• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE NONTRIVIAL SOLUTIONS FOR A NONLINEAR ANISOTROPIC NONLOCAL EQUATION?

    2018-09-08 07:50:14AminESFAHANI

    Amin ESFAHANI

    School of Mathematics and Computer Science,Damghan University,36715-364 Damghan,Iran

    E-mail:esfahani@du.ac.ir;amin@impa.br

    Abstract In this article,we establish the existence of a sign-changing solution and two signconstant solutions for nonlinear nonlocal problem involving the BO-ZK operator on bounded domain.Our main tool is constrained minimization on appropriate Nehari manifolds.

    Key words sign-constant and nodal solutions;BO-ZK operator;variational method

    1 Introduction

    The Benjamin-Ono-Zakharov-Kuznetsov(BO-ZK)equation

    was first proposed in[32]as a model to describe the electromigration in thin nanoconductors on a dielectric substrate,here H stands for the Hilbert transform in the x-variable.In[4,5,36],equation(1.1)was generalized to

    where L=(??x)α? ?ywith α ∈ (0,1).The operator(??x)αstands for the fractional Laplacian in x-variable,which is defined,up to a constant Cn,α,by

    When α =1,(??x)αis the usual Laplacian ??x.In the case n=1 and α =1/2,we note that(??x)α=H ?x.We will call L the BO-ZK operator.Some local and global well-posedness results for(1.2)in R2were obtained in[36].The BO-ZK operator L in(1.3)is also observed in the study of parabolic equations for which local diffusions occur only in certain directions and nonlocal diffusions[4,5,14].More precisely it models diffusion sensible to the direction in the Brownian and Levy-It?o processes.See[3,22]for some results on regularity and rigidity properties of the BO-ZK operator L,and also H?lder and Lipschitz estimates for viscosity solutions of the elliptic and parabolic nonlinear integro-differential equations associated to L.

    The present paper deals with the following Dirichlet-type boundary value problem

    where ? ? RN=Rn×Rm,m,n ∈ N,is a bounded domain with Lipschitz boundary,?c=RN?and f∈C1( ?×R,R).

    In[20],the authors used the concentration-compactness principle(see[33])and some commutator-type estimates and obtained the existence of ground states of(1.1)in the fractional Sobolev-Liouville space X(see Definition 1.1).See also[19].

    Contrary to(1.3)which contains the anisotropic operator L,the nonlinear fractional Schr?dinger equation

    is well-known as a nonlocal model containing an isotropic operator.Equation(1.4)was first introduced by Laskin[30,31]through expanding the Feynman path integral from the Brownianlike to the Lévy-like quantum mechanical paths.Recently,the analysis of the standing wave solutions of(1.4)is of much interest,and attracts much attention in nonlinear analysis.

    At present,there were a few results appeared in the literature for the characterization of the ground states of(1.4).By applying the variational methods,with a detailed analysis of a mountain-pass-type geometry,the authors in[10–13,39–41]studied the existence,regularity and properties of standing waves of(1.4).In[21,25,26]the authors obtained deep results about uniqueness and non-degeneracy of ground states for(1.4)in case f(u)=up.See[17]as a nice reference for the study of the fractional Laplacian and the fractional Sobolev spaces.

    Definition 1.1(see[18]) Let m,n∈N and N=m+n.The fractional Sobolev-Liouville space X,is the set of all functions g∈L2(RN)such that

    Remark 1.2 Note from[27]that

    And X with the following inner product is a Hilbert space,

    We recall the main embedding results for the fractional Sobolev-Liouville space X.

    Theorem 1.3(see[18,Remark 2.2]) The fractional Sobolev-Liouville space X is continuously embedded into Lp(RN)for p ∈ [2,q?];and is compactly embedded if p ∈ (2,q?).

    Remark 1.4 It is important noticing that one can define the space X in bounded domain? ? RNif ? satisfy a semirectangular condition(see[28]),that is ? = ?1× ?2? Rn×Rm;and Theorem 1.3 is still valid.More precisely the fractional Sobolev-Liouville space X?on the bounded domain ? is defined as the space of all g ∈ L2(?)such that

    To study problem(1.3),we define a closed subspace

    It is clear for g∈ X(?)that

    Because of the fractional Sobolev inequality and Theorem 1.3,X(?)is a Hilbert space(see[9]and[41,Lemmas 7–9])with inner product

    and this induces a norm kgk2X(?)=hg,giX(?).Observe from[17,Proposition 3.6](see also[18,27])that we have the following identity

    We assume that the nonlinearity f in(1.3)satisfies the following growth conditions.

    (f1)uniformly for a.e.(x,y)∈ ?.

