• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE PICARD THEOREM ON S-METRIC SPACES?

    2018-09-08 07:50:06NihalYilmazZGRNihalTAS

    Nihal YilmazZGRNihal TAS?

    Department of Mathematics,Bal?kesir University,10145 Bal?kesir,Turkey

    E-mail:nihal@balikesir.edu.tr;nihaltas@balikesir.edu.tr

    Abstract Recently,the notion of an S-metric space is defined and extensively studied as a generalization of a metric space.In this paper,we define the notion of the S∞-space and prove its completeness.We obtain a new generalization of the classical“Picard Theorem”.

    Key words S∞-space;completeness;Picard Theorem;initial value problem

    1 Introduction

    Using recent developments in metric spaces,theoretical studies can be applied in some areas such as integral equations,differential equations etc.In particular,some fixed point theorems are used to obtain solutions of integral and differential equations.For example,Krakow proved Gronwall’s lemma,Peano and Picard existence theorems in metric spaces[8].Kakde,Biradar and Hiremath used fixed point theory to solve the differential equations[7].Huang and Xu obtained the existence and uniqueness of a solution for an ordinary differential equation with a periodic boundary condition[6].Alsulami,Gülyaz,Karap?nar and Erhan improved the contractive conditions and studied fixed point theorems for a class of α-admissible contractions and obtained some applications to a boundary value problem[1].He derived the existence and uniqueness of a solution for a first-order ordinary differential equation with periodic boundary conditions[4].Farajzadeh,Kaewcharoen and Plubtieng obtained an application of fixed point theory for a nonlinear differential equation[3].

    Recently,the notion of an S-metric space are introduced as a generalization of a metric space as follows.

    Definition 1.1(see[11]) Let X be a nonempty set and S:X×X×X→[0,∞)be a function satisfying the following conditions for all x,y,z,a∈X,

    (S1)S(x,y,z)≥0,

    (S2)S(x,y,z)=0 if and only if x=y=z,

    (S3)S(x,y,z)≤S(x,x,a)+S(y,y,a)+S(z,z,a).

    Then S is called an S-metric on X and the pair(X,S)is called an S-metric space.

    Example 1.2(see[12]) Let R be the real line.Then the function S:X×X×X→[0,∞)defined by for all x,y,z∈R is an S-metric on R.This S-metric on R is called the usual S-metric on R.

    Then it is studied new fixed point theorems on S-metric spaces(see[5,9–13]for more details).For example,the following theorem was given as a generalization of the well-known Banach’s contraction principle on a complete S-metric space.

    Definition 1.3(see[11])Let(X,S)be an S-metric space.A self-mapping T:X→X is called a contraction if there exists a constant L∈[0,1)such that

    for all x,y∈X.

    Theorem 1.4(see[11]) Let(X,S)be a complete S-metric space and the self-mapping T:X→X be a contraction.Then T has a unique fixed point x0∈X.Furthermore,with

    for any x∈X.

    In this paper,motivated by the above studies,we give an application of fixed point theory to differential equations on S-metric spaces.In Section 2,we recall some known results about S-metric spaces.In Section 3,we define the concept of the S∞-space and show its completeness.In Section 4,we prove the“Picard Theorem”on S-metric spaces.Also,we generalize the Picard Theorem using vector functions and give an example to the system of equations.In Section 5,we give an application to error analysis of nth iterations as approximation for the S-metric which is not generated by any metric given in[9].

    2 Preliminaries

    In this section,we recall some definitions and lemmas which are needed in the sequel.

    Definition 2.1(see[11]) Let(X,S)be an S-metric space.For r>0 and x∈X,the open ball BS(x,r)and the closed ball BS[x,r]with a center x and a radius r defined as follows:

    Definition 2.2(see[10]) Let(X,S)be an S-metric space and A?X be any subset.A point x∈X is a cluster point of A if

    for every r>0.The set of all cluster points of A is denoted by A′S.

