• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NOTE ON EXACT CONVERGENCE RATE IN THE LOCAL LIMIT THEOREM FOR A LATTICE BRANCHING RANDOM WALK?

    2018-09-08 07:50:08ZhiqiangGAO高志強

    Zhiqiang GAO(高志強)

    Laboratory of Mathematics and Complex Systems(Ministry of Education of China),School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China

    E-mail:gaozq@bnu.edu.cn

    Abstract Consider a branching random walk,where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z.Denote by Zn(z)the number of particles in the n-th generation in the model for each z∈Z.We derive the exact convergence rate in the local limit theorem for Zn(z)assuming a condition like“EN(logN)1+λ< ∞”for the offspring distribution and a finite moment condition on the motion law.This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.

    Key words lattice branching random walks;local limit theorem;exact convergence rate

    1 Introduction

    Consider a branching random walk on the integer lattice Z.At time 0,an ancestor particle? is located at the S?=0.At time 1,? reproduces N?new particles of generation 1,and each particle?i(1≤ i≤ N?)moves to S?i=S?+L?i.In general,at time n+1,each particle u=u1u2···unof generation n is replaced by Nunew particles of generation n+1,with displacements Lu1,Lu2,···,LuNu.This means,for 1 ≤ i≤ Nu,each particle ui moves to Sui=Su+Lui.Here all Nuand Lu,indexed by finite sequences of integers u,are independent and identically distributed with random variables N and L on some probability space(?,F,P),satisfying the following conditions(H).

    (H1)N is an integer-valued random variable such that

    (H2)L is an integer-valued random variable satisfying that the lattice span of the distribution of L is 1,which means that there is no pair h ∈ {2,3,···},a ∈ Z such that all possible values of L are contained in the arithmetic progression a+hZ.

    Denote by Zn(·)the counting measure of the number of particles in the n-th generation.The central limit theorems for suitably normalised Zn(·), firstly conjectured by Harris[16,Chapter III§16],were extensively investigated by many mathematicians(see,for instance,[3,7,13,17–21,24]and references therein).The reader may refer to[10–12,14]for more recent developments.See also[23]and[25]for other aspects of branching random walks.

    Révész[19]started the research on the convergence speed in the central limit theorem for Zn(·),he treated two kinds of branching random walks where the moving mechanism is governed by simple random walks or Wiener processes.Later on under the condition EN2<∞,Chen[9]improved Révész’s results on these two cases by giving the explicit convergence rates.Furthermore,under some mild conditions on N and L,Gao and Liu[12]extended Chen’s result for branching Wiener processes to the strongly non-lattice branching random walk on the real line(strongly non-lattice means that the characteristic function of L satisfies the Cramér conditionOn the other hand,when the step size L is a lattice random variable satisfying condition(H2),Grübel and Kabluchko[14]obtained the Egdeworth-type expansion for Zn(·)implying the convergence rate in a local limit theorem.However,they imposed some rather strong moment conditions on both offspring distribution and moving law(roughly speaking,like EN1+?< ∞ and Ee?|L|for some ?>0).Naturally,one would like to find weaker moment conditions on N and L in the lattice case,which entail the exact convergence rate in the local limit theorem for Zn(·).This is the main object of the present article.

    To be precise,let us first recall the local limit theorem for Zn(·).Throughout the article,we write Zn(z)=Zn({z}),which is the number of the n-th generation individuals located at z∈Z.According to Theorem 7 in[7]and the paragraph following it,the following result holds.

    Theorem A(see[7])Assume conditions(H),EN logN< ∞ and σ2:=VarL< ∞.Then

    uniformly in z∈Z,where l=EL and W is the limit of the usual branching process martingale{Wn}defined by Wn=Zn(Z)/mn.

    We are interested in the rate of convergence in(1.2).To state our main results,we shall need some notation.

    By convention,let T be the genealogical tree with{Nu}as defining elements.Let

    be the set of particles of generation n,where|u|denotes the length of the sequence u,thereby representing the number of generation to which u belongs.