    (f2)There exist R>0 andμ>2 such that 0<μF(x,y,t)≤tf(x,y,t)for all(x,y)∈?and|t|≥R,where F(x,y,t)=Rf(x,y,s)ds.

    (f3)uniformly for a.e.(x,y)∈ ?,where

    (f4)The function f(x,y,t)/t is increasing in|t|>0,for every(x,y)∈?.

    For u∈ X(?),set

    Then J ∈ C1(X(?))and for any ? ∈ X(?),

    Moreover,all the critical points of J are(up to a normalization constant depending on α and N,which we will neglect henceforth)weak solutions of(1.3),namely,they satisfy,for all ? ∈ X(?),

    Theorem 1.5 Let f satisfy(f1)–(f4).Then,problem(1.8)admits a nonnegative solution and a nonpositive solution which are not identically zero.

    Definition 1.6 A solution u of equation(1.3)is called a ground state,if u satisfies

    where N is the corresponding Nehari manifold of(1.3)given by

    Theorem 1.7 Under assumptions(f1)–(f4),there exists a ground state of(1.3).

    The proofs of Theorems 1.5 and 1.7 are variational and based on the mountain pass theorem[1,42].

    Our next aim is to study the existence of the sign changing(nodal)solutions of(1.3).

    Definition 1.8 We call u a least-energy sign-changing solution to(1.3)if u is a solution of(1.3)with u±6≡ 0 and

    where u+(x)=max{u(x),0}and u?(x)=min{u(x),0}.

    There are various methods in the literature to obtain sign-changing solutions for equations involving the elliptic-type operators.The classical operator is the local Laplacian and the semilinear elliptic equation

    The frontier results were reported in[8]and[29].In[8],Berestycki and Lions used the minimax method and proved,under some Ambrosetti-Rabinowitz-type conditions[1],the existence of a radial sign-changing solution of(1.11).Jones and Küpper in[29]proved the radial sign-changing solutions of(1.11)by the dynamical systems approach.

    Considering a(x)u+f(x,u)instead of f(x,u)in(1.11),Bartsch et al.in[6]used minimax arguments in the presence of invariant sets of a descending flow to prove the existence of a nodal solution for superlinear and subcritical nonlinearity f.They controlled the number of nodal domains by a nonlinear version of Courant’s nodal domain theorem.Furtado et al.in[24]obtained,under analogous assumptions on f,nodal solutions for(1.11)by seeking minimizers on the sign-changing Nehari-type manifold when a(x)may change sign and satisfy mild integral conditions.In bounded domains,Noussair and Wei in[35]established the existence of signchanging solutions via the Ekeland variational principle and the implicit function theorem.Bartsch and Weth in[7]combined the variational method to the Brouwer degree theory and show the existence of the nodal solutions without any geometrical or topological assumption on the domain except of boundedness.

    To prove the existence of least energy sign-changing solutions,motivated by[7],we define the following constrained manifold

    where

    All methods mentioned above heavily rely on the following two decompositions

    But equation(1.3)contains a nonlocal term and does not satisfy(1.13).So the above mentioned methods seem not to be applicable for(1.3).To overcome this difficulty,by borrowing some ideas from[43,44],we use a constrained minimization on the sign-changing Nehari manifold combined with the Brouwer degree theory(see[2,7])and proved that(1.3)has a sign-changing solution.We should remark that the method presented in[43]strongly depends on the fact that the nonlinearity is homogeneous,so it is difficult to apply it to deal with problems with more general nonlinearities.It requires a more delicate analysis.By using a different approach from[43],we establish for each u∈X with u±6=0 that there are positive constants t and s such that tu++su?∈M.Then it can be showed that there is a least-energy sign-changing solution of(1.3).Indeed we show by a quantitative deformation lemma and using the Brouwer degree theory that this solution is indeed a critical point of J.

    Our main results are as follows.

    Theorem 1.9 Assume that conditions(f1)–(f4)hold,then problem(1.3)has at least one least-energy sign-changing solution u∈ X(?).

    Remark 1.10 However,in this framework,because of the nonlocal term(??x)αwe can not prove the exactly nodal domains corresponding to the sign-changing solution obtained in Theorem 1.9.

    We also apply the ideas of Ros-Oton and Serra[38](see also[37])by proving a suitable variational inequality and give a nonexistence result of solution u ∈ W(1),r(?)of problem(1.3).The space W(1),r(?)is the generalized fractional Sobolev-Liouville space(see[18]).

    Theorem 1.11 Let ? ? Rn×Rmbe a bounded star-shaped domain with respect to the origin satisfying the semirectangular condition,andW(1),r(?)for some r∈ (1,∞)m+n,is a critical point of J,then u ≡ 0 provided that f is supercritical,in the sense that

    for all(x,y,t)∈?×R with t 6=0.

