人伦9x9x在线观看| 欧美日韩国产亚洲二区| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 88av欧美| 午夜福利视频1000在线观看| 首页视频小说图片口味搜索| 国内精品久久久久精免费| 三级男女做爰猛烈吃奶摸视频| 一级a爱片免费观看的视频| 亚洲七黄色美女视频| 日本 欧美在线| 国产精品亚洲av一区麻豆| 国产1区2区3区精品| 精品一区二区三区视频在线观看免费| 午夜福利欧美成人| 天天添夜夜摸| 午夜免费激情av| 桃色一区二区三区在线观看| 国产人伦9x9x在线观看| 丁香六月欧美| 超碰成人久久| 999精品在线视频| 亚洲成人中文字幕在线播放| 美女黄网站色视频| 久久中文字幕一级| 成人手机av| 亚洲第一欧美日韩一区二区三区| 两个人看的免费小视频| 久久精品亚洲精品国产色婷小说| 日韩中文字幕欧美一区二区| 日本五十路高清| 免费电影在线观看免费观看| 国产午夜精品久久久久久| 日本免费a在线| 免费在线观看黄色视频的| svipshipincom国产片| 久久久久国产精品人妻aⅴ院| 午夜福利18| 少妇裸体淫交视频免费看高清 | 俺也久久电影网| 免费在线观看亚洲国产| 成年女人毛片免费观看观看9| 国产精品美女特级片免费视频播放器 | 麻豆久久精品国产亚洲av| 不卡av一区二区三区| 国产1区2区3区精品| 日本一本二区三区精品| 国产午夜精品久久久久久| 免费看a级黄色片| 免费在线观看影片大全网站| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久二区二区免费| 观看免费一级毛片| 成人三级做爰电影| 免费在线观看成人毛片| tocl精华| 日韩大码丰满熟妇| 亚洲av第一区精品v没综合| 淫秽高清视频在线观看| 美女高潮喷水抽搐中文字幕| 亚洲国产看品久久| 亚洲精品在线观看二区| 香蕉av资源在线| 嫩草影院精品99| 成年人黄色毛片网站| www.精华液| 香蕉久久夜色| 久久久久久九九精品二区国产 | 一级作爱视频免费观看| 亚洲国产精品久久男人天堂| 女人爽到高潮嗷嗷叫在线视频| 国产爱豆传媒在线观看 | 精品久久蜜臀av无| 久久久久久久久中文| 久久久久久免费高清国产稀缺| 亚洲国产欧美人成| a级毛片在线看网站| 久久热在线av| 白带黄色成豆腐渣| 好男人电影高清在线观看| 天堂动漫精品| www.www免费av| svipshipincom国产片| 久久久久国产精品人妻aⅴ院| 久久人人精品亚洲av| 色综合站精品国产| 午夜激情福利司机影院| 一级毛片精品| 国产亚洲精品第一综合不卡| 日韩欧美免费精品| 欧美色欧美亚洲另类二区| 国产熟女xx| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 欧美极品一区二区三区四区| 欧美不卡视频在线免费观看 | 国产精品 国内视频| 国产69精品久久久久777片 | 成人国语在线视频| 日日爽夜夜爽网站| 18禁观看日本| 九九热线精品视视频播放| 午夜精品在线福利| 人妻丰满熟妇av一区二区三区| 999久久久精品免费观看国产| 十八禁网站免费在线| 两性夫妻黄色片| 午夜久久久久精精品| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区| 在线观看午夜福利视频| 亚洲天堂国产精品一区在线| 日韩中文字幕欧美一区二区| 国内揄拍国产精品人妻在线| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 亚洲美女黄片视频| 舔av片在线| 久久久精品国产亚洲av高清涩受| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片| 久久精品aⅴ一区二区三区四区| 两个人视频免费观看高清| 少妇的丰满在线观看| 欧美日韩国产亚洲二区| 99国产极品粉嫩在线观看| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 国产乱人伦免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 男人的好看免费观看在线视频 | 亚洲国产精品999在线| 俄罗斯特黄特色一大片| 99热6这里只有精品| 天堂av国产一区二区熟女人妻 | 色综合亚洲欧美另类图片| 免费人成视频x8x8入口观看| √禁漫天堂资源中文www| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 欧美日韩黄片免| 国产三级黄色录像| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 极品教师在线免费播放| 最近最新免费中文字幕在线| 午夜福利成人在线免费观看| 色老头精品视频在线观看| 国内揄拍国产精品人妻在线| 母亲3免费完整高清在线观看| 日本三级黄在线观看| 精品不卡国产一区二区三区| 一进一出好大好爽视频| 青草久久国产| 九色国产91popny在线| 国产99白浆流出| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 精品久久久久久,| 亚洲av第一区精品v没综合| 99热这里只有精品一区 | 欧美人与性动交α欧美精品济南到| 在线国产一区二区在线| 国产av一区二区精品久久| 99在线视频只有这里精品首页| 免费在线观看视频国产中文字幕亚洲| 