• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DEVIATION OF THE ERROR ESTIMATION FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS?

    2018-09-08 07:50:20MohammadZAREBNIARezaPARVAZ

    Mohammad ZAREBNIA Reza PARVAZ

    Department of Mathematics,University of Mohaghegh Ardabili,56199-11367 Ardabil,Iran

    E-mail:zarebnia@uma.ac.ir;rparvaz@uma.ac.ir

    Amir SABOOR BAGHERZADEH

    Department of Applied Mathematics,Faculty of Mathematics,Ferdowsi University of Mashhad,Mashhad,Iran

    E-mail:saboorbagherzadeh.a@gmail.com

    Abstract In this paper,we study an efficient asymptotically correction of a-posteriori error estimator for the numerical approximation of Volterra integro-differential equations by piecewise polynomial collocation method.The deviation of the error for Volterra integrodifferential equations by using the defect correction principle is defined.Also,it is shown that for m degree piecewise polynomial collocation method,our method provides O(hm+1)as the order of the deviation of the error.The theoretical behavior is tested on examples and it is shown that the numerical results confirm the theoretical part.

    Key words Volterra integro-differential;defect correction principle;piecewise polynomial;collocation; finite difference;error analysis

    1 Introduction

    In this work,we consider Volterra integro-differential(VID)equations as follows

    We say F is semilinear if we can write F as follows

    Also in this paper,we say z[y](t)is linear if we can write z[y](t)as

    where Λ(t,s)is sufficiently smooth in J:={(t,s)|0≤ s≤ t≤ T}.We shall assume that F and K are uniformly continuous in W and S,respectively,where

    It is well-known that under the following conditions,VID problems(1.1)–(1.2)have a unique solution y∈C1(I)[1],

    where C1,C2and C3are nonnegative and finite constants.

    For(1.1)–(1.2),the following conditions can be assumed,

    ? F is semilinear and z[·]is linear.

    ? F and z[·]are nonlinear.

    ? F is nonlinear and z[·]is linear.

    ? F is semilinear and z[·]is nonlinear.

    In this paper,we study the deviation of the error for all of the above conditions.When we use m degree piecewise polynomial collocation method for VID problems,we prove that the order of the deviation of the error is O(hm+1).The piecewise polynomial collocation method for VID problem was studied in[2].Also other methods for the integro-differential equations were studied in refs.[3–6].

    The general structure of defect correction was introduced in[7],and the Brakhage’s defect correction for integral equations was studied in[8].The deviation of the error estimation based on piecewise polynomial collocation method was studied in refs.[9,10]for linear and nonlinear second order boundary value problem.

    The layout of this paper is organized as follows.In Section 2,piecewise polynomial collocation method, finite differences scheme and exact difference scheme are described.In Section 3,we perform analysis of the deviation of the error for linear and nonlinear cases.In Section 4,we present the results of numerical experiments that demonstrate our findings.A summary is given at the end of the paper in Section 5.

    2 Description of the Method

    In this section,we describe some details about piecewise polynomial collocation method,finite differences scheme and exact difference scheme.

    2.1 Piecewise Polynomial Collocation Method

    We give a brief introduction to the use of piecewise polynomial collocation method for solution of the VID equation(1.1)–(1.2).

    Step 1 Let

    we define the set?nas

    also we define hi:= τi+1? τi,h′:=minihiand h:=maxihi.Let

    In each subinterval[τi,τi+1],we define collocation points as

    Step 2 In each subinterval[τi,τi+1](i=0,···,n ? 1),we define a polynomial as

    We define a continuous collocation solution as

    Step 3 The unknown coefficients ci,k(k=0,···,m,i=0,···,n ? 1)in(2.5),will be determined by using the following conditions

    Definition 2.1 We define(Lagrange polynomials)

    Remark 2.2 In Step 3,since always we can not determine exact value for z[p](ti,j),therefore we use the following method to determine z[p](ti,j),

    where

    Lemma 2.3 For sufficiently smooth f,the following estimate holds

    Proof When z[·](t)is nonlinear we can write

    where

    Therefore by using the interpolation error theorem(see[11,Section 2.1]),we have

    Similarly for linear z[·](t)we can prove(2.10). ?

    For above collocation method,the following theorem holds.