    The concentration phenomena for(1.3)will be studied in forthcoming paper.Some concentration results associated to(1.4)can be studied in[15,16].

    The paper is organized as follows.In Section 2,we show some estimates to check the validity of mountain-pass geometry.The Section 3 is devoted to prove the existence of sign-changing solutions of 1.3.The proof of Theorem 1.11 is given in Section 3.

    2 Sign-Constant Solutions

    In this section,we study the existence of sign-constant solutions of(1.3)through Theorem 1.5.The proof is based on mountain pass theorem by applying the following lemmas.

    Lemma 2.1 Suppose that f satisfies(f1)–(f4).Then there exist ρ >0, β >0 and e∈ X(?)such that J(u)≥ β >0>J(e),for any u ∈ X(?)with kukX(?)= ρ

    Proof Let u be in X(?).It follows from(f1)and(f3)that for any ?>0 there exists C?>0 such that

    for all t∈R and a.e.(x,y)∈?.Thus we have from Remark 1.4 that

    where C>0 is the constant of the embedding X(?)into Lq?(?).Then by choosing ρ and ? sufficiently small such that β >0 we get J(u)≥ β.

    On the other hand,it follows from(f1)–(f4)and[40,Lemma 4]that

    for all t∈R and a.e.(x,y)∈?,where m(x,y)and M(x,y)are two positive measurable functions in L∞(?).Hence it follows for any t>0 and u ∈ X(?)with kukX(?)=1,that

    as t→+∞.Hence the proof is complete by choosing e=tu and t>0 sufficiently large. ?

    Lemma 2.2 Let f satisfy(f1)–(f4).Suppose that c ∈ R and the sequence{uj}is in X(?)such that

    Then{uj}is bounded in X(?).

    Proof For any j∈N,it easily follows from(f2)and(2.1)that

    where C1=C1(K,μ,|?|,q).On the other hand,it is deduced from(2.3)that{J(uj)}is a bounded sequence and

    which implies that

    This inequality together with(2.4)shows that

    Therefore{uj}is a bounded sequence in X(?). ?

    Lemma 2.3 Let f satisfy conditions(f1)–(f4).Suppose that{uj}is a bounded sequence in X(?)such that(2.3)holds.Then there exists u ∈ X(?)such that,up to a subsequence,

    Proof Since X(?)is a Hilbert space and{uj}is bounded in X(?),then it follows from Theorem 1.3 and Remark 1.4 that there is a subsequence,still denoted by{uj},and u∈ X(?)such that uj? u in X(?),uj→ u strongly in Lq(?)and uj(x,y)→ u(x,y)a.e.in RN,as j→∞.Hence by(2.1)and the dominated convergence theorem we get

    and

    as j→∞.Thusly,we have from(2.3)that

    Therefore we deduce that

    and

    So that we have that

    We are now ready to give the proof of Theorem 1.5.

    Proof of Theorem 1.5 Since the functional J has the mountain pass geometry and satisfies the Palais-Smale condition,the existence of a nontrivial critical point u ∈ X(?)of J is obtained by the mountain-pass theorem[1,42].Moreover J(u)>0=J(0).In order to show the existence of a nonnegative solution of(1.8),we consider f±(x,y,t)=f(x,y,t)χ{±t≥0}(t).The conditions(f1),(f3)and(f4)are valid for f±,while(f2)is verified by f+and F+a.e.in ?and for any t>R,and by f?and F?a.e.in ? and for any t< ?R.Corresponding to f±if we consider J±,we see that

    Moreover J±satisfy Lemmas 2.1–2.3.Note from[23,equation(2.10)]that e in Lemma 2.1 can be nonnegative by taking its positive part.Hence there exists a nontrivial critical point u±∈ X(?)of J±.We show that u+is nonnegative in RN.Let ? be the negative part of u+.Then ? ∈ X(?)and

    Therefore k?kX(?)=0,so that u+≥ 0 a.e.in RN.We can analogously show that u?≤ 0 a.e.in ?. ?