    The condition P(N≥1)=1 in(H1)is only for technical simplicity and can be removed,but then our results hold conditionally on the survival event.With condition(H1),we have P(Zn(Z)→∞)=1.By the famous Kesten-Stigum theorem[2,4],EW=1 and P(W>0)=1.Put α3:=E(L ? l)3,α4:=E(L ? l)4.Then our main result can be stated as follows.

    Theorem 1.1 Assume conditions(H)and EN(logN)1+λ< ∞ for some λ >9,together with E|L|η< ∞ for some η >6.Then

    (I)for each z∈Z,

    where,respectively,the real-valued random variables V1and V2are the almost sure(a.s.)limits of the sequences{N1,n}and{N2,n}defined by

    Remark 1.2 When L is a random variable with P(L=1)=P(L=?1)=1/2 or with the standard normal distribution,the quantities{N1,n}and{N2,n}were firstly introduced by Chen[9],where their convergence was proved under the second moment condition EN2<∞.In the general case,the convergence to V1and V2of the sequences{N1,n}and{N2,n}was proved in[12,Propositions 2.1 and 2.2]under some mild moment conditions on N and L.We recall the results in Section 2.1.

    Remark 1.3 Our results are not covered by[14],as the moment conditions assumed here are weaker.As will be seen in the proof,the two numbers 9 and 6 in the conditions are due to technical reasons.It will be interesting to find out the best values of λ and η,which seems difficult.

    Remark 1.4 As an example,we consider a special case in which L is a random variable with the law

    In this case,(1.3)and(1.4)are consistent with a specialization of the results in[10]for the case d=1,but there the stronger condition EN(logN)1+λ< ∞ for some λ >16 was assumed.

    2 Proofs of Main Results

    2.1 Two Martingales and Their Limits

    In this subsection,we recall some facts on the sequence{N1,n}(resp.{N2,n}),and its a.s.limit V1(resp.V2).The following results were proved in[12,Propositions 2.1 and 2.2].

    Lemma 2.1(see[12]) The sequences{N1,n}and{N2,n}are martingales with respect to the natural filtration

    Then

    a)EN(logN)1+λfor some λ >1 and E|L|ηfor some η >2,entail thatexists a.s.in R;

    b)EN(logN)1+λfor some λ >1 and E|L|ηfor some η >4,entail thatexists a.s.in R.

    2.2 Asymptotic Expansion for Sums of i.i.d.Lattice Random Variables

    Denote by Hm(·)the Chebyshev-Hermite polynomial of degree m(m ∈ N={0,1,2,3,···}):

    where ?x?denotes the largest integer not bigger than x.More precisely,we shall need the following polynomials

    Lemma 2.2 Assume that E|L|4<∞and the span of the distribution of L is equal to 1.Then

    2.3 A Decomposition

    As usual,we write N?={1,2,3,···}and denote bythe set of all finite sequences,where(N?)0={?}contains the null sequence?.

    For all u∈U,let T(u)be the shifted tree of T at u with defining elements{Nuv}satisfying 1)?∈T(u),2)vi∈T(u)?v∈T(u)and 3)if v∈T(u),then vi∈T(u)if and only if 1≤i≤Nuv.Set Tn(u)={v∈T(u):|v|=n}and denote by|Tn(u)|the cardinality of Tn(u)(i.e.,the number of descendants of u in the n-th generation).

    For u∈(N?)k(k≥0)and n≥1,define Zn(u,z)by

    which counts the number of descendants of u in the n-th generation located at z+Su∈Z.

    Observe for k≤n,

    and for u∈Tk,

    By the conditions on γ,λ and η,we can choose a real number β satisfying

    Set kn= ?nβ?,the largest integer not bigger than nβ.On the basis of(2.3),we obtain the following key decomposition

    with

    2.4 Proof of Theorem 1.1

    By using(2.5),we may divide the proof of Theorem 1.1 into the following lemmas.

