• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PARAMETER IDENTIFICATION BY OPTIMIZATION METHOD FOR A POLLUTION PROBLEM IN POROUS MEDIA?

    2018-09-08 07:50:24ABOULAICH

    R.ABOULAICH

    LERMA,Ecole Mohammadia d’Ingénieurs Université de Mohammed V-Agdal,Avenue Ibn Sina B.P 765,Agdal,Rabat,Maroc

    E-mail:aboulaich@emi.ac.ma

    B.ACHCHAB

    Université Hassan 1,Ecde Supérieure de Technologic Berrechi,and LAMSAD,ESTB,B.P 218 Berrechid,Maroc

    E-mail:achchab@estb.ac.ma

    A.DAROUICHI

    Université Cadi Ayyad,Ecole Supérieure de Technologie,B.P 383 Essaouira,Maroc

    E-mail:azizdarouichi@gmail.com

    Abstract In the present work,we investigate the inverse problem of reconstructing the parameter of an integro-differential parabolic equation,which comes from pollution problems in porous media,when the final observation is given.We use the optimal control framework to establish both the existence and necessary condition of the minimizer for the cost functional.Furthermore,we prove the stability and the local uniqueness of the minimizer.Some numerical results will be presented and discussed.

    Key words inverse problem;coefficient identification;optimization method;pollution problem;porous media

    1 Introduction

    In this work we study an inverse problem of identifying the parameter of a time-dependent convection-diffusion integro-differential equation of a pollution problem arising in porous media,when the final observation is given.This type of problem has an important application in the broad field of engineering and applied sciences.This inverse problem consists in determining the initial liquid concentration of a volatile organic contaminant,since we can compute its gaseous concentration at final time T>0.Consider the following contaminant transport system in porous media[2,5,26,28]:

    where the subscripts a,w designate the gaseous and water phases of the contaminant,Caand Cw[ML?3]are the corresponding concentrations,εaand θ are the volumetric gaseous and water contents(dimensionless)[L3L?3],vais the velocity of the gaseous phase.The dispersion tensor D[L2T?1],is the standard form(see[3]),KHis Henry’s constant(dimensionless),ksis the first order mass transfer coefficient[T?1],C0aand C0ware the initial concentrations in the gaseous and liquid phases,respectively.The unknowns are the state variables Caand Cw.Physically speaking,this model describes the vapor transport of an organic volatile contaminant in the unsaturated soil zone which is considered as a rigid non deformable porous medium,coupled with the nonequilibrium mass transfer between the gaseous and liquid phases.From equations(1.1)2and(1.1)6,the function Cwwrites under the form

    Thence equation(1.1)2is eliminated.Therefore,the inverse problem which we shall consider is the following:for each T>0,if the concentration Caverifies equation(1.3)and conditions(1.1)3–(1.1)5are fulfilled,and moreover if the concentration Ca(·,T)is given,this allows to reconstruct uniquely the pollutant initial liquid concentration

    A time independent function should be identified in the right-hand side of equation(1.3).In doing so,we use the following change of variables

    Under these notations,we get

    where r=ks?αKHand μ = αksKHwith α =Suppose the following additional condition is given:

    where g is a known function,the terminal status observation is possibly given via the interpolation of the final observation measurements.Find the functions u and f satisfying(1.4)–(1.5).The coefficient f(x)stands for the initial concentration of the pollutant in the liquid phase and g(x)represents the given gaseous concentration of the pollutant at final time T>0 while u represents the gaseous concentration of the pollutant at any time t

    For a given function f(x),the convection-diffusion integro-differential problem(P)which is referred as a direct(or forward)problem consists of the determination of the pollutant gaseous concentration u from the given initial-boundary conditions.We should point out that there is a principal difference between the direct and the inverse problems.In fact,the direct problem is well-posed while the inverse one is ill-posed or improperly posed in the sense of Hadamard(see[22,24,29]).A mathematical problem is called as well-posed problem if it has the following properties.

    ?There exists a solution of the considered problem(existence).

    ?The problem has at most one solution(uniqueness).

    ? The solution of the problem is depending continuously on the data of the problem(stability).

