• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOLUTIONS TO THE SYSTEM OF OPERATOR EQUATIONS AXB=C=BXA?

    2018-09-08 07:49:46XiaoZHANG張肖GuoxingJI吉國興

    Xiao ZHANG(張肖)Guoxing JI(吉國興)

    School of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China

    E-mail:1964263480@qq.com;gxji@snnu.edu.cn

    Abstract In this paper,we present some necessary and sufficient conditions for the existence of solutions,hermitian solutions and positive solutions to the system of operator equations AXB=C=BXA in the setting of bounded linear operators on a Hilbert space.Moreover,we obtain the general forms of solutions,hermitian solutions and positive solutions to the system above.

    Key words operator equation;Moore-Penrose inverse;solution;hermitian solution;positive solution

    1 Introduction

    It is known that matrix equations and operator equations have many applications in control theory,information theory,linear system theory,sampling and other areas(cf.[1]).In 1966,Douglas[2]established the well-known “Douglas Range Inclusion Theorem”,which gave some conditions for the existence of a solution to the operator equation AX=B.Later,many scholars concerned the related problems of solutions to some deformations of AX=B(cf.[3–9]).In particular,Daji? and Koliha[10]considered the existence and concrete forms of hermitian solutions and positive solutions to the system of operator equations AX=C,XB=D.Based on that,Arias and Gonzalez[1]studied the existence and expression of positive solutions to operator equation AXB=C with arbitrary operators A,B and C.Afterwards,Vosough and Moslehian[11]restricted the case to the system of operator equations BXA=B=AXB and gave some characterizations of the existence and representations of the solutions to the system.In this paper,we extend the situation,and consider the relevant problems of the solutions to the system of operator equations AXB=C=BXA.

    Throughout this paper,let H be an infinite dimensional complex Hilbert space,we denote the space of all bounded linear operators from H into K by B(H,K),and B(H)when H=K.Let PMdenote the projection onto the closed subspace M of H.For T ∈ B(H),let T?,R(T)and N(T)be the adjoint operator,the range and null space of T,respectively.An operator T∈B(H)is hermitian if T=T?,and positive if hTx,xi≥0 for all x∈H.We call T is regular if there exists some S∈B(H)such that TST=T.At this time,S is said to be an inner inverse of T and denoted by T?.

    We say T is Moore-Penrose invertible if the system

    has a common solution.If the system is solvable,then its solution is unique and denoted by T?.Indeed,the Moore-Penrose inverse of T exists if and only if R(T)is closed(cf.[12]).It is easy to obtain the following properties

    The paper is organized as follows.In Section 2,we consider the existence of solutions to the system of operator equations AXB=C=BXA,and give some necessary and sufficient conditions for the existence of solutions,hermitian solutions and positive solutions to the system AXB=C=BXA.In Section 3,the formulaes for the solutions,hermitian solutions and positive solutions to the system above are obtained.

    2 Properties and Conclusions

    We give some conditions for the existence of solutions,hermitian solutions and positive solutions to the system of operator equations AXB=C=BXA.

    Proposition 2.1 Let A,B,C ∈ B(H).If A and B have closed range,A?CB?=B?CA?,then the following statements are equivalent

    (1)The system of operator equations AXB=C=BXA is solvable;

    (2)AA?CA?A=BB?CB?B=C;

    (3)R(C)? R(A),R(C)? R(B),R(C?)? R(A?)and R(C?)? R(B?).

    Proof (1)?(2)If there exists ansuch that AB=C=BA,then R(C)?R(A),R(C)? R(B),R(C?)? R(A?)and R(C?)? R(B?).Since R(C)? R(A)and R(C?) ? R(A?),it follows that C=AA?C and C?=A?(A?)?C?from “Douglas Range Inclusion Theorem”(cf.[2]).We then obtain C=AA?C=CA?A,which yields C=AA?CA?A.Similarly,we have C=BB?C=CB?B and C=BB?CB?B.

    (2)? (3)As C=AA?CA?A,we can see R(C)? R(A)and R(C?)? R(A?).Analogously,we have R(C)? R(B)and R(C?)? R(B?).

    (3)? (1) It induces that C=BB?C and C=CB?B from the assumptions that R(C)?R(B)and R(C?) ? R(B?).Moreover,we have C=AA?C and C=CA?A from the fact that R(C?)? R(A?)and R(C?)? R(B?).This implies that C=BB?C=BB?CA?A and C=AA?C=AA?CB?B.Since A?CB?=B?CA?,it means that X=A?CB?is a solution of the system AXB=C=BXA. ?