    Lemma 2.3 Under the conditions of Theorem 1.1,for each z∈Z,

    Lemma 2.4 Under the conditions of Theorem 1.1,for each z∈Z,

    Lemma 2.5 Under the conditions of Theorem 1.1,for z(n)defined in(II),

    Lemma 2.6 Under the conditions of Theorem 1.1,for z(n)defined in(II),

    Here we only give the proofs of Lemmas 2.3 and 2.4.Lemmas 2.5 and 2.6 can be handled in the same way after a slight modification,and the proofs are omitted.

    Proof of Lemma 2.3 We start by introducing some notation.For u∈Tkn,set

    It is easy to see the following fact We remind that{Wn?kn(u):u ∈ Tkn}are mutually independent and identically distributed as

    Wn?kn.

    The lemma will be proved if we can show the following

    For this purpose,we shall need the following result.

    Lemma 2.7(see[8])Let W?=supnWn.Assume(1.1)and EN(logN)1+λ<∞.Then

    To prove(2.11),it suffices to show that

    Observe that

    Then(2.15)follows from the choice of kn,the fact λβ >1 and(2.14).

    Now we turn to the proof of(2.12).To this end,we will need the following inequality(by(5.3)in[6]).For 1<α<2,

    Note that in the above formula and throughout the article,K denotes all constants,and thus its value may vary even in a single inequality.Thus by taking expected value of the above,we deduce that

    which is finite,since(3α+2)/(2β)?1< λ provided that α is sufficiently near one and E(W?+1)Hence(2.12)follows by the Borel-Cantelli lemma.

    It remains to prove(2.13).Since EDknXn,u=0,we see a.s.

    which yields

    This implies the a.s.convergence of the seriesand accordingly(2.13)follows.Lemma 2.3 is proved.

    Proof of Lemma 2.4 To estimate the quantity Bn(z),we write

    with

    where q1(x)and q2(x)are defined by(2.2),and ?n,uare infinitesimals satisfying0.

    By using Taylor’s expansion and through tedious calculation,we have that as n tends to infinity,

    where ?i(n,y)(i=1,2,3)are infinitesimals satisfying

    Taking(2.17)–(2.20)into account,we deduce that

    Next,we intend to prove

    Observe that

    By[1,Theorem 2],we see that under the condition EN(logN)1+λ<∞,

    We only need to prove that

    which is equivalent to the following

    Observe that

    Due to Theorem 3 in[5],the finiteness of the last series in the above is equivalent toE|L|1/β+2< ∞,which is valid since 1/β +2< η and E|L|η< ∞.Thus,(2.26)is proved,as well as(2.25).

    Combining(2.23),(2.24)and(2.25)gives the first estimate in(2.22),Wkn?W=o(1/n).

    Now we turn to the proof of the remaining two estimates in(2.22).By Lemma 2.1,we establish them by showing that

    Observe that

    Then,by using the Markov inequality and the moment inequality of sums of independent random variables(see,for instance,formula(2.3)on p.227 in[15]),we have

    where 2?η/2< ?1 by η>6.Thus,it follows that N2,j?N2,j=o(1)as j→ ∞.Similarly,we can prove that?N1,j=o(1)as j→∞.Combining these with Lemma 2.1,(2.22)follows.

    On the other hand,we see that by Lemma 2.2,

    and then by(2.25),

    Thus we can deduce the desired(2.7)from(2.21),(2.22)and(2.28). ?