    The major requirement is the stability of the problem.If the solution of a problem is not depending on the data of the problem,therefore the calculated solution has no relation to do with the true solution(see for example[20,22,24,25]).The principal difficulty for problem(P)is the numerical instability.It is not so easy to avoid some errors in the final observation u(x,T)that is often gotten by experiments.A small perturbation in the final observation u(x,T)may imply a great change in f,which may render the obtained results not meaningful.We notice that several authors have investigated the inverse parameter problems for time-dependent equations,see for instance[6–9,12,19,22–24,29]among others.However,in the present paper we discuss the inverse coefficient problem of a time-dependent convectiondiffusion-reaction integro-differential equation(P),by using the optimal control framework(see for instance[14–17,23,30,31]),from the theoretical analysis angle.The numerical solution is calculated from the optimality system with which the minimizer of the cost functional must satisfy by using the finite difference method.

    This paper is structured as follows:in Section 2,the inverse problem(P)is reformulated as an optimal control problem(P)and some prior results for the direct problem are given.The existence of the minimizer of the cost functional is shown in Section 3.In Section 4,the necessary condition for the minimizer is derived.The local uniqueness of the minimizer is derived in Section 5.The stability of the minimizer is obtained in Section 6.In the last section,some numerical results are presented.

    2 Optimal Control Problem

    We propose to reformulate the inverse problem(P)as a constrained least-squares optimization problem.This method is very easy for the computation of the solution f.To do so,we consider the following optimal control problem(P).

    and u(x,t;f)is the solution of problem(P)for a given f ∈ Uadand ν is the regularization parameter.The first term of the objective functional looks for the mis fit between observed and predicted states.The second term is a regularization with parameter ν and{α0,β0}are two given positive constants.

    For the additional condition(1.5),we suppose that the function g(x)satisfies g∈L2(0,1).

    In what follows,k·k2denotes the L2-norm on(0,1)and we introduce also the following spaces

    Lemma 2.1 Assume that u0(x)∈H1(I).For any given f(x)∈Uad,there exists a unique solution u(x,t)∈W0to equation(1.4).

    Proof The proof is similar to that presented in[1,11]in two dimensions. ?

    Lemma 2.2 Assume that u0(x)∈L2(I).For any given f(x)∈L2(I),there exists a nonnegative constant C only depends on T such that

    Proof By virtue of equation(1.4),we have for 0

    This yields

    Then

    Owing to

    Whence

    This implies,

    with|r|=abs(r).By applying the Gronwall’s lemma,we get the result.This completes the proof of Lemma 2.2. ?

    The study of the uniqueness for the inverse problem(1.4)–(1.5)is an important task.Through the uniqueness result,we can await the minimizing sequence from optimization problem effectively tends to the unique classical solution at least in some general sense.We have the following uniqueness result.

    Theorem 2.3 Suppose that the contaminant initial gaseous concentration u0(x)≥0,u0(x)6=0 in I.Moreover,assume that f1,f2∈Uad.Therefore we have f1(x)=f2(x)if u1(x,T)=u2(x,T).

    Proof The proof is very long and quite using the similar techniques and arguments as those in[27].For this reason,we leave out the details here.

    3 Existence of Minimizer for Cost Functional

    Theorem 3.1There exists a minimizer f∈Uadof J(f),i.e.,

    Proof Let(fn,un)be a minimizing sequence,namely,

    with unis a solution of problem(P)and fn∈Uad.As fn∈Uad,then fnis bounded in H1(0,1),so there exists a subsequence still denoted fnconverges weakly to f.From[1,Theorem 4.2],we have the following estimate

    Then

    We can easily check that( f,u(x,T; f))satisfies(1.4).

    According to the Lebesgue’s theorem,we deduce

    4 Necessary Condition

    Theorem 4.1 Let f be the solution of the optimal control problem(2.1).Then there exists a triple of functions(u,λ;f)satisfying the following system

    for any h in Uad.

    Proof For any h∈Uad,0≤δ≤1,we have

    Then

    Let uδbe the solution to problem(1.4)with given f=fδ.Since f is an optimal solution,we have

    In view of(4.5)we obtain

    where L?is the adjoint operator of the operator L.In virtue of(4.7)and(4.9),we get

    Combining(4.8)and(4.10),one can easily obtain that

    This completes the proof of Theorem 4.1.

    5 Uniqueness Result

    In this section,we prove the uniqueness result.Assume f1(x)and f2(x)be two minimizers of the control problem(P)and{ui,λi}(i=1,2)be solutions of system(4.1)–(4.2)in which f=fi(i=1,2),respectively.