    Remark 2.2 Notice that condition(2)in Proposition 2.1 is obvious,but not superfluous.For instance,let K be a Hilbert space.Put in terms of H=K⊕K⊕K.It is evident that A?=I⊕0⊕0,this follows that A?CB?=B?CA?=0 and AA?CA?A 6=C.Then,by an elementary calculation,we know the system of operator equations AXB=C=BXA is unsolvable.

    In the next proposition,we establish a relationship between solutions to the system AXB=C=BXA and solutions to the system BX=CA?,XB=A?C,which shall be useful to give the general hermitian solutions and positive solutions to the system AXB=C=BXA.

    Proposition 2.3 Let A,B,C ∈ B(H).If A has closed range,R(B)? R(A)and R(B?)?R(A?),then the following conditions are equivalent

    (1)The system of operator equations AXB=C=BXA is solvable;

    (2)R(C)? R(A),R(C?)? R(A?),and the system of operator equations BX=CA?,XB=A?C is solvable.

    Proof (1)?(2)If the system AXB=C=BXA is solvable,then we have R(C)?R(A)and R(C?) ? R(A?).Let∈ B(H)such that AB=C=BA.Then A?C=A?AB.It induces that B=AA?B from inclusion R(B)? R(A),which implies that A?C=A?AAA?B.On the other hand,we have BA?AAA?=BAA?=CA?,this means that A?AAA?is a solution of the system BX=CA?,XB=A?C.

    (2)? (1) It follows from the assumptions that R(C)? R(A)and R(C?)? R(A?)that C=AA?C=CA?A.For∈ B(H)such that B=CA?andB=A?C,we easily know that BA=CA?A=C and AB=AA?C=C,which tell us thatis a solution of the system AXB=C=BXA. ?

    Remark 2.4 If one of R(C)? R(A)and R(C?)? R(A?)in Proposition 2.3 vanishes,then(2)?(1)is untenable.For example,let K be a Hilbert space.Set A=B=I⊕I⊕0 and C=I with respect to H=K⊕K⊕K.Clearly,R(C)?R(A)does not hold.Moreover,A?C=CA?=I⊕I⊕0.It is easy to check that X=I⊕I⊕0 is a solution of the system BX=CA?,XB=A?C.However,a simple calculation shows that the system AXB=C=BXA is unsolvable.

    We recall that,for A,B ∈ B(H),A ≤?B if and only if A=B==(cf.[13,Lemma 2.1]).This will lead to the following result.

    Proposition 2.5 Let A,B,C∈B(H).If C≤?A,C≤?B and C has closed range,then the system AXB=C=BXA is solvable.

    Proof Since C ≤?A,it follows that C=PR(C)A=APR(C?).So C=CC?A=AC?C.Similarly,if C ≤?B,there would be C=CC?B=BC?C.Consequently,C=BC?C=BC?CC?A=BC?A and C=AC?C=AC?CC?B=AC?B.This implies that X=C?is a solution of the system AXB=C=BXA. ?

    In the next proposition,we obtain another sufficient condition for the existence of solutions to the system of operator equations AXB=C=BXA.

    Proposition 2.6 Let A,B,C∈B(H).If C≤?A,C≤?B and there exists a T∈B(H)such that C ≤?ATB,C ≤?BTA,then the system of operator equations AXB=C=BXA is solvable.

    Proof From the assumption that C ≤?ATB,we have C=ATB=It follows that C=A=from the fact C ≤?A.It is immediate that C=from C ≤?BTA and C ≤?B.We easily see that C=CTA=BTC and C=CTB=ATC,this yields C=BTC=BTCTA and C=ATC=ATCTB.Therefore X=TCT is a solution of the system AXB=C=BXA.?

    In the remainder of this section,we shall consider the extra condition AA?=A?A.Under this hypothesis,we get a relationship between hermitian solutions to the system AXB=C=BXA and hermitian solutions to the system BX=CA?,XB=A?C.

    Corollary 2.7 Let A,B,C ∈ B(H).If A has closed range with A?A=AA?and C ≤?B ≤?A,then the following statements are equivalent

    (1)There is a hermitian operator∈B(H)such that AB=C=BA;

    (2)There exists a hermitian operator∈ B(H)such that B=CA?andB=A?C.

    Proof Suppose A has closed range and C ≤?B ≤?A,This implies the equation AXB=C=BXA is solvable by Proposition 2.5.