    国产av国产精品国产| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 99国产精品99久久久久| 久久久久精品人妻al黑| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 国产视频首页在线观看| 国产亚洲精品第一综合不卡| cao死你这个sao货| 人人澡人人妻人| 十八禁网站网址无遮挡| 久久久久精品国产欧美久久久 | 嫁个100分男人电影在线观看 | 成人亚洲欧美一区二区av| 精品高清国产在线一区| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 久久99热这里只频精品6学生| av国产精品久久久久影院| 丁香六月天网| 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩欧美在线精品| 少妇的丰满在线观看| 美女午夜性视频免费| 美女扒开内裤让男人捅视频| 欧美变态另类bdsm刘玥| 久久国产精品人妻蜜桃| 91精品三级在线观看| 国产免费视频播放在线视频| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 在线看a的网站| 97精品久久久久久久久久精品| 亚洲五月婷婷丁香| 欧美成人精品欧美一级黄| 久久这里只有精品19| 一个人免费看片子| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 黄片小视频在线播放| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 最新在线观看一区二区三区 | 亚洲久久久国产精品| 热re99久久国产66热| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 久久99热这里只频精品6学生| 成在线人永久免费视频| 黄色视频在线播放观看不卡| 国产一区二区三区av在线| 女人高潮潮喷娇喘18禁视频| av一本久久久久| 19禁男女啪啪无遮挡网站| 一本大道久久a久久精品| 18在线观看网站| 嫩草影视91久久| 成人三级做爰电影| 在线精品无人区一区二区三| 女人爽到高潮嗷嗷叫在线视频| 天天躁夜夜躁狠狠久久av| 精品国产超薄肉色丝袜足j| 日韩制服丝袜自拍偷拍| 久久精品久久久久久久性| 亚洲精品国产av成人精品| 人人妻人人添人人爽欧美一区卜| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 最新在线观看一区二区三区 | 日本一区二区免费在线视频| 欧美在线黄色| 国产1区2区3区精品| 亚洲av欧美aⅴ国产| 纯流量卡能插随身wifi吗| 亚洲国产中文字幕在线视频| 国产亚洲欧美在线一区二区| 亚洲中文av在线| 久久鲁丝午夜福利片| 男女无遮挡免费网站观看| 老熟女久久久| 亚洲中文字幕日韩| 免费在线观看视频国产中文字幕亚洲 | 欧美乱码精品一区二区三区| 香蕉国产在线看| 国产主播在线观看一区二区 | 国产午夜精品一二区理论片| 黄色毛片三级朝国网站| 亚洲av国产av综合av卡| 国产亚洲av片在线观看秒播厂| 人人澡人人妻人| 欧美在线一区亚洲| 国产在线一区二区三区精| 亚洲av电影在线观看一区二区三区| 午夜91福利影院| 手机成人av网站| 18禁观看日本| 精品少妇久久久久久888优播| 51午夜福利影视在线观看| 精品国产超薄肉色丝袜足j| e午夜精品久久久久久久| 蜜桃在线观看..| 精品高清国产在线一区| 日韩一本色道免费dvd| 丝瓜视频免费看黄片| 免费久久久久久久精品成人欧美视频| 国产伦理片在线播放av一区| 天天躁日日躁夜夜躁夜夜| 久久99精品国语久久久| www.自偷自拍.com| 两个人看的免费小视频| 狠狠婷婷综合久久久久久88av| 中文字幕制服av| 中国国产av一级| 一级片免费观看大全| 欧美精品高潮呻吟av久久| 国产成人a∨麻豆精品| 国产精品偷伦视频观看了| 一区二区日韩欧美中文字幕| 欧美 亚洲 国产 日韩一| 亚洲国产av新网站| 国产精品二区激情视频| 日韩大码丰满熟妇| av在线老鸭窝| av国产久精品久网站免费入址| 国产熟女午夜一区二区三区| 宅男免费午夜| 一级黄色大片毛片| 一级片'在线观看视频| 叶爱在线成人免费视频播放| 久久久久久久大尺度免费视频| 国产精品一区二区在线不卡| 亚洲黑人精品在线| 亚洲国产毛片av蜜桃av| av电影中文网址| 七月丁香在线播放| 人人妻人人澡人人爽人人夜夜| 国产一级毛片在线| 黄色a级毛片大全视频| 在线观看免费日韩欧美大片| 久久亚洲精品不卡| 亚洲精品国产色婷婷电影| 岛国毛片在线播放| 免费在线观看视频国产中文字幕亚洲 | 伊人久久大香线蕉亚洲五| 高清不卡的av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 深夜精品福利| 