    Setting

    therefore U and Λ satisfy

    Lemma 5.1 For any bounded continuous function h(x)∈C(0,1),we have

    where x0is a fixed point in(0,1).

    Proof We have for 0

    This accomplishes the proof of Lemma 5.1.

    We have the following result.

    Lemma 5.2 For equation(5.1),we have the following estimate

    Proof From equation(5.1),we have for 0

    Subsequently

    By using Gronwall’s lemma,we get

    where CT=e(1+μ)T2.Then for T ?1 we obtain

    where C is a nonnegative constant independent of T.This completes the proof of Lemma 5.2.?

    We have also the following result.

    Lemma 5.3 For equation(5.2),we have the following estimate

    Proof From equation(5.2),we have

    Then

    By using(5.2)4and(5.3),we get

    By using Gronwall’s lemma,and using that T ? 1 we obtain

    This completes the proof of Lemma 5.3.

    We have the following uniqueness result.

    Theorem 5.4 Assume f1(x),f2(x)be two minimizers of the optimal control problem(P).If there exists a point x0such that

    therefore for T?1,we have

    Proof By taking τ=f2when f=f1and taking τ=f1when f=f2in(4.3),we get

    with{ui,λi}(i=1,2)are solutions of system(4.1)–(4.2)in which f=fi(i=1,2),respectively.

    By virtue of(5.5)and(5.6)we obtain

    From the assumption of Theorem 5.4,there exists a point x0∈(0,1)such that

    From Lemma 5.1 we obtain

    By using H?lder’s inequality we get

    From(5.9),(5.10)and in view of(5.4),we have

    Choose T?1 such that

    Combining(5.11)and(5.12)we can easily obtain that

    This yields

    Noticing(5.8)and(5.14),we get

    This completes the proof of Theorem 5.4.

    6 Stability

    In this section,we will treat the stability of the optimal solution.For the proof of the stability of the minimizer,we will use the following necessary condition(4.1)–(4.7)and(4.8).We assume that the exact final observation g(x)is attainable,i.e.,there exists an f∈Uadsuch that u(x,T;f)=g(x),and that an upper bound δ for the noise level

    of the observation is known a priori.Let fδ∈Uadbe the minimizer of(2.1)with g replaced by gδand{uδ,ξδ}be the solution of system(4.1)–(4.7)in which f=fδand g=gδ.In view of the uniqueness obtained in Section 5,the minimizer fδis unique as T is relatively small.

    Theorem 6.1 Assume f(x),fδ(x)be two minimizers of the optimal control problem(P)corresponding to g and gδ,respectively.Then

    Proof By taking τ=f when f=fδand taking τ=fδin(4.8),we get

    Setting

    therefore Uδand Ξδsatisfy

    By applying Lemma 2.2 we know that equation(5.2)only has zero solution and hence

    Furthermore,ξδverifies the following equation

    By virtue of(6.4)and(6.7),we obtain

    In view of(6.2),(6.3),(6.6),and(6.8)we get

    From the assumptions of Theorem 6.1 and owing to Lemma 5.1,we get

    This completes the proof of Theorem 6.1.

    Remark 6.2 We should point out that the uniqueness and stability of the optimal solution,obtained by using the optimal control method(OCM),effectively depend on the choice of the regularization parameter ν.Suppose that

    Then owing to Theorem 6.1 we get

    where f is the solution of problem(P),therefore the reconstructed optimal solution is unique and stable,this is consistent with the existing results(see,for instance,[18]).It is also worth noting that analogous results regarding the stability may also be obtained by applying the Tikhonov regularization method(TRM),see also[18].For more thorough discussion on the regularization parameter for ill-posed problems,we refer the readers to references[10,18,20].

    7 Numerical Results

    Two experiments were performed with a natural soil and sand-clay with 20%of organic matters having different porosities,and polluted with heptane.

    For the first experiment,to see Table 1.

    Table 1 Parameters value for the first experiment

    with a soil moisture equals to about 11%and the pollutant initial concentration in the liquid phase equals to 6.35 Kg/m3.

    For the second experiment,to see Table 2.