    In the following,we present a relationship between positive solutions to the system AXB=C=BXA and positive solutions to the system BX=CA?,XB=A?C.

    Corollary 2.8 Let A,B,C ∈B(H).If A has closed range,A?A=AA?and C ≤?B ≤?A,then the followings are equivalent

    (1)There exists a positive operator∈B(H)satisfying AB=C=BA;

    (2)There is a positive operator∈ B(H)such that BeY=CA?,B=A?C.

    3 Main Theorems

    In the following,we characterize the concrete forms of solutions,hermitian solutions and positive solutions to the system of operator equations AXB=C=BXA.

    Theorem 3.1 Let A,B,C∈B(H).If A has closed range and C≤?B≤?A,then the general solution of the system AXB=C=BXA is

    where S∈B(H)is arbitrary.

    Proof Suppose A has closed range and C ≤?B ≤?A.Then we know that B and C have closed range.It follows from Proposition 2.5 that the system AXB=C=BXA is solvable.Combining[14,Theorem 2.1],one can easily obtain that the general solution of the equation AXB=C is

    where U∈B(H)is an arbitrary operator.If X satisfies the equation BXA=C,then

    this implies that B=BB?A=BA?A from the assumption B ≤?A.Hence

    It is immediate that U is a solution of the equation

    Using[14,Theorem 2.1]again,we get

    where S∈B(H)is arbitrary.By putting U in equation(3.2),we obtain that the solution of the system AXB=C=BXA is

    where S∈B(H)is arbitrary.?

    Remark 3.2 Here are some special cases.

    (i)A=B.In this way,the general solution of the system in Theorem 3.1 is

    where S∈B(H)is arbitrary.

    (ii)C=B.It is clear that the general solution of the system in Theorem 3.1 is

    where S∈B(H)is arbitrary.

    (iii)In fact,if we take A=B and S=0 in(3.1),then the inner inverse of operator A as in(3.1)cannot be replaced by its Moore-Penrose inverse.For example,we let K be a Hilbert space.Put with respect to H=K⊕K⊕K.It is evident that C≤?A.By an elementary calculation,one obtains

    which implies that

    It is not hard to see that the specific solution A?CA?changes along with the change of a13or a31.However,A?CA?=C.

    In the next theorem,we characterize the concrete form of hermitian solutions to the system of equations AXB=C=BXA.

    Theorem 3.3 Let A,B,C ∈ B(H)such that A has closed range with A?A=AA?and C ≤?B ≤?A.If the system AXB=C=BXA has a hermitian solution,then the general hermitian solutions have the matrix representation

    in terms of H=R(A?)⊕ N(A),where x22is hermitian and x11=PR(A?)PR(A?)satisfying thatis a hermitian solution of BX=CA?,XB=A?C.

    Proof Suppose X ∈B(H)has the matrix decomposition(3.3).Since B≤?A and A?A=AA?,we get A and B have the matrix representations

    with respect to H=R(A?)⊕N(A).Thus

    On the contrary,assume that X∈B(H)is a hermitian solution of AXB=C=BXA.Set

    in terms of H=R(A?)⊕ N(A).From Corollary 2.7 and AA?=A?A,it induces that=PR(A?)XPR(A?)is a hermitian solution of BX=CA?,XB=A?C.Obviously,x11=PR(A?)eY PR(A?).The fact that X is hermitian implies x21=and x22is hermitian.Therefore X has the form of(3.3). ?

    In the following,we obtain the representation of positive solutions to the system of equations AXB=C=BXA.

    Theorem 3.4 Let A,B,C ∈ B(H)such that A has closed range with A?A=AA?and C ≤?B ≤?A.If the system AXB=C=BXA has a positive solution,then the general positive solutions have the matrix representation

    with respect to H=R(A?)⊕ N(A),where f is positive,R(x12) ? Rand x11=PR(A?)PR(A?)satisfying∈ B(H)is a positive solution of BX=CA?,XB=A?C.

    Proof Suppose X ∈B(H)has the matrix representation(3.4).Since B≤?A and A?A=AA?,it follows that A and B have the matrix representations

    in terms of H=R(A?)⊕N(A).Thus

    Conversely,assume that X∈B(H)is a positive solution of AXB=C=BXA.Set

    with respect to H=R(A?)⊕ N(A).Combining Corollary 2.8 with AA?=A?A,one obtains=PR(A?)XPR(A?)is a positive solution of BX=CA?,XB=A?C.Clearly,x11=PR(A?)eY PR(A?).Since X is positive,it follows from[1,Theorem 4.2]that x21=with f is positive.Hence X has the form of(3.4).?