老司机靠b影院| 黄色怎么调成土黄色| 日本色播在线视频| 精品少妇黑人巨大在线播放| 97精品久久久久久久久久精品| 夫妻午夜视频| 麻豆av在线久日| 久久久欧美国产精品| √禁漫天堂资源中文www| cao死你这个sao货| 一区二区日韩欧美中文字幕| 97人妻天天添夜夜摸| 黑人猛操日本美女一级片| 精品福利永久在线观看| 久热这里只有精品99| 国产精品免费视频内射| 欧美少妇被猛烈插入视频| 亚洲国产欧美一区二区综合| 亚洲av成人精品一二三区| 十分钟在线观看高清视频www| 成人国产av品久久久| 欧美人与性动交α欧美软件| 欧美国产精品一级二级三级| 香蕉国产在线看| 精品久久久久久久毛片微露脸 | 2018国产大陆天天弄谢| 老鸭窝网址在线观看| 国产一卡二卡三卡精品| 少妇粗大呻吟视频| 亚洲中文日韩欧美视频| 99热网站在线观看| 亚洲国产精品一区二区三区在线| 大香蕉久久成人网| 日本vs欧美在线观看视频| 成人国语在线视频| 首页视频小说图片口味搜索 | 精品人妻一区二区三区麻豆| 一个人免费看片子| 男女无遮挡免费网站观看| 在线观看www视频免费| 精品卡一卡二卡四卡免费| 一级片'在线观看视频| 大香蕉久久成人网| 成人亚洲精品一区在线观看| 国产又爽黄色视频| 麻豆乱淫一区二区| 亚洲,一卡二卡三卡| 在线av久久热| 免费看十八禁软件| 国产精品二区激情视频| 极品少妇高潮喷水抽搐| 在线 av 中文字幕| 久久综合国产亚洲精品| 视频区图区小说| 亚洲av日韩在线播放| 91麻豆精品激情在线观看国产 | 男女床上黄色一级片免费看| 久久影院123| 久9热在线精品视频| 久久久久国产精品人妻一区二区| 两个人看的免费小视频| 国产精品99久久99久久久不卡| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 少妇人妻 视频| 久久久久网色| 国产欧美亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 精品人妻熟女毛片av久久网站| 十分钟在线观看高清视频www| 下体分泌物呈黄色| 天天添夜夜摸| 国产精品一区二区免费欧美 | 午夜福利视频在线观看免费| 嫁个100分男人电影在线观看 | 亚洲黑人精品在线| 人人澡人人妻人| 精品人妻一区二区三区麻豆| 日本色播在线视频| 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 一个人免费看片子| 99热国产这里只有精品6| 手机成人av网站| 欧美激情极品国产一区二区三区| 中文字幕最新亚洲高清| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久小说| 老司机在亚洲福利影院| 免费高清在线观看日韩| 一级毛片女人18水好多 | 国产片内射在线| 国产在线一区二区三区精| 日韩av在线免费看完整版不卡| 国产1区2区3区精品| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 午夜两性在线视频| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 一个人免费看片子| 少妇人妻久久综合中文| 国产高清视频在线播放一区 | 亚洲国产中文字幕在线视频| 日本五十路高清| 一区二区三区精品91| 高清欧美精品videossex| 久久久久精品人妻al黑| 国产人伦9x9x在线观看| 午夜免费观看性视频| 老司机午夜十八禁免费视频| 免费在线观看影片大全网站 | 亚洲精品国产av成人精品| 亚洲精品美女久久久久99蜜臀 | 欧美黑人欧美精品刺激| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 欧美成人午夜精品| 多毛熟女@视频| 国产亚洲午夜精品一区二区久久| 久久影院123| 欧美国产精品va在线观看不卡| 久久久久久免费高清国产稀缺| 精品国产一区二区三区四区第35| 欧美激情极品国产一区二区三区| 天堂中文最新版在线下载| 波多野结衣一区麻豆| 欧美中文综合在线视频| xxxhd国产人妻xxx| 中文字幕精品免费在线观看视频| 久久久精品区二区三区| 丝瓜视频免费看黄片| 精品少妇黑人巨大在线播放| 国产成人影院久久av| 国产激情久久老熟女| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 亚洲熟女精品中文字幕| 一区二区三区激情视频| 18在线观看网站| 曰老女人黄片| 满18在线观看网站| 欧美人与性动交α欧美软件| 久久中文字幕一级| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 国产一区二区 视频在线| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 色精品久久人妻99蜜桃| 黄色视频在线播放观看不卡| 亚洲av日韩在线播放| 亚洲av片天天在线观看| 国产精品.