    Theorem 2.4 Assume that the VID problem(1.1)–(1.2)has a unique and sufficiently smooth solution y(t).Also assume that p(t)is a piecewise polynomial collocation solution of degree≤m.Then for sufficiently small h,the collocation solution p(t)is well-defined and the following uniform estimate at least hold

    Proof The proof see[2].?

    Remark 2.5 By using numerical experiment,we can see that for equidistant collocation gird points with odd m the following uniform estimate hold

    2.2 Finite Difference Scheme

    In this section,we define

    Considering(2.4),we can write a general one-step finite difference scheme as

    Definition 2.6 For any function u,we define

    also we define

    By using Taylor expansions,the following lemma is obtained easily.

    Lemma 2.7 If the function f has a continuous first derivative in[xj,xj+1],then there exists a numer ξj∈ [xj,xj+1],such that

    Lemma 2.8 For sufficiently smooth f the following estimate holds

    where χ[·]i,jis defined by(2.20).

    Proof When z[·](t)is nonlinear by using Lemma 2.7,we get

    also we can write

    and we can say that j≤m.Then we have

    Similarly for linear z[·](t),we can prove this lemma. ?

    For above finite difference scheme by using Taylor expansion and Lemma 2.8,we have the following estimate

    2.3 Deviation of the Error Estimation for VID Equations

    In this subsection,by using the defect correction principle,we find the deviation of the error estimation for(1.1)–(1.2).For y′(t)=f(t),0 ≤ t ≤ T,where f(t)is permitted to have jump discontinuities in the points belonging to?n,by using Taylor expansion we obtain

    In fact,we find “exact finite difference scheme” for y′(t)=f(t),which is satisfied by the exact solution.Moreover a solution of problem(1.1)–(1.2)satisfies the exact finite difference scheme

    We know that the following values in the collocation points are zero,

    We define defect at ti,jas follows

    In order to compute integral in(2.33),we use quadrature formula.Then we find

    where

    With standard arguments,for sufficiently smooth f,we can show that the following error holds

    In the special case where m is odd and the nodes ρiare symmetrically,we have

    Now let π ={πi,j;(i,j)∈ A}be defined as the solution of the following finite difference scheme

    We define D:={Di,j;(i,j)∈A?{(n,0)}}.For small value D,we can say

    where η is defined in(2.18)–(2.19).We define ε and e as

    We remember that an estimate for the error e is given in Theorem 2.4.The deviation of the error is defined as follows

    In the next section,we will prove that the order of the deviation of the error estimate for VID equation is at least O(hm+1).

    3 Analysis of the Deviation of the Error

    3.1 Linear Case

    In this subsection,we consider the following linear VID equation with linear z[·](t)defined in(1.5)

    where a(t),b(t)are sufficiently smooth in I.

    Theorem 3.1 Consider the VID equation(3.1)with initial condition(3.2).Assume that the VID problem has a unique and sufficiently smooth solution.Then the following estimate holds

    where e is error,ε is the error estimate and θ is its deviation.

    Proof According to the described procedure,we can write

    Therefore we have

    We write

    Then from(3.6)and(3.7),we can get

    In this step,we show that S1=O(hm+1)and S2=O(hm+1).We can consider

    from Taylor expansion,we have

    where ξi∈ [τi,τi+1].By using Theorem 2.4 and(3.11),we can say that S1=O(hm+1).Now we study S2.Similar to Lemma 2.8,we find

    By using(3.12),we obtain

    where ξi,k,ζk, ζk∈[τi,τi+1].By Theorem 2.4 and(3.13),we have

    Therefore we can write(3.8)as

    Stability requirements of forward Euler scheme yield the following result

    which completes the proof.

    3.2 Nonlinear Case

    We consider the nonlinear VID equation(1.1)–(1.2).In the nonlinear case we assume that F(t,y,z),Ft(t,y,z),Fy(t,y,z)and Fz(t,y,z)are Lipschitz-continuous.Also when z[·](t)is nonlinear we assume that K(t,s,u)and Ku(t,s,u)are Lipschitz-continuous.

    For nonlinear case,according to the presented method,we have

    Lemma 3.2 For linear z[·](t)as given in(1.5),we have

    Proof By using Lemma 2.8 and Lemma 2.3,we can write

    Similarly we can prove(3.19).?