    Definition 2.3(see[11]) Let(X,S)be an S-metric space and A?X.A subset A of X is called S-bounded if there exists r>0 such that S(x,x,y)

    Definition 2.4(see[11]) Let(X,S)be an S-metric space.

    (1)A sequence{xn}in X converges to x if and only if S(xn,xn,x)→0 as n→∞,that is,there exists n0∈ N such that for all n ≥ n0,S(xn,xn,x)< ε for each ε>0.It is denoted by

    (2)A sequence{xn}in X is called a Cauchy sequence if S(xn,xn,xm)→0 as n,m→∞,that is,there exists n0∈ N such that for all n,m ≥ n0,S(xn,xn,xm)< ε for each ε>0.

    (3)(X,S)is called complete if every Cauchy sequence is convergent.

    Lemma 2.5(see[11]) Let(X,S)be an S-metric space.Then we have

    Lemma 2.6(see[11]) Let(X,S)be an S-metric space.If xn→x and yn→y then we have

    In the following lemma,we see the relationship between a metric space and an S-metric space.

    Lemma 2.7(see[5]) Let(X,d)be a metric space.Then the following properties are satisfied:

    (1)Sd(x,y,z)=d(x,z)+d(y,z)for all x,y,z∈X is an S-metric on X.

    (2)xn→x in(X,d)if and only if xn→x in(X,Sd).

    (3){xn}is Cauchy in(X,d)if and only if{xn}is Cauchy in(X,Sd).

    (4)(X,d)is complete if and only if(X,Sd)is complete.

    We call the metric Sdas the S-metric generated by d.There are some examples of S-metrics which are not generated by any metric(see[5,9,13]for more details).

    Example 2.8(see[9]) Let X=R and consider the function S:X×X×X →[0,∞)defined by

    for all x,y,z∈R.Then(X,S)is an S-metric space such that the S-metric defined in(2.1)is not generated by any metric d.

    3 Definition and Completeness of the S∞-Space

    In this section,we define the notion of the S∞-space by using the metric S∞defined as the S-metric generated by d∞.

    Let F=R or F=C and C[a,b]={f|f:[a,b]→F is continuous function}.Then by Lemma 2.7(1),the function S∞:C[a,b]× C[a,b]× C[a,b]→ [0,∞)defined as

    for all f,g,h∈C[a,b]is an S-metric on C[a,b]and(C[a,b],S∞)is an S-metric space.

    Proposition 3.1 (C[a,b],S∞)is a complete S-metric space.

    Proof Since the S-metric S∞is generated by the metric d∞,using Lemma 2.7(4),it is deduced that(C[a,b],S∞)is a complete S-metric space.

    Definition 3.2 Let(X,S)be an S-metric space and Y be a nonempty subset of X.Let a function SY:Y×Y×Y→[0,∞)be defined by for all x,y,z∈Y.Then SYis called a reduced S-metric and(Y,SY)is called a sub-S-metric space of(X,S).

    Definition 3.3 Let(X,S)be an S-metric space and A?X.A is called closed if the set of cluster points of A is contained by A,that is,?A.

    Proposition 3.4 If(X,S)is a complete S-metric space and Y is a closed set in(X,S),then(Y,SY)is complete.

    Proof The proof follows easily by the definitions of completeness and closedness. ?

    Proposition 3.5 Let X be a set of all continuous functions from[a,b]to[c,d].Then(X,S∞)is a complete S-metric space.

    Proof Using Proposition 3.4,we only show that X is closed set in C[a,b]since X?C[a,b]and(C[a,b],S∞)is complete S-metric space.Let f∈C[a,b]be a cluster point in X.Then,there exists a sequence{fn}in X such that{fn}→f according to S∞.Hence we obtain

    and so

    for each x∈[a,b].Since c≤fn(x)≤d for each x∈[a,b]then c≤f(x)≤d.Consequently,we have f∈X. ?