    Proof of Theorem 1.7 By Theorem 1.5 we obtained a nontrivial positive critical point u of J.We claim that

    Assume by contradiction that there is a sequence{un} ? X(?){0}with kujkX(?)→ 0 such that J′(uj)=0,which implies that=R?ujf(x,y,uj)dxdy.By Theorem 1.3 and Remark 1.4,we note for any ?>0 that

    Then we can obtain a contradiction and thus the claim is right.Now we shall show that J is bounded from below on N.Indeed,if not,there exists a sequence{uj}?N such that J(uj)< ?j,?j∈ N.Similar to the proof of Lemma 2.1,we can get for any ?>0 that

    where C2=C2(?,|?|),which implies that kujkX(?)→ ∞,as j → ∞.As in the proof of Lemma 2.2,we can obtain that{uj}is bounded in X(?),which is a contradiction.Thus J is bounded from below on N.Define

    Clearly,cmin≤J(u).Let{uj}?N be a minimizing sequence for cmin,i.e.,J(uj)→cminandwith Lemmas 2.2 and 2.3,{uj}is bounded in X(?)and it has a convergence subsequence,still denoted by{uj},such that un→ u0in X(?).Thus,u0∈ X(?)is a nontrivial critical point of J with J(u0)=cmin>0 and hence u0is a ground state positive weak solution of(1.3). ?

    3 Sign-Changing(Nodal)Solutions

    In this section we show the existence of a least energy nodal solution of(1.3).

    We start with some technical lemmas.

    Lemma 3.1 There exists C>0 and ρ >0 such that kukX(?)≥ ρ and

    for all u ∈ N.Moreover ku±kX(?)≥ ρ for all u ∈ M.

    Proof For any u∈N,we have from(f2)and(2.1)that

    On the other hand,since u ∈ N,then it follows from(2.1),by choosing suitable ?>0,and Theorem 1.3 that

    and consequently we get kukX(?)≥ ρ >0.

    Similar to above,the last claim is directly deduced from the fact hJ′(u±),u±i<0. ?

    Lemma 3.2 Let u ∈ X(?)with u±6≡ 0.Then there are s>0 and t>0 such that hJ′(tu++su?),u±i=0.

    Proof For any s,t∈ R+and u ∈ X(?),it follows from(2.1)and Remark 1.4 that

    and similarly

    Hence there is σ1>0 such that

    for all s,t∈R+.From(f2),we have

    for all|t|>R and a.e.(x,y)∈ ?.Hence it follows from the continuity of tf(x,y,t)on ?×[?R,R]that

    for all(x,y)∈ ? and t∈R(see(2.2)).This implies that

    Hence,there is σ2>0 such that

    for all t,s ∈ [σ1,σ2].The proof of the lemma is now complete from(3.2)and(3.5)by applying Miranda’s theorem[34]. ?

    Lemma 3.3 Suppose u ∈ X(?)satisfies u±6≡ 0 and hJ′(u),u±i ≤ 0.Then there are t,s∈[0,1]such that tu++su?∈M.

    To prove Lemma 3.3,consider,for u ∈ X(?)with u±6=0,the functions A:[0,+∞)×[0,+∞)→R and A:[0,+∞)×[0,+∞)→R2defined by Lemma 3.4 Let u be in M.Then A(t,s)

    Proof Since u∈M,then(1,1)is a critical point of A.By the continuity of A and the factwe get that A attains a global maximum in some point(κ,ν)∈ [0,+∞)× [0,+∞).If ν=0,then κ 6=0 and

    and consequently it follows from hJ′(u+),u+i<0 that

    Combining(3.7)and(3.8),we have

    Note from(f1)and(f4)that κ≤1 and the nonnegative function2F(x,y,t)is increasing in|t|with t>0 for any|t|>0.Hence

    which contradicts(κ,ν)being the global maximum point of A.Thus κ 6=0 and similarly ν 6=0.Through direct calculations,we see from hJ′(u),u±i=0,A′(κ,ν)=0 and(f2)that κ,ν ≤ 1.Now suppose by contradiction that(κ,ν)6=(1,1).Then,similarly to(3.9),we have

    Therefore A(t,s)

    The proof of(3.6)is straightforward.Indeed,we have for u∈M that

    Proof of Lemma 3.3 The proof is an immediate consequence of the arguments used in the proof of Lemma 3.3 using(f2)and(f4). ?

    Lemma 3.5 If csis the infimum of J on M and is achieved by w∈M,then w is a critical point of J.

    Proof The proof follows the same lines as in[2,Theorem 1.3].Suppose by contradiction that there is ?>0 and v ∈ X(?)such that kvk=X(?)=1 andcontinuity of J, fix r>0 such thatfor all ? ∈ Br(w)? X(?).Let I=(a,b)×(a,b)?R2with 0

    (i)(1,1)∈I and A(t,s)=0 in I i ff(t,s)=(1,1);

    (ii)cs6∈A(?I)and{tw++sw?;(r,s)∈}?Br(w).