久久久| 亚洲国产精品一区三区| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 日本欧美视频一区| 国产精品人妻久久久影院| av在线app专区| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 亚洲精品久久久久久婷婷小说| 亚洲国产精品成人久久小说| 精品福利永久在线观看| 国产老妇伦熟女老妇高清| 色网站视频免费| 久久久久久久精品精品| 在线精品无人区一区二区三| xxxhd国产人妻xxx| 九草在线视频观看| 91精品国产国语对白视频| 亚洲av美国av| 国产精品一区二区免费欧美 | 免费高清在线观看日韩| 丰满少妇做爰视频| 天天添夜夜摸| av电影中文网址| 女性生殖器流出的白浆| 国产成人精品久久二区二区免费| 亚洲成色77777| 亚洲精品av麻豆狂野| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| avwww免费| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区 | 国产亚洲av片在线观看秒播厂| 少妇粗大呻吟视频| 亚洲精品美女久久久久99蜜臀 | 国产精品免费视频内射| 国产xxxxx性猛交| 一级毛片 在线播放| 老司机亚洲免费影院| h视频一区二区三区| 国产黄频视频在线观看| 91老司机精品| 欧美乱码精品一区二区三区| 欧美黑人精品巨大| av一本久久久久| 午夜福利乱码中文字幕| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 亚洲国产看品久久| 男女高潮啪啪啪动态图| 久久av网站| 亚洲国产精品一区三区| 捣出白浆h1v1| 日日摸夜夜添夜夜爱| 国产三级黄色录像| 99久久综合免费| videosex国产| netflix在线观看网站| 视频区欧美日本亚洲| 99国产精品99久久久久| 精品久久久久久久毛片微露脸 | 一边摸一边抽搐一进一出视频| 日本a在线网址| 热99国产精品久久久久久7| 免费观看人在逋| 夜夜骑夜夜射夜夜干| 久久人妻福利社区极品人妻图片 | 婷婷色麻豆天堂久久| 水蜜桃什么品种好| 免费人妻精品一区二区三区视频| 亚洲精品国产区一区二| 操出白浆在线播放| 精品亚洲乱码少妇综合久久| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 国产亚洲午夜精品一区二区久久| 黄片小视频在线播放| 青春草亚洲视频在线观看| 亚洲精品一二三| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看| 天堂8中文在线网| www.999成人在线观看| 久久久久久久久免费视频了| 亚洲中文av在线| 好男人视频免费观看在线| 叶爱在线成人免费视频播放| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站 | 久久精品久久久久久久性| 国产精品成人在线| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 久久精品熟女亚洲av麻豆精品| 大片免费播放器 马上看| 国产精品.久久久| 欧美乱码精品一区二区三区| 欧美在线一区亚洲| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 在线观看一区二区三区激情| av一本久久久久| 欧美黑人欧美精品刺激| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 国产免费现黄频在线看| 女人久久www免费人成看片| 国产麻豆69| 国产日韩欧美视频二区| 嫁个100分男人电影在线观看 | 香蕉国产在线看| 久久久久久人人人人人| 99热网站在线观看| 一区二区日韩欧美中文字幕| 欧美日韩视频高清一区二区三区二| 国产精品九九99| 欧美乱码精品一区二区三区| 母亲3免费完整高清在线观看| 丰满饥渴人妻一区二区三| 麻豆国产av国片精品| av线在线观看网站| 婷婷丁香在线五月| a级片在线免费高清观看视频| 免费在线观看日本一区| 香蕉丝袜av| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 日本五十路高清| 一边亲一边摸免费视频| 亚洲第一青青草原| 真人做人爱边吃奶动态| 99国产精品一区二区蜜桃av | 操美女的视频在线观看| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| 国产精品九九99| 一区在线观看完整版| 十八禁高潮呻吟视频| 色综合欧美亚洲国产小说| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 