    4 Some Generalizations of the Picard Theorem

    In this section,we give some generalizations of the well-known“Picard Theorem”on S-metric spaces.

    At first,we recall the definition of an initial value problem[2].Let a>0,b>0 in R and consider the set

    on R2.For x∈I and a function y defined on I(I is any interval),if the conditions(x,y(x))∈D and y(x0)=y0are satisfied such that y′(x)=f(x,y(x))then y is called a solution of the initial value problem

    where y′==f(x,y(x)).

    The above initial value problem is equivalent to the following integral equation on I:

    We consider a function y satisfying(x,y(x))∈D and

    for all x∈I as a solution of(4.2)on I.In equality(4.3),we can easily seen that the function y is continuous.Also,the function y is a solution of the initial value problem given in(4.1)if and only if the function y is a solution of the integral equation given in(4.2).

    Now we give the following generalization of the“Picard Theorem”using the S∞-space defined in the previous section.To do this,we use the S-metric defined in(2.1)which is not generated by any metric d.

    Theorem 4.1 Let a>0,b>0,f be a continuous function on

    and the following condition is satisfied

    for each(x,y1),(x,y2)∈D,where M>0 and the function S is the S-metric defined in(2.1)on D.Then there exists a unique function y defined on[x0?r,x0+r]such that

    when x ∈ [x0?r,x0+r]for some r>0,that is,there exists a unique solution ? on[x0?r,x0+r]of a first order differential equation

    with initial value y(x0)=y0.

    Proof Since the function f is continuous on D,there exists a number k>0 such that

    for each(x,y)∈D,that is,the function f is bounded.There exists

    since f is bounded and continuous on D.

    Assume that r=min?a,bK?and

    where S is the S-metric defined in(2.1).Hence(X,S∞)is a complete S-metric space by Proposition 3.5.Using the assumption of r,we see that(x,y(x))∈D for S(x,x,x0)≤r and

    y∈X.Now we define the following function T:

    Then the function y satisfies condition(4.5)if and only if Ty=y.Using the definition of r and equality(4.6)if S(x,x,x0)≤r then we have

    Ty∈X and T:X→X.

    Now we show that Tpis a contractive mapping for some integer p.We can write

    Suppose that x0≤x then we obtain

    If we repeat this argument for Ty1and Ty2we get

    Using the similar argument for n,we have

    Using Lemma 2.5,it can be easily seen that this inequality is satisfied for x≤x0.Sincethere exists an integer p such thatis a contractive mapping.Consequently,T has a unique solution.

    Remark 4.2 i)The proof of Theorem 4.1 can be also shown using the closed ball with 0

    ii)It can be easily seen that the proof of Theorem 4.1 is valid for the usual S-metric defined in Example 1.2.Hence we can use any S-metric in Theorem 4.1 with respect to the selected region D.Theorem 4.1 will be important in the cases which are not contained in the classical Picard Theorem.Because it can be required to study on any region D and any S-metric on the selected region D.

    iii)In[12],it was given the relationship between an S-metric and a B-metric.Every S-metric is a B-metric with B=Therefore it is possible to obtain a new version of the Picard Theorem on B-metric spaces.

    Now,we give the generalized Picard Theorem in a vertical strip using the S-metric defined in(2.1).

    Theorem 4.3 Let I be a closed interval and f be a continuous function on

    If there is an M>0 such that

    for all(x,y1),(x,y2)∈D,then there exists a unique function y on I such that

    for(x0,y0)∈ D,x ∈ I,that is,there exists a unique solution ? on I of a first order differential equation

    with initial value y(x0)=y0.

    Proof By similar arguments used in the proof of Theorem 4.1,the proof follows easily.?

    Now we give an extension of the Picard Theorem using vector valued functions.A system of first order differential equations are defined as follows:

    Now we can write

    This is a vector of the first order equation and the Picard Theorem can be generalized in this case using the S-metric defined in(2.1).