    Let r1>0 be such thatand B∩{tw++sw?;(r,s)∈ ?I}= ?.For each g ∈ X(?)we denote by Θ(τ)= Θ(τ,g)the unique solution of the system

    where d(g,Bc)=dist(g,Bc).Since hJ′(Θ(τ)),Θ′(τ)i<0,for all Θ(τ) ∈ B,the map τ 7→J(Θ(τ,g))is decreasing for any g ∈ B;moreover Θ(τ,g) ∈ B for all τ>0.Furthermore it follows from the definition of J and Θ that there exists τ0>0 such that J(Θ(τ,w)) ≤J(w)?,for all τ∈[0,τ0].Now define the maps γ:→X(?)and Λ:I→R2by

    It is clear that max(t,s)∈ IJ(γ(t,s))

    This means that Λ has a zero ζ∈ I.Hence hJ′(γ(ζ)),γ(ζ)±i=0;which is a contradiction.?

    All the elements are now in place to mount a proof of Theorem 1.9.

    Proof of Theorem 1.9 Let{uj}be a minimizing sequence of J on M.Then it deduced from Lemma 3.1 that{uj}is bounded in X(?),and consequently

    for any p ∈ (2,q?).Moreover,it can be supposed,without loss of generality,that there is u∈ X(?)verifying

    On the other hand,it is straightforward to see from(f1)and(f3)that

    from where it follows together with(3.11)that u±6=0.Lemma 3.2 implies that there are t,s>0 such that

    We have from(3.13)that

    Assume without loss of generality that s≥t.We deduce from(3.14)and(3.15)that

    which implies that s≤ 1.We show that J(tu++su?)=cs.We see from(3.14)that tu++su?∈M.Thus by the properties ofF,defined in the proof of Lemma 3.3,we obtain that

    Consequently,w=tu++su?∈M and J(w)=cs.Then Lemma 3.5 shows that w is a critical point of J with w±6=0. ?

    Finally we give the proof of Theorem 1.11.

    Proof of Theorem 1.11 Define,for any λ ≥ 1,the function uλ(x,y)=u(λx,λαy).Since ? is star-shaped,uλ∈ X(?),and then we have from(1.8)that

    Now we differentiate both sides of(3.16)with respect to λ at λ =1+.

    First we obtain from u ∈ X(?)∩ L∞(?)∩ W(1),r(?)and Lemma 4.2 of[38](with slight modifications)that

    On the other hand,since ? is star-shaped,

    The second term in the right hand side of(3.20)is nonpositive from(3.19),hence it follows from(3.19)and(3.20)that

    which is a contradiction to(1.14)unless u≡0.