    Lemma 3.3 For linear and nonlinear z[·](t),we have

    Proof In the first step,we assume z[·](t)is linear.By using Lemma 2.3,Theorem 2.4 and the integral mean value theorem,we get

    where ζi,j∈ [0,ti,j].For nonlinear z[·](t)by using Lemma 2.3 we obtain

    by using the Lipschitz condition for K we find

    which completes the proof.

    Lemma 3.4 The defect defined in(2.33)has order O(hm).

    Proof We can write

    Since p′is a polynomial of degree m ? 1,therefore S1=0.Also according to the definition of collocation solution,we can say that S2=0 at all collocation grid points ti,j.For grid point τi,we have

    For S3by using Lipschitz condition and Lemma 3.3,we get

    This completes the proof of Lemma 3.4.?

    The following lemma is a consequence of the above lemma.

    Lemma 3.5 The π ? η has order O(hm).

    First,we assume that z[·](t)is linear,i.e.,(1.5),for this case we have the following lemmas and theorem.

    Lemma 3.7We have

    Proof We can write

    where

    Similarly we can prove(3.30),(3.31).For(3.32),we have

    Lemma 3.8We have

    Proof By using Lemma 3.5 and Theorem 2.4,we can write

    Theorem 3.9 Consider the VID equation(1.1)with initial condition(1.2),where F(t,y,z),Ft(t,y,z),Fy(t,y,z)and Fz(t,y,z)are Lipschitz-continuous.Also let z[·](t)is linear,i.e.,(1.3).Assume that the VID problem has a unique and sufficiently smooth solution.Then the following estimate holds

    where e is error,ε is the error estimate and θ is the deviation of the error estimate.

    Proof By using(3.17),we have

    We rewrite I1as

    where

    Also we have

    where

    Analogously we can write

    where

    Also we get

    where

    Also we obtain

    In this step by using the Lipschitz condition for Fy,Lemma 3.7 and Lemma 3.8,we find

    From relations(3.50)–(3.51),one may readily deduce the expression

    Analogously,we can write

    By using the Lipschitz condition for Fzand Lemma 3.7,we get

    Then by using(3.53)–(3.54),we have

    Considering eqs.(3.44)and(3.49),we have

    By using(3.12),we can say that

    Having used the Lipschitz condition for Fzand(3.57),we get

    Therefore we can write

    By using Lemma 3.2,(3.57)and(3.59),we find

    Based on the above discussion,we can rewrite(3.39)as

    From the Lipschitz condition for F and Lemma 2.3,we obtain

    Then by using(3.62)–(3.63),we rewrite(3.61)as

    Now by using Taylor expansion,we have

    We can find

    From(1.5),we can get the following result for I5as

    Then based on the above discussion,we get

    Using stability of forward Euler scheme,we find

    which completes the proof.

    Now in this step we study nonlinear case with nonlinear z[·](t),i.e.,(1.3).

    Lemma 3.10 When z[·](t)is nonlinear then,we have

    ProofWe have

    from the Lipschitz condition for K and Lemma 3.5,we can write

    Similarly,we can prove(3.72).For(3.73)by Lemma 3.3,we get

    which completes the proof.?

    Definition 3.11For nonlinear z[·](t),let us define χ[ε]i,jand bχ[ bε]i,jby

    Lemma 3.12 We have

    Proof By using the Lipschitz condition for Ku,we get

    Therefore we can see that

    then we get the following identity

    Lemma 3.13 When z[·](t)is nonlinear then we have

    Proof From Lemma 3.12 and Lemma 3.8,one may readily deduce the following result

    Theorem 3.14 Consider the VID equation(1.1)with initial condition(1.2),where F(t,y,z),Ft(t,y,z),Fy(t,y,z)and Fz(t,y,z)are Lipschitz-continuous.Also let z[·](t)is nonlinear,i.e,(1.3),where K(t,s,u)and Ku(t,s,u)are Lipschitz-continuous.Assume that the VID problem has a unique and sufficiently smooth solution,then the following estimate holds

    where e is error,ε is the error estimate and θ is its deviation.

    Proof Similar to Theorem 3.9,we get

    by using Lemma 3.10 and the Lipschitz condition for Fy,we have

    therefore we can write

    Also we get

    Having used Lemmas 3.10–3.13 and the Lipschitz condition for Fz,we have

    Therefore we write

    As Theorem 3.9,we have

    where

    From the above equations we can obtain

    When z[·]is nonlinear,similar to(3.57)we can find

    Then by using Lemmas 3.3,3.10–3.13,eq.(3.106)and the Lipschitz condition for Fz,we can get

    therefore we can say that

    Then we find

    Also by using Lemma 3.12 we obtain

    We may rewrite eq.(3.88)as

    Similar to Theorem 3.9,we can complete the proof.