    Theorem 4.4 If F is a continuous vector function on x and inequality(4.4)is satisfied on y in a region D containing x=x0,y=y0,then the ordinary differential equation

    with initial condition y(x0)=y0has a unique solution y(x)which depends continuously on y0.

    Proof The ordinary differential equation(4.7)with initial condition y(x0)=y0is equivalent to the following equation

    Now we define the following Picard iteration

    Let us consider the following region

    Assume that x∈(x0?r,x0+r),where r≤a and the vector function F satisfies the inequality(4.4).We complete the proof with the following steps.

    Step 1 We show the following inequality using the mathematical induction If n=0,we obtain

    where|.|denotes the norm of a vector,S is the S-metric defined in(2.1)and

    Suppose that inequality(4.9)is satisfied for n?1.Now we obtain

    converges to vector function y(x).Also we obtain

    Consequently,the convergence is uniform on x and the limit of uniform convergent continuous functions is continuous.

    Step 2 We show that the vector function y(x)is a solution.Since ynconverges uniformly to y,we assume that ynis close to y.Hence we obtain

    If we take limit for n→∞of

    then we obtain that the vector function y is a solution of the ordinary differential equation(4.8).

    Step 3 We show that the vector function y is a unique.Assume that u(x)is an another solution as follows:

    Since the vector functions y and u are continuous they are bounded on[x0?r,x0+r],that is,

    for all x∈[x0?r,x0+r].Hence we get

    and repeating this process we have

    as n→∞.So we obtain y(x)=u(x)on[x0?r,x0+r].

    Step 4 We show that the solution vector function depends continuously on y0.Let y be a unique solution of the ordinary differential equation(4.8)with initial condition y(x0)=y0and u be a unique solution with initial condition u(x0)=y0+δ.Then the following equations are satisfied

    and

    Hence we get

    Since the vector functions y and u are continuous functions then we get

    on(x0?r,x0+r).Using inequality(4.10),we have

    By the mathematical induction,we obtain

    Hence u(x)→ y(x)as δ→ 0.

    Step 5 We show that all of the yn(x)remain in(y0?b,y0+b).Let r=min

    where

    For x∈(x0?r,x0+r)using the mathematical induction on n we get

    and so

    Consequently,the proof is completed.

    Theorem 4.5 If every component Fi(x,y)satisfies inequality(4.4)in y=that is,

    then the vector function F satisfies inequality(4.4)in y.

    Proof The following inequalities hold

    for any positive reel numbers a1,···,an.Hence we obtain

    We use our results to obtain the existence and uniqueness of a solution for a system of first order differential equations with initial conditions.We give the following example.

    Example 4.6 We show that the system of equations

    has a unique solution in some interval about x=0.To do this we can write this system as

    where

    So it can be easily seen that the function F is continuous on x everywhere.Now we consider the components of the function F:

    where|x|≤M1;

    where|v1|,|v2|≤M2.Using Theorem 4.5,we have

    5 An Application to Approximate Solution

    In this section,we give an example of error analysis of nth iterations as an approximation for the S-metric defined in(2.1).

    Using the inequality(1.1)in Theorem 1.4,we obtain

    for iteration sequences.This inequality(5.1)can be used in error analysis of nth iteration as an approximation.We give the following example.

    Example 5.1 Using the Picard iteration,we find approximate solution of the differential equation

    with the initial condition y(0)=

    The function f(x,y)=2x?3y2satisfies the conditions of Theorem 4.1.Let

    Then f is defined on D and is a continuous function.Also,inequality(4.4)is satisfied.Indeed,we have

    where S is the S-metric defined in(2.1),f is bounded on D as|f(x,y)|≤1.Since M=4,we have r

    for the second iteration.Now we find y1(x).We have

    and so

    Now we see error analysis of the third and fourth iterations as follows:

    Consequently,the error is decreasing on n-th iterations with n≥3.