    少妇精品久久久久久久| 日本欧美国产在线视频| 爱豆传媒免费全集在线观看| 欧美精品一区二区大全| 亚洲国产看品久久| 亚洲欧美激情在线| 丰满迷人的少妇在线观看| 午夜激情久久久久久久| 欧美日韩综合久久久久久| 欧美日本中文国产一区发布| 日本黄色日本黄色录像| 久久久精品免费免费高清| 在线观看一区二区三区激情| 男人舔女人的私密视频| 欧美日韩精品网址| 成人影院久久| 高清av免费在线| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 欧美+亚洲+日韩+国产| 在现免费观看毛片| 亚洲精品国产av成人精品| 久久ye,这里只有精品| 欧美日韩福利视频一区二区| 免费高清在线观看视频在线观看| 母亲3免费完整高清在线观看| 丰满饥渴人妻一区二区三| 欧美精品亚洲一区二区| 99国产精品99久久久久| 精品一区二区三区av网在线观看 | 女人精品久久久久毛片| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看 | 久久鲁丝午夜福利片| 久久女婷五月综合色啪小说| 人妻一区二区av| 男女无遮挡免费网站观看| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 一本—道久久a久久精品蜜桃钙片| 18在线观看网站| 国产女主播在线喷水免费视频网站| 日韩 欧美 亚洲 中文字幕| 欧美日韩av久久| 亚洲欧美一区二区三区国产| 我要看黄色一级片免费的| 男人爽女人下面视频在线观看| 色视频在线一区二区三区| 国产精品av久久久久免费| 国产一区二区三区综合在线观看| 日韩视频在线欧美| 久久亚洲精品不卡| 国产在线一区二区三区精| 亚洲国产欧美日韩在线播放| 啦啦啦视频在线资源免费观看| 成人18禁高潮啪啪吃奶动态图| 日日摸夜夜添夜夜爱| 黄片播放在线免费| 中文精品一卡2卡3卡4更新| 午夜久久久在线观看| 色综合欧美亚洲国产小说| 色94色欧美一区二区| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 水蜜桃什么品种好| 精品高清国产在线一区| 脱女人内裤的视频| 久久精品成人免费网站| 又大又黄又爽视频免费| kizo精华| 亚洲成色77777| 国产真人三级小视频在线观看| 午夜福利乱码中文字幕| 一本大道久久a久久精品| 欧美日韩av久久| 成人国语在线视频| 成人黄色视频免费在线看| 国产男女超爽视频在线观看| 大陆偷拍与自拍| 久久久国产精品麻豆| 免费在线观看影片大全网站 | 久久国产精品男人的天堂亚洲| 国产真人三级小视频在线观看| 男女午夜视频在线观看| 人妻 亚洲 视频| 十八禁高潮呻吟视频| 国产主播在线观看一区二区 | 美女主播在线视频| 亚洲五月婷婷丁香| av片东京热男人的天堂| 高清av免费在线| 亚洲欧洲精品一区二区精品久久久| 久久影院123| 国产男女内射视频| av一本久久久久| www.精华液| 99热国产这里只有精品6| 可以免费在线观看a视频的电影网站| 国产男女内射视频| 精品久久久久久电影网| 精品久久久久久电影网| 人体艺术视频欧美日本| 久久久精品免费免费高清| 十八禁网站网址无遮挡| 成人亚洲精品一区在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品.久久久| 国产成人精品久久久久久| 在线观看免费视频网站a站| 亚洲久久久国产精品| 18禁国产床啪视频网站| 美女中出高潮动态图| 国产一区二区激情短视频 | 久久中文字幕一级| 天堂中文最新版在线下载| 日韩人妻精品一区2区三区| 久久精品成人免费网站| 母亲3免费完整高清在线观看| 女性生殖器流出的白浆| 大陆偷拍与自拍| 午夜福利免费观看在线| 男女免费视频国产| 男人添女人高潮全过程视频| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 精品人妻熟女毛片av久久网站| 51午夜福利影视在线观看| 欧美激情 高清一区二区三区| 99精国产麻豆久久婷婷| 亚洲视频免费观看视频| 亚洲国产精品999| 久久毛片免费看一区二区三区| 久久人妻熟女aⅴ| 亚洲欧洲国产日韩| 青春草亚洲视频在线观看| 亚洲情色 制服丝袜| 黄色怎么调成土黄色| 亚洲欧美一区二区三区国产| 免费看av在线观看网站| 超碰97精品在线观看| 一区二区日韩欧美中文字幕| av天堂在线播放| 99国产精品免费福利视频| 亚洲av日韩在线播放| 欧美人与性动交α欧美精品济南到| 欧美日韩成人在线一区二区| 亚洲熟女精品中文字幕| 精品久久蜜臀av无| 丁香六月欧美| 97精品久久久久久久久久精品| 亚洲第一av免费看| 精品国产一区二区三区久久久樱花| 99精品久久久久人妻精品| 