    Similar to the above theorem,we can prove the following theorem.

    Theorem 3.15 Consider the VID equation(3.1)with initial condition(3.2).Also let z[·](t)is nonlinear,i.e.,(1.3),where K(t,s,u)and Ku(t,s,u)are Lipschitz-continuous.Assume that the VID problem has a unique and sufficiently smooth solution.Then the following estimate holds

    where e is error,ε is the error estimate and θ is its deviation.

    4 Numerical Illustration

    In this section,in order to illustrate the theoretical results,we consider some test problems.Note that we compute the numerical results by Mathematica-9 programming.

    Example 1 Consider the Volterra integro-differential problem

    with exact solution y(t)=exp(t2).This example serve to illustrate Theorem 3.1.The numerical results are shown in Table 1 and 2.For this example we choose n collocation subintervals of length 1/n.In Table 1 for this example we choose m=2 and assume that ρi(i=0,···,m+1)are equidistant point.Also,numerical results are shown in Table 2 for m=3 and{ρ0,ρ1ρ2,ρ3,ρ4}={0,0.1,0.55,0.8,1}.

    Table 1 Numerical results for Example 1

    Table 2 Numerical results for Example 1

    with b(t)=1/4+t/2 and exact solution y(t)=exp(t).The numerical results reveal Theorem 3.9.The numerical results are tabulated in Table 3.For this example,we choose n collocation intervals of length 1/n and assume that ρi(i=0,···,4)are equidistant points.

    Example 2 In this example,we consider the Volterra integro-differential problem

    Table 3 Numerical results for Example 2 with m=3

    Example 3 By using this example,we reveal Theorem 3.14.Consider the Volterra integro-differential problem

    with b(t)=2exp(2t)+t/16+t2/4 and exact solution y(t)=exp(2t).We can see that F and z[·]are nonlinear.In Table 4,we consider m=4 and assume that τiand ρi(i=0,···,5)are equidistant points.

    Table 4 Numerical results for Example 3 with m=4

    Example 4 In this example,we study the following VID equation

    Table 5 Numerical results for Example 4

    Remark 4.1 According to numerical results for Examples 2 and 3,we can see that the rate of convergence is quite slow.For accelerating the rate of convergence,we can choose Chebyshev nodes for τiand ρi.The comparison results for the rate of convergence for different nodes are given in Tables 6–9 for m=4.We solve Examples 2 and 3 for equidistant points τi(i=0,···,n)and ρi(i=0,···,m+1)where numerical results are given in Tables 6 and 8.Also by choosing Chebyshev nodes for τi(i=0,···,n)and ρi(i=0,···,m+1),numerical results for Examples 2 and 3,are tabulated in Tables 7 and 9.

    Table 6 Numerical results for Example 2 with m=4

    Table 7 Numerical results for Example 2 with m=4 and Chebyshev nodes

    Table 8 Numerical results for Example 3 with m=4

    Table 9 Numerical results for Example 3 with m=4 and Chebyshev nodes

    5 Conclusion

    In this paper,the deviation of the error estimation by using piecewise polynomial collocation method for Volterra integro-differential equations is studied.Also we indicated that the order of the deviation of the error estimation is O(hm+1),where m is degree of the piecewise polynomial.In addition,the numerical results confirmed the analytical results.