    6 Conclusion and Future Work

    We present the notion of the S∞-space and proved a new generalization of the well-known Picard Theorem on S-metric spaces.We have given an example of error analysis of n-th iterations as an approximation.As a future work,it is possible to study new generalizations of the Picard theorem on some generalized metric spaces(for example B-metric space,G-metric space etc)and to obtain various applications in different applied areas.

    午夜免费激情av| 免费看日本二区| 亚洲国产精品久久男人天堂| 真人做人爱边吃奶动态| 欧美性长视频在线观看| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 美女高潮喷水抽搐中文字幕| 欧美激情高清一区二区三区| 在线观看午夜福利视频| 高清毛片免费观看视频网站| 亚洲熟女毛片儿| 欧美成人一区二区免费高清观看 | 亚洲,欧美精品.| 黄网站色视频无遮挡免费观看| 午夜a级毛片| 亚洲熟妇中文字幕五十中出| 无限看片的www在线观看| 正在播放国产对白刺激| 18禁观看日本| 人妻久久中文字幕网| 99在线人妻在线中文字幕| 97碰自拍视频| 欧美日韩精品网址| 黄色a级毛片大全视频| 亚洲五月婷婷丁香| a级毛片a级免费在线| 亚洲专区中文字幕在线| АⅤ资源中文在线天堂| 一本一本综合久久| 99热这里只有精品一区 | 亚洲第一青青草原| 丝袜人妻中文字幕| 久久午夜综合久久蜜桃| 国产精品国产高清国产av| 亚洲精品在线美女| 国产精品,欧美在线| 长腿黑丝高跟| 国产真实乱freesex| 国产激情久久老熟女| 搡老熟女国产l中国老女人| 少妇粗大呻吟视频| 十八禁网站免费在线| 欧美成人一区二区免费高清观看 | 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| 国产色视频综合| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 国产av一区二区精品久久| 亚洲av第一区精品v没综合| x7x7x7水蜜桃| 韩国av一区二区三区四区| 99久久久亚洲精品蜜臀av| 久久精品aⅴ一区二区三区四区| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 人人妻人人看人人澡| 老汉色∧v一级毛片| 亚洲激情在线av| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 日本熟妇午夜| 一区福利在线观看| 叶爱在线成人免费视频播放| 亚洲欧美激情综合另类| 香蕉久久夜色| 男女午夜视频在线观看| 久久 成人 亚洲| 九色国产91popny在线| 久久久水蜜桃国产精品网| 欧美激情 高清一区二区三区| 可以在线观看毛片的网站| xxx96com| 亚洲av中文字字幕乱码综合 | 妹子高潮喷水视频| 亚洲精品国产区一区二| 韩国精品一区二区三区| 黄色成人免费大全| 午夜两性在线视频| 国产午夜福利久久久久久| 一区二区三区激情视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成av人片免费观看| 日韩欧美免费精品| 亚洲国产精品成人综合色| 国产伦人伦偷精品视频| 国内少妇人妻偷人精品xxx网站 | 高清在线国产一区| 国产成人av教育| 亚洲人成伊人成综合网2020| 国产区一区二久久| 真人一进一出gif抽搐免费| 久久中文字幕人妻熟女| 午夜影院日韩av| 最好的美女福利视频网| 日韩欧美 国产精品| 国产精品乱码一区二三区的特点| 亚洲专区字幕在线| 超碰成人久久| 国产视频一区二区在线看| 国产99白浆流出| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| 国产精品免费视频内射| 欧美精品亚洲一区二区| 亚洲精品在线观看二区| 午夜福利18| 欧美午夜高清在线| 黄色视频不卡| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 人人妻人人澡人人看| 亚洲一区高清亚洲精品| 精品欧美一区二区三区在线| 久久热在线av| 国产成人精品久久二区二区免费| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 在线国产一区二区在线| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 国内精品久久久久精免费| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 色av中文字幕| 精品国产超薄肉色丝袜足j| 亚洲男人天堂网一区| 男人操女人黄网站| 成人欧美大片| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 午夜日韩欧美国产| 久久99热这里只有精品18| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| 欧美黑人精品巨大| 久9热在线精品视频| 亚洲 欧美一区二区三区| 亚洲一区二区三区色噜噜| 天堂动漫精品| 国产日本99.