    Table 2 Parameters value for the second experiment

    with a soil moisture equals to about 7%and the pollutant initial concentration in the liquid phase equals to 23 Kg/m3.For the numerical computing of the optimal control problem(P)we utilize the discretize-then-differentiate approach,see for instance[4].In this approach we discretize the state equations,here we use the implicit Euler scheme in time and centered finite differences discretization in space.Moreover,we use composite trapezoidal rule for the integral term.Finally,we discretize the objective functional J by using the midpoint rule in order to derive the discrete adjoint equation and the discrete gradient of the discrete objective functional.In doing so,we consider the following problem slightly modified from(P)

    Table 3 Parameters value

    We define the function f as follows:

    In this case,the exact solution is

    Figure 1 illustrates this exact solution in(0,1)×(0,1):

    Figure 1 The exact solution

    We present in the following figure 2 the comparison between the exact and approximate solutions of the direct problem(P)at T=1min for M=50 and N=100 with L2-error equals to 1.1×10?3.

    Figure 2 The exact and numerical solutions at T=1min

    We use a descent method with line search to compute the control parameter f.This algorithm of resolution is described below.

    Algorithm 7.1 Given xfthe final space,T the final time,M the number of subintervals along x axis,N the number of subintervals along t axis,an initial vector F0∈RMand a tolerance ?.

    Step 1 Determine the state vector by[U]=direct(M,N,xf,T);

    Step 2 Determine the adjoint vector by[P]=adjoint(M,N,xf,T,U);

    Step 3 Calculate the gradient?J;

    Step 4 Use a descent method with line search until convergence.

    We propose to compare three updating formulas for approaching the inverse of the Hessian matrix,including BFGS,DFP and SR1 formulas(see for instance[21]),to minimize the discretized cost functional J(F,U).The obtained results are listed in Table 4 where we take T=0.005min,M=100,N=200,ν =1×10?002and initial guess F0=6.22?ones(M ?1,1).The stopping criterion was er1<1.4901×10?006with er1is the relative change in x for SR1 method,on the other hand the stopping criteria was the maximal iteration for getting the best point for BFGS and DFP methods.We can see that the SR1 updating formula with trust region(see also[21])gives best results in comparison with the others updating formulas,namely,BFGS and DFP formulas.

    Table 4 Comparison for different updating formulas

    8 Concluding Remarks

    The inverse problem of identifying the coefficient in an integro-differential parabolic equation of a pollution problem arising in porous media,has an important application in engineering sciences and many industrial fields.In this paper,on the basis of the optimal control framework,we treat the inverse problem(P)consisting in determining the initial pollutant concentration in the liquid phase since we can compute its gaseous concentration from final measurement.The existence,uniqueness and stability of the minimizer for the cost functional are established.Some numerical results are presented for minimizing the cost functional by applying the Quasi-Newton type methods.This paper focuses on the theoretical analysis of the one-dimensional parabolic integro-differential inverse problem.However,the obtained numerical results in this paper are satisfactory.For two-dimensional case,the method proposed in this paper is also applicable.We notice that the two-dimensional case may be more interesting in engineering and applied sciences.The numerical computations of the two-dimensional case will be taken into consideration in the next work.