成年人午夜在线观看视频| 亚洲五月婷婷丁香| 亚洲国产精品国产精品| 国产精品三级大全| 国产欧美亚洲国产| 久久精品亚洲熟妇少妇任你| 最新的欧美精品一区二区| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 久久av网站| 99久久99久久久精品蜜桃| 高清黄色对白视频在线免费看| 一级黄片播放器| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看 | 午夜免费观看性视频| 日本av手机在线免费观看| 精品久久久久久久毛片微露脸 | 午夜视频精品福利| 精品欧美一区二区三区在线| 男女床上黄色一级片免费看| 国产在视频线精品| 最新的欧美精品一区二区| 自线自在国产av| 免费久久久久久久精品成人欧美视频| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频| 免费人妻精品一区二区三区视频| 精品人妻一区二区三区麻豆| 成人影院久久| 午夜福利在线免费观看网站| 777久久人妻少妇嫩草av网站| 别揉我奶头~嗯~啊~动态视频 | 男的添女的下面高潮视频| 久久精品久久久久久久性| 少妇人妻久久综合中文| 国产又色又爽无遮挡免| 热re99久久国产66热| 国产成人精品久久二区二区91| 国产精品久久久久久精品古装| 亚洲av男天堂| 久久亚洲国产成人精品v| 中文字幕高清在线视频| 人成视频在线观看免费观看| 国产一级毛片在线| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 我要看黄色一级片免费的| 十八禁人妻一区二区| av线在线观看网站| 国产视频首页在线观看| 夫妻性生交免费视频一级片| 少妇 在线观看| 国产成人av教育| 亚洲精品久久成人aⅴ小说| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 热re99久久精品国产66热6| 99久久精品国产亚洲精品| 久久天堂一区二区三区四区| 欧美乱码精品一区二区三区| 久久99精品国语久久久| 91成人精品电影| 亚洲情色 制服丝袜| 免费观看人在逋| 啦啦啦啦在线视频资源| 首页视频小说图片口味搜索 | 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠久久av| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 国产男女超爽视频在线观看| 国产视频一区二区在线看| 亚洲国产av影院在线观看| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 亚洲第一av免费看| 黑人欧美特级aaaaaa片| av有码第一页| 亚洲精品国产av成人精品| 午夜福利免费观看在线| 在线看a的网站| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 久久久久久久精品精品| 91精品三级在线观看| 久久青草综合色| 亚洲中文av在线| 在线观看免费高清a一片| 午夜福利在线免费观看网站| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 亚洲成人手机| 你懂的网址亚洲精品在线观看| 午夜激情av网站| 一区二区三区精品91| 国产精品久久久久久精品古装| 一区在线观看完整版| 一区二区三区激情视频| 日本色播在线视频| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 美女午夜性视频免费| 黑人猛操日本美女一级片| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 捣出白浆h1v1| 久久精品国产综合久久久| 高清黄色对白视频在线免费看| 久久人人爽人人片av| 国产精品一国产av| 婷婷色av中文字幕| 午夜老司机福利片| 一个人免费看片子| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 99九九在线精品视频| 男女免费视频国产| 一边摸一边做爽爽视频免费| 国产精品一国产av| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看 | 久久久久国产一级毛片高清牌| 在线天堂中文资源库| 亚洲欧美一区二区三区国产| av片东京热男人的天堂| 捣出白浆h1v1| 一级a爱视频在线免费观看| 国产成人免费观看mmmm| 一二三四社区在线视频社区8| 老司机在亚洲福利影院| 女人精品久久久久毛片| 成年人免费黄色播放视频| 黄色视频在线播放观看不卡| 国产97色在线日韩免费| 在线天堂中文资源库| 精品少妇一区二区三区视频日本电影| 首页视频小说图片口味搜索 | 亚洲自偷自拍图片 自拍| 中文字幕人妻熟女乱码| 宅男免费午夜| www日本在线高清视频|