    精品午夜福利在线看| 亚洲国产av新网站| 制服人妻中文乱码| 久久人人爽人人片av| 国产免费又黄又爽又色| 亚洲av电影在线进入| 日韩一本色道免费dvd| 精品国产一区二区久久| 观看美女的网站| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av天美| 高清视频免费观看一区二区| av播播在线观看一区| 国产男女内射视频| 亚洲国产色片| 国产淫语在线视频| 色94色欧美一区二区| 亚洲天堂av无毛| 欧美精品av麻豆av| 51国产日韩欧美| 亚洲第一av免费看| 97精品久久久久久久久久精品| 久久久久久久亚洲中文字幕| 在线看a的网站| 日日撸夜夜添| 国产亚洲精品久久久com| 亚洲精品国产av蜜桃| 精品亚洲成国产av| 一级黄片播放器| 观看美女的网站| 99久久综合免费| 黄片播放在线免费| 亚洲综合色惰| 日韩制服骚丝袜av| 各种免费的搞黄视频| 777米奇影视久久| 久久午夜综合久久蜜桃| 亚洲精品久久午夜乱码| 精品少妇久久久久久888优播| 精品少妇久久久久久888优播| 高清不卡的av网站| 性色avwww在线观看| 欧美人与性动交α欧美软件 | 国产一区二区三区综合在线观看 | av卡一久久| 久久久久网色| 国产乱人偷精品视频| 欧美人与善性xxx| 亚洲,欧美,日韩| 国产精品99久久99久久久不卡 | 精品一品国产午夜福利视频| 宅男免费午夜| 成人亚洲欧美一区二区av| 制服丝袜香蕉在线| 亚洲色图 男人天堂 中文字幕 | 亚洲第一av免费看| 寂寞人妻少妇视频99o| 各种免费的搞黄视频| 99久久精品国产国产毛片| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 水蜜桃什么品种好| a级片在线免费高清观看视频| 男的添女的下面高潮视频| 大码成人一级视频| 国产黄色视频一区二区在线观看| 亚洲精品一区蜜桃| 夜夜骑夜夜射夜夜干| av线在线观看网站| 欧美xxⅹ黑人| 国产精品三级大全| 熟女人妻精品中文字幕| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 国产高清国产精品国产三级| 国产一级毛片在线| 国产成人精品在线电影| 极品人妻少妇av视频| av国产精品久久久久影院| 超碰97精品在线观看| 国产成人一区二区在线| 最新中文字幕久久久久| 亚洲欧美日韩卡通动漫| 亚洲av在线观看美女高潮| 90打野战视频偷拍视频| 日韩中文字幕视频在线看片| 51国产日韩欧美| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 精品久久蜜臀av无| 啦啦啦视频在线资源免费观看| 秋霞在线观看毛片| 观看美女的网站| 欧美性感艳星| 精品卡一卡二卡四卡免费| 亚洲成人手机| 国产免费视频播放在线视频| 国产精品熟女久久久久浪| 在线免费观看不下载黄p国产| 免费黄频网站在线观看国产| 国产高清三级在线| 日韩成人伦理影院| 香蕉丝袜av| 国产精品偷伦视频观看了| 免费播放大片免费观看视频在线观看| 一级a做视频免费观看| av卡一久久| 韩国av在线不卡| 久久精品国产亚洲av天美| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 老司机亚洲免费影院| 天天影视国产精品| 91国产中文字幕| 中文字幕av电影在线播放| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 黑人高潮一二区| 热99国产精品久久久久久7| h视频一区二区三区| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 精品一区二区三卡| 街头女战士在线观看网站| 综合色丁香网| av在线老鸭窝| 国产精品偷伦视频观看了| 久久青草综合色| 欧美日韩亚洲高清精品| 香蕉丝袜av| 日本猛色少妇xxxxx猛交久久| 熟女人妻精品中文字幕| 日韩,欧美,国产一区二区三区| 五月伊人婷婷丁香| 又黄又粗又硬又大视频| 国产精品不卡视频一区二区| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 伦理电影大哥的女人| 少妇人妻久久综合中文| 国产 精品1| 80岁老熟妇乱子伦牲交| 亚洲国产av新网站| 在线免费观看不下载黄p国产| 99国产精品免费福利视频| 日韩伦理黄色片| 日韩欧美精品免费久久| 免费看不卡的av| 亚洲精品,欧美精品| 久久青草综合色| av黄色大香蕉| freevideosex欧美| 久久韩国三级中文字幕| 成人午夜精彩视频在线观看| 国产欧美日韩综合在线一区二区| 久久久久网色| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频| a 毛片基地| 午夜福利,免费看| 久久这里只有精品19| 最近手机中文字幕大全| 色5月婷婷丁香| 国产国语露脸激情在线看| 国产在视频线精品| 亚洲,欧美精品.| 26uuu在线亚洲综合色| 最后的刺客免费高清国语| 青春草视频在线免费观看| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 成年动漫av网址| 国产黄频视频在线观看| 中文字幕精品免费在线观看视频 | 99热网站在线观看| 亚洲精品第二区| 国产探花极品一区二区| 国产成人91sexporn| 五月天丁香电影| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 美国免费a级毛片| 精品国产一区二区三区四区第35| 制服诱惑二区| 高清欧美精品videossex| 男人添女人高潮全过程视频| 国产精品成人在线| 看免费av毛片| 又黄又爽又刺激的免费视频.| 永久网站在线| 黄色怎么调成土黄色| 女的被弄到高潮叫床怎么办| 国产精品久久久久久久电影| 777米奇影视久久| 少妇人妻精品综合一区二区| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 一区二区三区精品91| 国产综合精华液| 久久久久久人人人人人| 久久人妻熟女aⅴ| 国产精品三级大全| 高清毛片免费看| 国产成人精品福利久久| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 90打野战视频偷拍视频| 午夜久久久在线观看| 人妻系列 视频| 日本黄色日本黄色录像| 日韩三级伦理在线观看| 国产69精品久久久久777片| 日本黄色日本黄色录像| 色哟哟·www| 久久久精品区二区三区| 国产精品.