    桃色一区二区三区在线观看| 国产99白浆流出| 欧美极品一区二区三区四区| 免费在线观看亚洲国产| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合久久99| 69av精品久久久久久| 久久性视频一级片| 国产69精品久久久久777片 | 久久久久国产一级毛片高清牌| 精品久久久久久久久久久久久| 亚洲中文日韩欧美视频| 亚洲成av人片在线播放无| 欧美乱码精品一区二区三区| 观看免费一级毛片| 国产又黄又爽又无遮挡在线| www国产在线视频色| 又爽又黄无遮挡网站| 精品熟女少妇八av免费久了| 成熟少妇高潮喷水视频| 久久热在线av| 色综合婷婷激情| 久久香蕉精品热| 两个人的视频大全免费| 男女做爰动态图高潮gif福利片| 他把我摸到了高潮在线观看| 国产精品,欧美在线| 中文字幕熟女人妻在线| a级毛片在线看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美中文综合在线视频| 热99re8久久精品国产| 欧美中文日本在线观看视频| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 变态另类成人亚洲欧美熟女| 亚洲全国av大片| 免费电影在线观看免费观看| 午夜福利高清视频| 国产真人三级小视频在线观看| 亚洲av美国av| 免费人成视频x8x8入口观看| 一进一出抽搐动态| 在线播放国产精品三级| 欧美极品一区二区三区四区| 久久久久久久久中文| 久久香蕉精品热| 最好的美女福利视频网| 十八禁网站免费在线| 久久中文字幕人妻熟女| www.www免费av| 免费在线观看黄色视频的| 少妇的丰满在线观看| 国产高清videossex| 精品国内亚洲2022精品成人| 国产伦一二天堂av在线观看| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| 久久中文字幕人妻熟女| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 曰老女人黄片| 神马国产精品三级电影在线观看 | 欧美色欧美亚洲另类二区| www.熟女人妻精品国产| 国产精品国产高清国产av| 不卡一级毛片| 丰满的人妻完整版| 香蕉丝袜av| 岛国在线免费视频观看| 99热6这里只有精品| 精品高清国产在线一区| 亚洲精品中文字幕在线视频| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全免费视频| 男插女下体视频免费在线播放| 法律面前人人平等表现在哪些方面| 成人精品一区二区免费| 老司机在亚洲福利影院| 1024香蕉在线观看| 一个人观看的视频www高清免费观看 | 国产在线精品亚洲第一网站| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 久久久久久国产a免费观看| 丝袜美腿诱惑在线| 日韩欧美免费精品| 18禁裸乳无遮挡免费网站照片| 三级毛片av免费| 久久热在线av| 国产av在哪里看| 99精品欧美一区二区三区四区| or卡值多少钱| 露出奶头的视频| 深夜精品福利| 国产真实乱freesex| 日韩大尺度精品在线看网址| 久久精品国产综合久久久| av中文乱码字幕在线| 亚洲精品美女久久久久99蜜臀| 亚洲无线在线观看| 精品欧美一区二区三区在线| 国产午夜精品论理片| 成人av一区二区三区在线看| 国产精品亚洲一级av第二区| 88av欧美| 男女视频在线观看网站免费 | 成人高潮视频无遮挡免费网站| av天堂在线播放| 亚洲av美国av| 香蕉国产在线看| 亚洲免费av在线视频| 一本综合久久免费| 我的老师免费观看完整版| 国内揄拍国产精品人妻在线| www.www免费av| 亚洲 欧美一区二区三区| 免费在线观看影片大全网站| 香蕉av资源在线| 麻豆av在线久日| 黄频高清免费视频| 后天国语完整版免费观看| 久久人妻福利社区极品人妻图片| 青草久久国产| 亚洲人成电影免费在线| 欧美精品啪啪一区二区三区| 在线播放国产精品三级| 亚洲av成人一区二区三| 国产三级中文精品| 国产成人精品无人区| 后天国语完整版免费观看| 禁无遮挡网站| 中文字幕高清在线视频| 亚洲全国av大片| 中文字幕人妻丝袜一区二区| 中文字幕熟女人妻在线| 午夜免费激情av| 亚洲精品国产一区二区精华液| 黑人操中国人逼视频| 日韩中文字幕欧美一区二区| 免费在线观看完整版高清| 亚洲av电影在线进入| 久久九九热精品免费| 欧美极品一区二区三区四区| 欧美绝顶高潮抽搐喷水| 国产精品香港三级国产av潘金莲| 色播亚洲综合网| 成年女人毛片免费观看观看9| 两性午夜刺激爽爽歪歪视频在线观看 | 成人精品一区二区免费| 99久久久亚洲精品蜜臀av| 男女下面进入的视频免费午夜| 久久久精品欧美日韩精品| 亚洲中文av在线| 嫁个100分男人电影在线观看| 欧美丝袜亚洲另类 | 女警被强在线播放| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 男人舔女人下体高潮全视频| 亚洲精品国产一区二区精华液| 99热这里只有精品一区 | 波多野结衣巨乳人妻| 日本免费a在线| av福利片在线| 日韩有码中文字幕| 久久草成人影院| 国产av不卡久久| 丰满人妻一区二区三区视频av | 香蕉久久夜色| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产高清在线一区二区三| 中文资源天堂在线| 国产片内射在线| 熟女少妇亚洲综合色aaa.