免费观看| 成人欧美大片| www日本黄色视频网| 满18在线观看网站| 黄色a级毛片大全视频| 97碰自拍视频| 欧美成人一区二区免费高清观看 | 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 日韩一卡2卡3卡4卡2021年| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 99精品久久久久人妻精品| 国产亚洲精品综合一区在线观看 | 色播亚洲综合网| 日本一本二区三区精品| 此物有八面人人有两片| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 香蕉丝袜av| www.精华液| 亚洲一区二区三区色噜噜| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 精品国产乱码久久久久久男人| svipshipincom国产片| 999久久久精品免费观看国产| 长腿黑丝高跟| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| svipshipincom国产片| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 妹子高潮喷水视频| 欧美zozozo另类| 午夜久久久久精精品| 亚洲 国产 在线| 两个人视频免费观看高清| 午夜久久久久精精品| 精品电影一区二区在线| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 制服诱惑二区| 亚洲国产日韩欧美精品在线观看 | 日日爽夜夜爽网站| 草草在线视频免费看| 十八禁人妻一区二区| 看片在线看免费视频| 中文字幕人成人乱码亚洲影| 国产麻豆成人av免费视频| 国产精品国产高清国产av| www.999成人在线观看| 最新在线观看一区二区三区| 动漫黄色视频在线观看| 亚洲激情在线av| 亚洲五月婷婷丁香| 成人欧美大片| 免费看a级黄色片| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 老司机深夜福利视频在线观看| av在线播放免费不卡| 这个男人来自地球电影免费观看| xxx96com| 少妇粗大呻吟视频| 亚洲精品粉嫩美女一区| 亚洲成a人片在线一区二区| 欧美日韩精品网址| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| 可以在线观看毛片的网站| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| www.www免费av| 欧美大码av| 亚洲国产欧美网| 国产爱豆传媒在线观看 | 天堂√8在线中文| 日韩高清综合在线| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 国产在线观看jvid| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 9191精品国产免费久久| 人人妻,人人澡人人爽秒播| 淫秽高清视频在线观看| e午夜精品久久久久久久| 欧美性长视频在线观看| 久久精品人妻少妇| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 久久婷婷人人爽人人干人人爱| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| 精品久久久久久,| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区中文字幕在线| 亚洲成av片中文字幕在线观看| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 免费一级毛片在线播放高清视频| ponron亚洲| 97人妻精品一区二区三区麻豆 | 午夜两性在线视频| 婷婷六月久久综合丁香| 黄色视频不卡| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 国产精品爽爽va在线观看网站 | svipshipincom国产片| 国产精品99久久99久久久不卡| 亚洲欧美日韩无卡精品| 一夜夜www| 欧美成人免费av一区二区三区| 欧美精品亚洲一区二区| 欧美在线黄色| 欧美日韩乱码在线| www国产在线视频色| 老熟妇乱子伦视频在线观看| av欧美777| 1024视频免费在线观看| 一本精品99久久精品77| 国产精品久久电影中文字幕| 黄色毛片三级朝国网站| 韩国精品一区二区三区| 亚洲人成77777在线视频| 国产成人欧美在线观看| av免费在线观看网站| 