久久久| 色吧在线观看| 妹子高潮喷水视频| 永久网站在线| 久久久久人妻精品一区果冻| av在线app专区| av网站免费在线观看视频| 精品少妇久久久久久888优播| 国产高清三级在线| 日韩精品有码人妻一区| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| 卡戴珊不雅视频在线播放| 精品一区二区三卡| 草草在线视频免费看| 久久精品国产综合久久久 | 天天躁夜夜躁狠狠久久av| 美女中出高潮动态图| 蜜桃在线观看..| 亚洲国产精品一区二区三区在线| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 欧美+日韩+精品| 国产精品偷伦视频观看了| 免费av中文字幕在线| 又黄又粗又硬又大视频| 免费黄频网站在线观看国产| 全区人妻精品视频| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 精品99又大又爽又粗少妇毛片| 亚洲精品一二三| 男人操女人黄网站| 91精品伊人久久大香线蕉| av在线app专区| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 亚洲综合精品二区| 亚洲丝袜综合中文字幕| 中文字幕免费在线视频6| 大陆偷拍与自拍| 免费av中文字幕在线| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 欧美人与善性xxx| 欧美人与性动交α欧美精品济南到 | 国产成人精品福利久久| 精品国产一区二区久久| 久久久久精品性色| av视频免费观看在线观看| 日本午夜av视频| 高清欧美精品videossex| 大片免费播放器 马上看| 午夜精品国产一区二区电影| 精品熟女少妇av免费看| 日韩制服骚丝袜av| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 国产 一区精品| 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 性色avwww在线观看| 免费少妇av软件| 久久99蜜桃精品久久| 免费观看性生交大片5| 久久精品国产a三级三级三级| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av天美| 男女下面插进去视频免费观看 | 自线自在国产av| 欧美最新免费一区二区三区| 亚洲美女视频黄频| 卡戴珊不雅视频在线播放| 黄色 视频免费看| 欧美激情极品国产一区二区三区 | 久热久热在线精品观看| 久久国产精品男人的天堂亚洲 | 欧美精品亚洲一区二区| 久久av网站| 日韩一本色道免费dvd| av一本久久久久| 三级国产精品片| 不卡视频在线观看欧美| 亚洲熟女精品中文字幕| 人人澡人人妻人| 纯流量卡能插随身wifi吗| av有码第一页| 成人国产麻豆网| av国产久精品久网站免费入址| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看日韩| 成人无遮挡网站| 国产色婷婷99| 国产精品国产三级专区第一集| 有码 亚洲区| 亚洲精品成人av观看孕妇| 国产精品人妻久久久久久| 国产免费现黄频在线看| 日韩精品有码人妻一区| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 日本-黄色视频高清免费观看| 久久久国产一区二区| 亚洲精品第二区| 免费看光身美女| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 亚洲精品一二三| 亚洲欧美成人综合另类久久久| 免费观看性生交大片5| 熟妇人妻不卡中文字幕| 欧美激情极品国产一区二区三区 | 如何舔出高潮| 亚洲第一区二区三区不卡| 亚洲国产精品一区三区| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 国产精品免费大片| 久久久精品区二区三区| 免费av不卡在线播放| 国产激情久久老熟女| 亚洲欧美日韩卡通动漫| 亚洲国产欧美日韩在线播放| 九九在线视频观看精品| 久久精品久久久久久噜噜老黄| 一本久久精品| 亚洲美女搞黄在线观看| 插逼视频在线观看| www.色视频.com| 2021少妇久久久久久久久久久| 少妇被粗大的猛进出69影院 | 人人妻人人澡人人看| 婷婷色综合www| 国产精品国产av在线观看| 日韩三级伦理在线观看| 国产1区2区3区精品| 国产日韩欧美在线精品| 满18在线观看网站| 制服人妻中文乱码| 欧美3d第一页| 亚洲成色77777| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 蜜桃在线观看..| av福利片在线| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 视频中文字幕在线观看| 青春草视频在线免费观看| 桃花免费在线播放| 欧美3d第一页| 亚洲精品乱码久久久久久按摩| 久久热在线av| 久久狼人影院| 少妇人妻久久综合中文| 女人被躁到高潮嗷嗷叫费观| 丝袜人妻中文字幕| 9热在线视频观看99| 免费高清在线观看日韩| 免费观看性生交大片5| 蜜桃在线观看..