    91成人精品电影| 乱人伦中国视频| 精品无人区乱码1区二区| 一区福利在线观看| 日韩三级视频一区二区三区| 国产不卡av网站在线观看| 香蕉久久夜色| 成年女人毛片免费观看观看9 | 99在线人妻在线中文字幕 | 亚洲久久久国产精品| 在线观看免费视频日本深夜| 一级毛片女人18水好多| 黄色片一级片一级黄色片| 国产成人精品久久二区二区91| 欧美激情 高清一区二区三区| 一区二区三区激情视频| 在线国产一区二区在线| 无人区码免费观看不卡| 日韩大码丰满熟妇| 亚洲av电影在线进入| 波多野结衣av一区二区av| 亚洲精品国产区一区二| 不卡av一区二区三区| 两个人看的免费小视频| 亚洲免费av在线视频| 免费人成视频x8x8入口观看| 久久久水蜜桃国产精品网| 精品久久久久久,| 欧美日韩黄片免| 热99国产精品久久久久久7| 两个人看的免费小视频| 精品久久蜜臀av无| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 一级片'在线观看视频| 一进一出抽搐动态| 亚洲aⅴ乱码一区二区在线播放 | 成人影院久久| 性少妇av在线| 免费看十八禁软件| 国产男女超爽视频在线观看| 精品国产美女av久久久久小说| 大型黄色视频在线免费观看| 国产精品国产高清国产av | av欧美777| 男人舔女人的私密视频| 精品国产一区二区三区四区第35| 一本一本久久a久久精品综合妖精| 少妇裸体淫交视频免费看高清 | 黄色怎么调成土黄色| 亚洲一区高清亚洲精品| 男人的好看免费观看在线视频 | 久久久久精品国产欧美久久久| 久99久视频精品免费| 人成视频在线观看免费观看| 19禁男女啪啪无遮挡网站| 亚洲第一av免费看| 不卡一级毛片| 好看av亚洲va欧美ⅴa在| 国产成人啪精品午夜网站| 老司机午夜十八禁免费视频| 亚洲一区二区三区欧美精品| 露出奶头的视频| 国产精品国产av在线观看| ponron亚洲| 老司机在亚洲福利影院| 在线观看免费高清a一片| 在线播放国产精品三级| 久久这里只有精品19| 母亲3免费完整高清在线观看| 国产亚洲欧美在线一区二区| 国产免费av片在线观看野外av| 日本欧美视频一区| 80岁老熟妇乱子伦牲交| 久久久精品区二区三区| 超碰成人久久| 国产精品一区二区在线不卡| 很黄的视频免费| 国产亚洲精品久久久久5区| 搡老岳熟女国产| 自线自在国产av| 国产亚洲av高清不卡| 成年人午夜在线观看视频| netflix在线观看网站| svipshipincom国产片| 久9热在线精品视频| cao死你这个sao货| 亚洲人成77777在线视频| 中文字幕人妻丝袜一区二区| 精品一品国产午夜福利视频| 天天影视国产精品| 大型黄色视频在线免费观看| 九色亚洲精品在线播放| 香蕉久久夜色| 99精品在免费线老司机午夜| 欧美另类亚洲清纯唯美| 中文字幕人妻熟女乱码| 电影成人av| 美女高潮到喷水免费观看| 亚洲国产看品久久| 欧美日韩亚洲高清精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美一区二区三区久久| 黑人猛操日本美女一级片| 18禁裸乳无遮挡动漫免费视频| 久久香蕉激情| 中亚洲国语对白在线视频| 欧美日韩亚洲综合一区二区三区_| 深夜精品福利| 80岁老熟妇乱子伦牲交| 男女午夜视频在线观看| 国产一区二区三区视频了| 欧美国产精品va在线观看不卡| 人人妻人人添人人爽欧美一区卜| 亚洲欧美激情综合另类| 女人精品久久久久毛片| 国产极品粉嫩免费观看在线| 午夜精品在线福利| 免费看十八禁软件| 日韩人妻精品一区2区三区| 99国产精品一区二区蜜桃av | 久久ye,这里只有精品| 熟女少妇亚洲综合色aaa.| 99久久精品国产亚洲精品| 精品一区二区三区四区五区乱码| 欧美日韩一级在线毛片| 国产色视频综合| 制服诱惑二区| 国产色视频综合| 如日韩欧美国产精品一区二区三区| 成人手机av| 欧美成狂野欧美在线观看| a在线观看视频网站| 日韩人妻精品一区2区三区| 老鸭窝网址在线观看| 精品福利永久在线观看| 久久精品国产亚洲av高清一级| 黄频高清免费视频| 国产亚洲精品久久久久5区| 精品国产乱码久久久久久男人| 国产精品一区二区在线观看99| 黄色视频不卡| 岛国毛片在线播放| 国产精品.