亚洲久久久国产精品| bbb黄色大片| 美国免费a级毛片| 美女午夜性视频免费| 高清毛片免费观看视频网站| 搞女人的毛片| 波多野结衣高清作品| 亚洲第一欧美日韩一区二区三区| 手机成人av网站| 欧美黑人欧美精品刺激| 日本在线视频免费播放| 波多野结衣av一区二区av| 一级作爱视频免费观看| 老司机靠b影院| 大型av网站在线播放| 午夜福利免费观看在线| 亚洲avbb在线观看| 一a级毛片在线观看| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 后天国语完整版免费观看| 色婷婷久久久亚洲欧美| 国产伦人伦偷精品视频| 好看av亚洲va欧美ⅴa在| 欧美黑人欧美精品刺激| 淫妇啪啪啪对白视频| 久久亚洲精品不卡| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 亚洲免费av在线视频| 自线自在国产av| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 色播亚洲综合网| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av高清一级| 香蕉久久夜色| 午夜亚洲福利在线播放| av电影中文网址| 亚洲中文av在线| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| av在线播放免费不卡| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观 | 亚洲自拍偷在线| 黄色片一级片一级黄色片| 国产99白浆流出| 俺也久久电影网| 麻豆成人av在线观看| 大型av网站在线播放| 超碰成人久久| 大型av网站在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 久久久久久免费高清国产稀缺| www.www免费av| 国产精品1区2区在线观看.| 淫秽高清视频在线观看| 真人做人爱边吃奶动态| 久久久久久国产a免费观看| 两个人看的免费小视频| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 中文字幕精品亚洲无线码一区 | 免费在线观看成人毛片| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 日本免费一区二区三区高清不卡| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 99久久99久久久精品蜜桃| 日韩欧美一区二区三区在线观看| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影| 最近最新中文字幕大全电影3 | 欧美黑人巨大hd| 精品久久久久久久人妻蜜臀av| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 桃色一区二区三区在线观看| 美女免费视频网站| 婷婷丁香在线五月| 黄色女人牲交| 女性生殖器流出的白浆| 精品久久久久久久久久久久久 | 欧美中文日本在线观看视频| 国产三级在线视频| 少妇的丰满在线观看| 久久国产乱子伦精品免费另类| 少妇的丰满在线观看| 美女免费视频网站| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 精品第一国产精品| 亚洲熟女毛片儿| 免费在线观看影片大全网站| 国产主播在线观看一区二区| 久久久久久久久久黄片| 免费看日本二区| 999精品在线视频| 狠狠狠狠99中文字幕| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区久久 | 一级黄色大片毛片| 亚洲狠狠婷婷综合久久图片| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 国内精品久久久久久久电影| 女同久久另类99精品国产91| 亚洲九九香蕉| 国产精品电影一区二区三区| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 亚洲精品一区av在线观看| 99精品久久久久人妻精品| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 男女床上黄色一级片免费看| 国产精品永久免费网站| 一级a爱片免费观看的视频| 亚洲男人的天堂狠狠| 一区二区日韩欧美中文字幕| 91老司机精品| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 午夜福利高清视频| 制服诱惑二区| 亚洲一区二区三区色噜噜| 俺也久久电影网| 欧美乱色亚洲激情| 在线观看舔阴道视频| 国产不卡一卡二| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 人成视频在线观看免费观看| 精品国产国语对白av| 国产av不卡久久| 精品第一国产精品| 久久99热这里只有精品18| 欧美一级毛片孕妇| www.