| 一级片'在线观看视频| 国产 精品1| h视频一区二区三区| 交换朋友夫妻互换小说| 高清不卡的av网站| 国产午夜精品一二区理论片| 大片电影免费在线观看免费| 国产又爽黄色视频| 亚洲国产av新网站| 国产精品久久久久久精品电影小说| 90打野战视频偷拍视频| 亚洲,一卡二卡三卡| 色5月婷婷丁香| 啦啦啦在线观看免费高清www| 老熟女久久久| 中文字幕人妻熟女乱码| 韩国高清视频一区二区三区| 国产永久视频网站| www日本在线高清视频| 亚洲中文av在线| 制服人妻中文乱码| 精品一区二区三卡| 亚洲天堂av无毛| 一本久久精品| 国产成人91sexporn| 性色av一级| 国产在线视频一区二区| 亚洲国产av影院在线观看| 麻豆乱淫一区二区| 巨乳人妻的诱惑在线观看| 精品人妻偷拍中文字幕| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 午夜视频国产福利| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 亚洲成色77777| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 久久久久久久久久久久大奶| 国产成人精品婷婷| 国产精品99久久99久久久不卡 | 在线观看免费视频网站a站| 亚洲av成人精品一二三区| 午夜激情av网站| 久久久久久久久久久免费av| 观看美女的网站| 午夜免费观看性视频| 高清av免费在线| 如何舔出高潮| 少妇人妻久久综合中文| h视频一区二区三区| 有码 亚洲区| 久久av网站| 午夜福利视频精品| 亚洲成色77777| 亚洲av免费高清在线观看| 99国产综合亚洲精品| 亚洲国产精品成人久久小说| 母亲3免费完整高清在线观看 | 午夜老司机福利剧场| 女性生殖器流出的白浆| 老司机影院成人| 肉色欧美久久久久久久蜜桃| 少妇熟女欧美另类| 视频在线观看一区二区三区| 欧美成人精品欧美一级黄| 99香蕉大伊视频| 国产亚洲av片在线观看秒播厂| 亚洲一级一片aⅴ在线观看| 午夜福利乱码中文字幕| 男人操女人黄网站| 国产成人aa在线观看| 久久久a久久爽久久v久久| av电影中文网址| 另类亚洲欧美激情| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| xxxhd国产人妻xxx| 精品国产一区二区三区四区第35| 久久久久视频综合| 欧美精品国产亚洲| 欧美国产精品va在线观看不卡| 人妻一区二区av| 777米奇影视久久| 欧美性感艳星| 人妻一区二区av| 免费在线观看黄色视频的| 亚洲欧美一区二区三区国产| 日本黄色日本黄色录像| 色哟哟·www| 久久这里有精品视频免费| 熟女电影av网| 在线观看国产h片| 免费在线观看完整版高清| 国产男人的电影天堂91| 久久这里有精品视频免费| 亚洲美女黄色视频免费看| 国产一区二区在线观看av| 国产乱来视频区| 夜夜爽夜夜爽视频| 午夜日本视频在线| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| 精品国产国语对白av| 成人午夜精彩视频在线观看| 男人操女人黄网站| 久久精品久久久久久久性| 成人亚洲欧美一区二区av| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 精品一区二区免费观看| 人妻系列 视频| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 99香蕉大伊视频| 欧美日韩国产mv在线观看视频| 国产伦理片在线播放av一区| 黑人高潮一二区| 内地一区二区视频在线| 少妇高潮的动态图| 黄片播放在线免费| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 高清欧美精品videossex| 制服丝袜香蕉在线| 亚洲一级一片aⅴ在线观看| 妹子高潮喷水视频| av在线观看视频网站免费| 男女边吃奶边做爰视频| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 久久亚洲国产成人精品v| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 一级片免费观看大全| 好男人视频免费观看在线| av不卡在线播放| 国产色爽女视频免费观看| 国产一区二区在线观看av| 在线 av 中文字幕| 免费大片黄手机在线观看| 人人澡人人妻人| 男人添女人高潮全过程视频| 一级毛片 在线播放| 激情视频va一区二区三区| 在线看a的网站| av不卡在线播放| 亚洲,欧美,日韩| 各种免费的搞黄视频| 成年av动漫网址| 这个男人来自地球电影免费观看 | 国产成人精品在线电影| 国产一区亚洲一区在线观看| 97人妻天天添夜夜摸| 边亲边吃奶的免费视频| 最后的刺客免费高清国语| 亚洲成色77777| 人人妻人人添人人爽欧美一区卜| 国产一区有黄有色的免费视频| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 在线观看免费高清a一片| 午夜福利,免费看| 哪个播放器可以免费观看大片| 国产无遮挡羞羞视频在线观看| 国产乱人偷精品视频| 性高湖久久久久久久久免费观看| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 99精国产麻豆久久婷婷| 青春草亚洲视频在线观看| 免费看av在线观看网站| 在线天堂中文资源库| 国产精品免费大片| 中文字幕精品免费在线观看视频 | 日日撸夜夜添| 香蕉精品网在线| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 在线观看三级黄色| 18禁观看日本| 日韩不卡一区二区三区视频在线| 久久久久国产精品人妻一区二区| 午夜福利视频在线观看免费| 大陆偷拍与自拍| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 亚洲欧美成人综合另类久久久| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 免费黄网站久久成人精品| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 天堂中文最新版在线下载| 国产精品成人在线| 国产精品嫩草影院av在线观看| 亚洲av日韩在线播放| 又黄又粗又硬又大视频| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 岛国毛片在线播放| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 国产精品无大码| 欧美xxxx性猛交bbbb| 欧美精品一区二区免费开放| 国产乱来视频区| 日本色播在线视频| 国产精品一二三区在线看|