久久久| 99国产精品免费福利视频| 一区二区三区激情视频| 69av精品久久久久久| 大香蕉久久成人网| 成人三级做爰电影| 午夜免费观看网址| 日韩 欧美 亚洲 中文字幕| 国产真人三级小视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久,| 亚洲国产精品sss在线观看 | 国产精品一区二区免费欧美| 国产精品免费大片| 国产精品欧美亚洲77777| 亚洲国产中文字幕在线视频| 午夜免费鲁丝| 九色亚洲精品在线播放| 亚洲美女黄片视频| 好男人电影高清在线观看| 悠悠久久av| 少妇被粗大的猛进出69影院| 亚洲第一青青草原| 一区二区日韩欧美中文字幕| tube8黄色片| av在线播放免费不卡| 天天影视国产精品| 成人黄色视频免费在线看| 男人操女人黄网站| 亚洲人成电影免费在线| 国产精品永久免费网站| 国产1区2区3区精品| 亚洲精品av麻豆狂野| 午夜免费鲁丝| 免费在线观看日本一区| 亚洲精品久久午夜乱码| 免费观看精品视频网站| 国精品久久久久久国模美| 成人精品一区二区免费| www日本在线高清视频| 亚洲欧美精品综合一区二区三区| 丰满饥渴人妻一区二区三| 中文字幕制服av| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 国内毛片毛片毛片毛片毛片| 麻豆av在线久日| 一区二区三区精品91| 亚洲人成电影免费在线| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美在线观看 | 亚洲伊人色综图| 国产精品香港三级国产av潘金莲| 欧美老熟妇乱子伦牲交| 国产午夜精品久久久久久| 欧美日韩乱码在线| 国产成人精品久久二区二区91| 久久性视频一级片| 很黄的视频免费| 欧美国产精品一级二级三级| 国产99久久九九免费精品| 亚洲专区字幕在线| 亚洲欧美激情在线| 久久精品国产a三级三级三级| av在线播放免费不卡| 久久久水蜜桃国产精品网| 91av网站免费观看| 18禁裸乳无遮挡免费网站照片 | 亚洲精品久久成人aⅴ小说| 精品视频人人做人人爽| 国产精品久久久人人做人人爽| 国产不卡av网站在线观看| 国产精品二区激情视频| 久久精品人人爽人人爽视色| 69av精品久久久久久| 国产精华一区二区三区| 久99久视频精品免费| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 国产高清videossex| 午夜免费鲁丝| 久久精品亚洲精品国产色婷小说| 老司机亚洲免费影院| 一边摸一边抽搐一进一出视频| 侵犯人妻中文字幕一二三四区| 欧美 日韩 精品 国产| 精品人妻1区二区| 久久国产精品男人的天堂亚洲| 人妻一区二区av| 亚洲中文av在线| 一夜夜www| 亚洲五月婷婷丁香| 99久久国产精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品 欧美亚洲| 久久 成人 亚洲| 老司机亚洲免费影院| 悠悠久久av| 国产91精品成人一区二区三区| 久久久国产精品麻豆| 久久99一区二区三区| 欧美日韩视频精品一区| 国产精品秋霞免费鲁丝片| 欧美另类亚洲清纯唯美| 久久青草综合色| 亚洲国产精品合色在线| 美女视频免费永久观看网站| 在线视频色国产色| 亚洲精品一二三| 人人妻人人澡人人爽人人夜夜| 18禁美女被吸乳视频| 国产精品偷伦视频观看了| 精品熟女少妇八av免费久了| 欧美另类亚洲清纯唯美| 成人精品一区二区免费| 欧美日韩av久久| 韩国精品一区二区三区| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 久久精品91无色码中文字幕| 日韩一卡2卡3卡4卡2021年| 正在播放国产对白刺激| 咕卡用的链子| 欧美日韩黄片免| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看的高清视频| 亚洲精品自拍成人| 精品久久久久久电影网| 免费在线观看日本一区| 国产精品国产高清国产av | 高清黄色对白视频在线免费看| 咕卡用的链子| 女性被躁到高潮视频| 免费在线观看影片大全网站| 国产又爽黄色视频| 久久久久精品人妻al黑| 久久久久久久精品吃奶| 国产精品成人在线| 首页视频小说图片口味搜索| 久久人人爽av亚洲精品天堂| 国产精品久久久久成人av| 精品一区二区三区视频在线观看免费 | 亚洲第一青青草原| 99精国产麻豆久久婷婷| 桃红色精品国产亚洲av| 久久国产亚洲av麻豆专区| 午夜影院日韩av| 欧美在线一区亚洲| aaaaa片日本免费| 久久午夜综合久久蜜桃| 色婷婷久久久亚洲欧美| 午夜视频精品福利| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 亚洲色图 男人天堂 中文字幕| 精品欧美一区二区三区在线| 国精品久久久久久国模美| 国产精品99久久99久久久不卡| 伊人久久大香线蕉亚洲五| 丰满的人妻完整版| 午夜亚洲福利在线播放| 波多野结衣一区麻豆| 欧美中文综合在线视频| 少妇猛男粗大的猛烈进出视频| a级毛片黄视频| av线在线观看网站| 欧美黑人欧美精品刺激| 在线观看午夜福利视频| 久久草成人影院| 中文字幕高清在线视频| 一区二区三区激情视频| 欧美黑人精品巨大| 叶爱在线成人免费视频播放| 久9热在线精品视频| 