| 性欧美人与动物交配| 国产精品 欧美亚洲| 99久久精品国产亚洲精品| 亚洲人与动物交配视频| 99久久精品国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看日本一区| 91老司机精品| 国产探花在线观看一区二区| 欧美乱码精品一区二区三区| 久久久久久国产a免费观看| 色播亚洲综合网| 欧美极品一区二区三区四区| 99国产精品一区二区三区| 久久中文字幕一级| 国产精品乱码一区二三区的特点| 亚洲 欧美 日韩 在线 免费| 色哟哟哟哟哟哟| 精品久久久久久,| 久久久久亚洲av毛片大全| 亚洲成人中文字幕在线播放| 丰满的人妻完整版| 深夜精品福利| 超碰成人久久| 国产黄片美女视频| 久久久久久九九精品二区国产 | 不卡一级毛片| 欧美又色又爽又黄视频| 久久精品aⅴ一区二区三区四区| 国产一区二区激情短视频| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| 人妻久久中文字幕网| 精品一区二区三区av网在线观看| 中文字幕高清在线视频| 极品教师在线免费播放| 亚洲精品美女久久久久99蜜臀| 女人高潮潮喷娇喘18禁视频| 亚洲精品粉嫩美女一区| 亚洲中文av在线| 免费看美女性在线毛片视频| 丰满人妻一区二区三区视频av | 久久久久久大精品| 精品国内亚洲2022精品成人| 日本三级黄在线观看| 中文字幕久久专区| 国产av麻豆久久久久久久| 搡老熟女国产l中国老女人| 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| √禁漫天堂资源中文www| 欧美zozozo另类| 国产精品 国内视频| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 成人国语在线视频| 男人的好看免费观看在线视频 | 久久草成人影院| 亚洲国产精品久久男人天堂| 国产精品自产拍在线观看55亚洲| 两个人免费观看高清视频| 国产男靠女视频免费网站| 欧美精品啪啪一区二区三区| 不卡av一区二区三区| 久久久精品大字幕| 在线播放国产精品三级| 人妻丰满熟妇av一区二区三区| 中文字幕高清在线视频| 高清在线国产一区| 黄色丝袜av网址大全| 成人18禁在线播放| 成人欧美大片| 最近最新中文字幕大全电影3| 人妻久久中文字幕网| 精品久久久久久成人av| 欧美国产日韩亚洲一区| 99国产精品99久久久久| 国产久久久一区二区三区| 一本精品99久久精品77| 真人一进一出gif抽搐免费| 少妇裸体淫交视频免费看高清 | 日韩精品免费视频一区二区三区| 神马国产精品三级电影在线观看 | 日韩欧美一区二区三区在线观看| 18禁国产床啪视频网站| 亚洲av成人av| 搡老妇女老女人老熟妇| 国产精品久久视频播放| 天天添夜夜摸| 极品教师在线免费播放| 国模一区二区三区四区视频 | 久9热在线精品视频| 亚洲一区中文字幕在线| 欧美日韩精品网址| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 亚洲国产精品sss在线观看| 亚洲男人天堂网一区| 国产精品精品国产色婷婷| 亚洲,欧美精品.| 亚洲av美国av| 琪琪午夜伦伦电影理论片6080| 国产高清有码在线观看视频 | 成年免费大片在线观看| 日韩有码中文字幕| 嫁个100分男人电影在线观看| 日韩av在线大香蕉| 欧美日韩中文字幕国产精品一区二区三区| a级毛片a级免费在线| 国产黄a三级三级三级人| 99国产综合亚洲精品| 一边摸一边抽搐一进一小说| 麻豆av在线久日| 又大又爽又粗| 黄色片一级片一级黄色片| 久久久久久亚洲精品国产蜜桃av| 久久草成人影院| 91大片在线观看| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av香蕉五月| 欧美精品啪啪一区二区三区| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 制服丝袜大香蕉在线| 国产精品久久电影中文字幕| 久久久久免费精品人妻一区二区| 国产亚洲精品久久久久久毛片| 久久中文看片网| 免费搜索国产男女视频| 欧美3d第一页| 