波多野结衣高清作品| 婷婷丁香在线五月| 亚洲成人久久性| 欧美zozozo另类| 国产成人av激情在线播放| 国产爱豆传媒在线观看 | 一级毛片女人18水好多| 国产av一区二区精品久久| 99久久国产精品久久久| 麻豆一二三区av精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 久久久国产成人精品二区| 免费观看精品视频网站| 777久久人妻少妇嫩草av网站| av天堂在线播放| 国产精品,欧美在线| 欧美在线一区亚洲| aaaaa片日本免费| 国产激情欧美一区二区| 日本黄色视频三级网站网址| 日本 av在线| 亚洲精华国产精华精| 欧美中文综合在线视频| 国产免费男女视频| 男女午夜视频在线观看| 九九热线精品视视频播放| 久久久久九九精品影院| 国产成人欧美在线观看| 成人一区二区视频在线观看| 麻豆成人av在线观看| 在线永久观看黄色视频| 国产一区二区三区在线臀色熟女| 午夜精品在线福利| 高清在线国产一区| 久久国产精品影院| 久久这里只有精品中国| 在线观看午夜福利视频| 在线播放国产精品三级| 18禁观看日本| 中国美女看黄片| 久久久久免费精品人妻一区二区| 99热只有精品国产| 桃色一区二区三区在线观看| 亚洲专区国产一区二区| 我要搜黄色片| 亚洲 欧美一区二区三区| 国产免费av片在线观看野外av| 国产区一区二久久| 12—13女人毛片做爰片一| 亚洲国产精品成人综合色| 91在线观看av| 国产真实乱freesex| 国产激情欧美一区二区| 国产精品久久久av美女十八| 青草久久国产| 免费在线观看视频国产中文字幕亚洲| 宅男免费午夜| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 亚洲性夜色夜夜综合| 亚洲欧洲精品一区二区精品久久久| 97碰自拍视频| 亚洲精华国产精华精| 色综合婷婷激情| 91麻豆精品激情在线观看国产| 国产视频内射| 亚洲精品在线美女| 日本免费a在线| 男女那种视频在线观看| 亚洲国产精品999在线| av福利片在线| av免费在线观看网站| av有码第一页| 久久国产精品人妻蜜桃| 午夜影院日韩av| 热99re8久久精品国产| 不卡一级毛片| 色精品久久人妻99蜜桃| 国产成+人综合+亚洲专区| 深夜精品福利| 欧美一级毛片孕妇| 亚洲一区二区三区色噜噜| 亚洲av第一区精品v没综合| 人妻丰满熟妇av一区二区三区| 婷婷六月久久综合丁香| 成年免费大片在线观看| 麻豆久久精品国产亚洲av| cao死你这个sao货| 国产亚洲精品综合一区在线观看 | 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 国产精品精品国产色婷婷| 黄色a级毛片大全视频| 国产精品香港三级国产av潘金莲| bbb黄色大片| 夜夜看夜夜爽夜夜摸| 亚洲av第一区精品v没综合| 免费在线观看日本一区| 国产蜜桃级精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 看片在线看免费视频| 日韩欧美三级三区| 蜜桃久久精品国产亚洲av| 午夜免费成人在线视频| 操出白浆在线播放| 动漫黄色视频在线观看| a级毛片在线看网站| 日本熟妇午夜| 国产高清有码在线观看视频 | 欧美日韩黄片免| 精品欧美国产一区二区三| 身体一侧抽搐| 午夜福利视频1000在线观看| 一区二区三区国产精品乱码| 国产精品久久久av美女十八| 日本一区二区免费在线视频| 在线观看免费视频日本深夜| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 99久久精品热视频| 一级作爱视频免费观看| 亚洲 欧美 日韩 在线 免费| 久久久精品欧美日韩精品| 国产成人啪精品午夜网站| 欧美在线黄色| 久久久久国产一级毛片高清牌| 亚洲精品一区av在线观看| 中文字幕精品亚洲无线码一区| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 国内精品一区二区在线观看| 少妇裸体淫交视频免费看高清 | 麻豆成人av在线观看| 1024视频免费在线观看| 欧美精品亚洲一区二区| 免费人成视频x8x8入口观看| 岛国在线观看网站| 男女之事视频高清在线观看| 无限看片的www在线观看| 在线观看美女被高潮喷水网站 | 国产成人精品久久二区二区91| 熟妇人妻久久中文字幕3abv| 午夜福利免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 香蕉av资源在线| 制服人妻中文乱码| 香蕉av资源在线| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 此物有八面人人有两片| 三级毛片av免费| 亚洲av成人不卡在线观看播放网| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区视频在线观看免费| 这个男人来自地球电影免费观看| 欧美成人午夜精品| 欧美人与性动交α欧美精品济南到| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 亚洲乱码一区二区免费版| 亚洲一区高清亚洲精品| 成人三级黄色视频| 成熟少妇高潮喷水视频| 国产精品av视频在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波|