制服人妻中文乱码| 免费日韩欧美在线观看| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 中亚洲国语对白在线视频| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| av中文乱码字幕在线| 91成年电影在线观看| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影 | 欧美乱妇无乱码| 制服人妻中文乱码| 97人妻天天添夜夜摸| 久久久国产欧美日韩av| 天天添夜夜摸| 三级毛片av免费| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 满18在线观看网站| 18禁裸乳无遮挡动漫免费视频| 香蕉久久夜色| 自线自在国产av| 叶爱在线成人免费视频播放| 性少妇av在线| 91在线观看av| 午夜免费成人在线视频| 91成年电影在线观看| 69精品国产乱码久久久| 夜夜躁狠狠躁天天躁| 国产亚洲一区二区精品| 欧美午夜高清在线| 高清黄色对白视频在线免费看| 久久草成人影院| 99国产精品一区二区三区| 亚洲第一av免费看| 午夜亚洲福利在线播放| 无人区码免费观看不卡| 看片在线看免费视频| 亚洲专区中文字幕在线| 欧美激情极品国产一区二区三区| 十八禁人妻一区二区| 在线播放国产精品三级| 九色亚洲精品在线播放| 精品一区二区三卡| 午夜亚洲福利在线播放| 成年女人毛片免费观看观看9 | 欧美 日韩 精品 国产| 欧美日本中文国产一区发布| 国产精品偷伦视频观看了| 久久热在线av| 日韩中文字幕欧美一区二区| 国产91精品成人一区二区三区| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 变态另类成人亚洲欧美熟女 | 国产主播在线观看一区二区| 午夜久久久在线观看| 很黄的视频免费| 久久精品亚洲精品国产色婷小说| 亚洲av成人av| 成年女人毛片免费观看观看9 | 高清黄色对白视频在线免费看| 亚洲熟女精品中文字幕| 亚洲专区国产一区二区| 国产成人精品久久二区二区91| 午夜福利影视在线免费观看| 色94色欧美一区二区| 9色porny在线观看| 国产高清激情床上av| 少妇的丰满在线观看| 久久国产乱子伦精品免费另类| 18禁黄网站禁片午夜丰满| 午夜精品国产一区二区电影| 女警被强在线播放| 日韩欧美国产一区二区入口| 午夜老司机福利片| 亚洲伊人色综图| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| 久久这里只有精品19| 三上悠亚av全集在线观看| 99香蕉大伊视频| 成人av一区二区三区在线看| 在线观看日韩欧美| 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 脱女人内裤的视频| 男人舔女人的私密视频| 亚洲九九香蕉| 久久久久精品国产欧美久久久| 国产xxxxx性猛交| 国产亚洲欧美98| 久久久国产欧美日韩av| av网站在线播放免费| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 国产99久久九九免费精品| 国产午夜精品久久久久久| 亚洲av片天天在线观看| 免费观看人在逋| 欧美国产精品va在线观看不卡| 亚洲av成人av| 黑人猛操日本美女一级片| 久久久国产成人精品二区 | 精品无人区乱码1区二区| 精品国产国语对白av| 午夜福利欧美成人| 桃红色精品国产亚洲av| 欧美乱色亚洲激情| 日韩欧美三级三区| 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 国产一区二区激情短视频| 久久国产亚洲av麻豆专区| 国产成人精品在线电影| 两性午夜刺激爽爽歪歪视频在线观看 | 国产有黄有色有爽视频| 久久久久国产精品人妻aⅴ院 | 欧美 日韩 精品 国产| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 国产区一区二久久| 一a级毛片在线观看| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 美女福利国产在线| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 最近最新中文字幕大全免费视频| 成年版毛片免费区| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 精品无人区乱码1区二区| 国产又爽黄色视频| 伦理电影免费视频| 99在线人妻在线中文字幕 | 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 亚洲人成电影免费在线| 