自偷自拍.com| 99在线视频只有这里精品首页| 日本成人三级电影网站| 亚洲av熟女| 亚洲自偷自拍图片 自拍| 亚洲人成77777在线视频| 日日爽夜夜爽网站| svipshipincom国产片| 国产精品免费视频内射| 亚洲精品久久成人aⅴ小说| 免费看日本二区| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频 | 久久中文字幕一级| 亚洲精品一区av在线观看| 一夜夜www| 国产亚洲精品一区二区www| 国产精品爽爽va在线观看网站 | 成人免费观看视频高清| 不卡av一区二区三区| 国产精品 国内视频| 色哟哟哟哟哟哟| 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| 久久伊人香网站| 在线永久观看黄色视频| 亚洲 欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 香蕉国产在线看| 婷婷精品国产亚洲av在线| 91麻豆av在线| 国产精品二区激情视频| 美国免费a级毛片| 色精品久久人妻99蜜桃| 久久久久久九九精品二区国产 | 亚洲一区中文字幕在线| 真人一进一出gif抽搐免费| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色| 国产av一区二区精品久久| 老司机福利观看| 国产成年人精品一区二区| 99国产精品99久久久久| 色播亚洲综合网| 久久婷婷成人综合色麻豆| x7x7x7水蜜桃| 久热这里只有精品99| 精品日产1卡2卡| 久久99热这里只有精品18| 丁香六月欧美| 久久精品国产亚洲av高清一级| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 午夜a级毛片| 一级毛片女人18水好多| 久久中文字幕一级| 日韩中文字幕欧美一区二区| 美女 人体艺术 gogo| 亚洲真实伦在线观看| 久热这里只有精品99| 亚洲 国产 在线| 午夜老司机福利片| 动漫黄色视频在线观看| 久久久国产成人免费| 天天躁夜夜躁狠狠躁躁| 精品一区二区三区四区五区乱码| 999久久久国产精品视频| 欧美色欧美亚洲另类二区| 大型黄色视频在线免费观看| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 99久久久亚洲精品蜜臀av| av有码第一页| 我的亚洲天堂| 亚洲久久久国产精品| 国内精品久久久久精免费| 亚洲中文av在线| 欧美乱码精品一区二区三区| 91av网站免费观看| 亚洲国产精品合色在线| 亚洲国产精品成人综合色| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 亚洲一区二区三区色噜噜| 后天国语完整版免费观看| 999精品在线视频| 久久香蕉激情| 久久久久久九九精品二区国产 | 一级片免费观看大全| 国产精品亚洲美女久久久| av有码第一页| 欧美日本视频| 日本免费a在线| 精品欧美国产一区二区三| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲| 亚洲av成人一区二区三| 免费高清在线观看日韩| 亚洲av片天天在线观看| 国产精品精品国产色婷婷| 香蕉久久夜色| 日日干狠狠操夜夜爽| 精品福利观看| 久久久久九九精品影院| 国产一区二区三区视频了| 欧美日韩一级在线毛片| 日韩欧美 国产精品| 午夜激情福利司机影院| 亚洲美女黄片视频| 欧美日韩亚洲国产一区二区在线观看| 男人舔女人下体高潮全视频| 高清在线国产一区| 天堂动漫精品| 精品卡一卡二卡四卡免费| 国产黄片美女视频| 两个人视频免费观看高清| 最新美女视频免费是黄的| 午夜视频精品福利| 十分钟在线观看高清视频www| avwww免费| 亚洲天堂国产精品一区在线| 天堂√8在线中文| 精品国产国语对白av| 欧美黑人巨大hd| 色老头精品视频在线观看| 国产精华一区二区三区| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 黑人巨大精品欧美一区二区mp4| a级毛片在线看网站| 国产精品一区二区免费欧美| 国内少妇人妻偷人精品xxx网站 | 91九色精品人成在线观看| 国产成人影院久久av| 91字幕亚洲| 国产熟女午夜一区二区三区| 欧美亚洲日本最大视频资源| 真人一进一出gif抽搐免费| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 88av欧美| 亚洲av片天天在线观看| 狠狠狠狠99中文字幕| 午夜两性在线视频| 日韩有码中文字幕| 2021天堂中文幕一二区在线观 | av欧美777| 人人澡人人妻人| 天天添夜夜摸| 国产精品免费视频内射| 久久香蕉激情| 亚洲国产精品sss在线观看| 级片在线观看| 久久久久久久午夜电影| 少妇熟女aⅴ在线视频| 久久久久国内视频| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲国产一区二区在线观看| 精品乱码久久久久久99久播| 久久 成人 亚洲| 狠狠狠狠99中文字幕| 亚洲 欧美 日韩 在线 免费| 真人一进一出gif抽搐免费| 2021天堂中文幕一二区在线观 | 久久狼人影院| 精品高清国产在线一区| 久久久久国内视频| 国产一区在线观看成人免费|