91九色精品人成在线观看| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| 中国美女看黄片| 亚洲男人的天堂狠狠| 99国产精品99久久久久| 动漫黄色视频在线观看| 成人三级黄色视频| 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 国产精品野战在线观看| 精品一区二区三区视频在线观看免费| 国产私拍福利视频在线观看| 成人午夜高清在线视频| 亚洲免费av在线视频| 真人做人爱边吃奶动态| 999精品在线视频| 国产精品免费一区二区三区在线| 欧美在线一区亚洲| 久久这里只有精品19| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 午夜精品久久久久久毛片777| 首页视频小说图片口味搜索| 欧美久久黑人一区二区| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 国产午夜福利久久久久久| 18禁国产床啪视频网站| 18美女黄网站色大片免费观看| 蜜桃久久精品国产亚洲av| 国产在线精品亚洲第一网站| 欧美成人午夜精品| 成人三级黄色视频| 国产伦人伦偷精品视频| 在线看三级毛片| 国产亚洲欧美98| 成熟少妇高潮喷水视频| 一级毛片高清免费大全| 亚洲va日本ⅴa欧美va伊人久久| 好男人电影高清在线观看| 天堂√8在线中文| 最近在线观看免费完整版| 夜夜躁狠狠躁天天躁| 欧美日本视频| 熟女电影av网| 999久久久国产精品视频| 少妇被粗大的猛进出69影院| 叶爱在线成人免费视频播放| 国产真实乱freesex| 亚洲第一电影网av| 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 后天国语完整版免费观看| 日韩国内少妇激情av| 黄片小视频在线播放| 最新在线观看一区二区三区| 在线a可以看的网站| 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| 午夜福利高清视频| 久久精品成人免费网站| 精品高清国产在线一区| 日韩精品免费视频一区二区三区| 一级作爱视频免费观看| 激情在线观看视频在线高清| 哪里可以看免费的av片| 久久久久国产一级毛片高清牌| 黄色成人免费大全| 一个人免费在线观看的高清视频| 欧美极品一区二区三区四区| 老熟妇仑乱视频hdxx| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 99热这里只有精品一区 | 在线观看66精品国产| 国产三级黄色录像| 人妻久久中文字幕网| 午夜视频精品福利| 色播亚洲综合网| 精品高清国产在线一区| 一进一出好大好爽视频| 久久久精品国产亚洲av高清涩受| 亚洲色图av天堂| 91成年电影在线观看| 国内久久婷婷六月综合欲色啪| 免费看a级黄色片| 禁无遮挡网站| 搞女人的毛片| 丝袜人妻中文字幕| 国产久久久一区二区三区| 97碰自拍视频| 成年人黄色毛片网站| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久久久99蜜臀| 国产激情久久老熟女| 久久精品影院6| 国产精品 欧美亚洲| 亚洲乱码一区二区免费版| 欧美人与性动交α欧美精品济南到| 亚洲一区中文字幕在线| 中文字幕熟女人妻在线| 久久久精品大字幕| 草草在线视频免费看| 国产视频内射| 久久久久久人人人人人| 一级片免费观看大全| 日本在线视频免费播放| 国产精品1区2区在线观看.| 九色成人免费人妻av| 狂野欧美激情性xxxx| 一区二区三区激情视频| 制服丝袜大香蕉在线| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 久久九九热精品免费| 搡老熟女国产l中国老女人| 美女黄网站色视频| av视频在线观看入口| 国产av麻豆久久久久久久| 少妇粗大呻吟视频| 国产一区二区激情短视频| 久99久视频精品免费| 国产激情欧美一区二区| 国产三级中文精品| 香蕉丝袜av| 久久草成人影院| 妹子高潮喷水视频| or卡值多少钱| 三级毛片av免费| 男女那种视频在线观看| 欧美三级亚洲精品| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 可以在线观看毛片的网站| 免费在线观看影片大全网站| 久久久久久久久久黄片| 亚洲精华国产精华精| 欧美中文综合在线视频| 国语自产精品视频在线第100页| 精品久久久久久,| 日韩欧美免费精品| 国产成人一区二区三区免费视频网站| 日韩大尺度精品在线看网址| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 日本 av在线| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 国产亚洲av高清不卡| 久久久水蜜桃国产精品网| 