国产在线观看jvid| 在线播放国产精品三级| 天堂√8在线中文| 色播在线永久视频| 满18在线观看网站| 中文亚洲av片在线观看爽 | avwww免费| 成人影院久久| 亚洲精品粉嫩美女一区| 99国产精品一区二区三区| 老鸭窝网址在线观看| 国产无遮挡羞羞视频在线观看| 99热国产这里只有精品6| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 亚洲三区欧美一区| 黄色片一级片一级黄色片| 亚洲第一av免费看| 最新美女视频免费是黄的| 欧美激情极品国产一区二区三区| 日韩免费高清中文字幕av| 国产精品久久久久久人妻精品电影| 中文亚洲av片在线观看爽 | 在线观看免费视频网站a站| 国产aⅴ精品一区二区三区波| 国产欧美亚洲国产| 亚洲自偷自拍图片 自拍| 久久精品91无色码中文字幕| 丝袜在线中文字幕| 十分钟在线观看高清视频www| 久久精品熟女亚洲av麻豆精品| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 亚洲va日本ⅴa欧美va伊人久久| 又大又爽又粗| 久久人人97超碰香蕉20202| 成年女人毛片免费观看观看9 | 国产精品免费大片| 91精品三级在线观看| 国产在视频线精品| 久久精品成人免费网站| 亚洲专区中文字幕在线| 免费久久久久久久精品成人欧美视频| 99精品欧美一区二区三区四区| 欧美乱码精品一区二区三区| 亚洲一区二区三区欧美精品| 三上悠亚av全集在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人国产一区在线观看| 在线观看免费高清a一片| 亚洲精品中文字幕一二三四区| 丰满饥渴人妻一区二区三| 亚洲人成伊人成综合网2020| avwww免费| 啦啦啦在线免费观看视频4| 欧美日韩乱码在线| 亚洲中文字幕日韩| 十分钟在线观看高清视频www| 国产一卡二卡三卡精品| 在线国产一区二区在线| 母亲3免费完整高清在线观看| 免费在线观看影片大全网站| 成人国语在线视频| a级片在线免费高清观看视频| 热re99久久国产66热| 99国产精品一区二区蜜桃av | 国产成人欧美在线观看 | 99久久99久久久精品蜜桃| 国产精品久久视频播放| 国产高清视频在线播放一区| 女人精品久久久久毛片| 亚洲av美国av| 成人永久免费在线观看视频| a在线观看视频网站| 亚洲专区中文字幕在线| 一级片'在线观看视频| 99re6热这里在线精品视频| 亚洲一区二区三区不卡视频| 又大又爽又粗| 村上凉子中文字幕在线| 久久午夜综合久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 久久香蕉精品热| 日韩一卡2卡3卡4卡2021年| 黄色女人牲交| 黑人操中国人逼视频| 色精品久久人妻99蜜桃| 日韩制服丝袜自拍偷拍| 成人18禁在线播放| 极品教师在线免费播放| 中文亚洲av片在线观看爽 | 国产高清激情床上av| 成人精品一区二区免费| 最近最新免费中文字幕在线| 纯流量卡能插随身wifi吗| 校园春色视频在线观看| 国产精品九九99| 一边摸一边抽搐一进一出视频| 国产欧美日韩综合在线一区二区| 午夜福利一区二区在线看| 中文字幕高清在线视频| 国产成人影院久久av| 免费看a级黄色片| 欧美大码av| 叶爱在线成人免费视频播放| 天堂俺去俺来也www色官网| 在线av久久热| 中文字幕人妻丝袜一区二区| 国产精品乱码一区二三区的特点 | 又大又爽又粗| tube8黄色片| 欧美最黄视频在线播放免费 | 久久久国产成人免费| 国产精品久久久av美女十八| 欧美日韩亚洲国产一区二区在线观看 | 精品午夜福利视频在线观看一区| 飞空精品影院首页| 99国产精品一区二区蜜桃av | 国产不卡av网站在线观看| 久久影院123| 欧美黑人欧美精品刺激| 丰满迷人的少妇在线观看| 亚洲av美国av| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 在线国产一区二区在线| 丝袜美腿诱惑在线| 中文字幕精品免费在线观看视频| 狠狠狠狠99中文字幕| 水蜜桃什么品种好| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 免费观看a级毛片全部| 大型黄色视频在线免费观看| 最新在线观看一区二区三区| 日本欧美视频一区| 夫妻午夜视频| 99国产精品免费福利视频| 免费一级毛片在线播放高清视频 | 国产不卡一卡二| 99国产精品99久久久久| 久久精品亚洲av国产电影网| 一区福利在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美精品一区二区免费开放| 精品国产一区二区三区四区第35| 久久国产亚洲av麻豆专区| 久久久久国内视频|