欧美色欧美亚洲另类二区| 亚洲一区二区三区不卡视频| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜| 久久中文字幕人妻熟女| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 男女床上黄色一级片免费看| 黄色视频不卡| 夜夜夜夜夜久久久久| 无限看片的www在线观看| 一a级毛片在线观看| 欧美黑人巨大hd| 九色国产91popny在线| 身体一侧抽搐| 欧美一区二区国产精品久久精品 | 在线播放国产精品三级| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 制服诱惑二区| 午夜成年电影在线免费观看| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 国产av又大| 成人精品一区二区免费| 免费看a级黄色片| 国产精品久久久久久人妻精品电影| 亚洲第一电影网av| 三级国产精品欧美在线观看 | 黑人操中国人逼视频| 亚洲一区二区三区色噜噜| 午夜福利18| 中文字幕人成人乱码亚洲影| 国产精品自产拍在线观看55亚洲| 亚洲国产精品成人综合色| 国产成人影院久久av| 在线观看日韩欧美| 午夜精品在线福利| 亚洲精品国产一区二区精华液| 亚洲专区字幕在线| 在线视频色国产色| 久久中文字幕人妻熟女| 精品一区二区三区四区五区乱码| 久久久精品大字幕| 黄色 视频免费看| 变态另类丝袜制服| 国产97色在线日韩免费| 亚洲aⅴ乱码一区二区在线播放 | 亚洲va日本ⅴa欧美va伊人久久| 久久伊人香网站| 搞女人的毛片| 90打野战视频偷拍视频| 最近最新中文字幕大全电影3| 精品久久久久久,| 一级作爱视频免费观看| 久久精品影院6| 两个人视频免费观看高清| 国产99久久九九免费精品| 少妇被粗大的猛进出69影院| 亚洲成a人片在线一区二区| 欧美三级亚洲精品| 岛国在线免费视频观看| 日日夜夜操网爽| 99久久精品热视频| 国产97色在线日韩免费| 亚洲电影在线观看av| 51午夜福利影视在线观看| 日日爽夜夜爽网站| 日韩欧美一区二区三区在线观看| 一进一出抽搐动态| 夜夜看夜夜爽夜夜摸| 18禁美女被吸乳视频| 国产亚洲精品综合一区在线观看 | 国产精品亚洲av一区麻豆| 国产99白浆流出| 久久亚洲真实| 亚洲av片天天在线观看| 国产私拍福利视频在线观看| 久久久久国产一级毛片高清牌| 欧美黄色淫秽网站| 人妻夜夜爽99麻豆av| 午夜免费激情av| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 亚洲 国产 在线| 18禁裸乳无遮挡免费网站照片| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一级毛片七仙女欲春2| 日本 欧美在线| 中文字幕av在线有码专区| 五月玫瑰六月丁香| 国产片内射在线| 99re在线观看精品视频| xxxwww97欧美| 亚洲全国av大片| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| 亚洲九九香蕉| 99久久99久久久精品蜜桃| 国产一区二区在线av高清观看| 国产成人av激情在线播放| 国产精品av视频在线免费观看| 桃色一区二区三区在线观看| 男人舔女人的私密视频| 麻豆国产av国片精品| 午夜激情av网站| 精品国产乱码久久久久久男人| 成人精品一区二区免费| 国产av不卡久久| 日本一本二区三区精品| 国产私拍福利视频在线观看| 99久久综合精品五月天人人| 午夜影院日韩av| 成年免费大片在线观看| 神马国产精品三级电影在线观看 | 老司机在亚洲福利影院| 日本a在线网址| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看 | 国产精品日韩av在线免费观看| 黄色丝袜av网址大全| 日韩精品免费视频一区二区三区| 欧美中文日本在线观看视频| 日本五十路高清| 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 成年免费大片在线观看| 丁香欧美五月| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 大型黄色视频在线免费观看| 最近在线观看免费完整版| 国产视频一区二区在线看| 欧美zozozo另类| 国产亚洲精品一区二区www| 香蕉丝袜av| 亚洲最大成人中文| 一个人免费在线观看电影 | 午夜影院日韩av| 女警被强在线播放| 国产精品久久久久久久电影 | 麻豆成人av在线观看| 中国美女看黄片| 国语自产精品视频在线第100页| а√天堂www在线а√下载| netflix在线观看网站| 国产精品av久久久久免费| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美 |