中文字幕最新亚洲高清| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 90打野战视频偷拍视频| 制服诱惑二区| 久久久久久久久免费视频了| 亚洲欧美一区二区三区国产| 涩涩av久久男人的天堂| 老汉色av国产亚洲站长工具| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 久久精品国产综合久久久| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 又粗又硬又长又爽又黄的视频| 午夜免费鲁丝| 侵犯人妻中文字幕一二三四区| 国产淫语在线视频| videosex国产| 后天国语完整版免费观看| 免费久久久久久久精品成人欧美视频| 91九色精品人成在线观看| 久久久精品区二区三区| 午夜免费观看性视频| 国产成人精品久久二区二区91| 婷婷色综合大香蕉| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 又大又爽又粗| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 国产在线观看jvid| 叶爱在线成人免费视频播放| 精品久久久久久电影网| 亚洲中文日韩欧美视频| 午夜91福利影院| 狠狠精品人妻久久久久久综合| 宅男免费午夜| 免费看十八禁软件| √禁漫天堂资源中文www| 手机成人av网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品一区二区在线观看99| 女警被强在线播放| 我的亚洲天堂| 一区二区三区激情视频| 久久亚洲国产成人精品v| 国产成人精品久久二区二区91| av片东京热男人的天堂| 亚洲 欧美一区二区三区| 欧美日韩亚洲高清精品| 亚洲国产日韩一区二区| 在线观看免费日韩欧美大片| 美女扒开内裤让男人捅视频| 亚洲国产精品成人久久小说| tube8黄色片| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| 国产一区二区 视频在线| 欧美性长视频在线观看| av在线app专区| 视频区欧美日本亚洲| 国产97色在线日韩免费| 老司机深夜福利视频在线观看 | 欧美 日韩 精品 国产| 亚洲欧美一区二区三区国产| 日韩 欧美 亚洲 中文字幕| 交换朋友夫妻互换小说| 国产成人免费观看mmmm| 最近手机中文字幕大全| 亚洲国产毛片av蜜桃av| 午夜福利免费观看在线| 两性夫妻黄色片| 两个人看的免费小视频| 亚洲av综合色区一区| 久久鲁丝午夜福利片| 操出白浆在线播放| 国产成人精品久久二区二区免费| 欧美+亚洲+日韩+国产| 夫妻性生交免费视频一级片| 观看av在线不卡| xxxhd国产人妻xxx| 每晚都被弄得嗷嗷叫到高潮| 老汉色av国产亚洲站长工具| 欧美精品一区二区免费开放| 亚洲国产精品一区三区| 国产黄色视频一区二区在线观看| 两个人免费观看高清视频| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 精品国产超薄肉色丝袜足j| 一本一本久久a久久精品综合妖精| 国产精品成人在线| 久久人人爽av亚洲精品天堂| 欧美 日韩 精品 国产| 亚洲av日韩精品久久久久久密 | 国产在视频线精品| 国产免费又黄又爽又色| 香蕉丝袜av| 成人三级做爰电影| 秋霞在线观看毛片| 青春草视频在线免费观看| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 美女国产高潮福利片在线看| av视频免费观看在线观看| 这个男人来自地球电影免费观看| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 观看av在线不卡| 大片免费播放器 马上看| 精品亚洲成a人片在线观看| 大话2 男鬼变身卡| 日韩av免费高清视频| 男人爽女人下面视频在线观看| 免费黄频网站在线观看国产| 男女免费视频国产| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 国产一卡二卡三卡精品| 久久性视频一级片| 人人澡人人妻人| 91字幕亚洲| 国产熟女欧美一区二区| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 久久亚洲国产成人精品v| 国产国语露脸激情在线看| 夜夜骑夜夜射夜夜干| 一区福利在线观看| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡| 成年av动漫网址| 午夜福利在线免费观看网站| 成年女人毛片免费观看观看9 | 丝袜脚勾引网站| 亚洲国产精品999| 国产熟女午夜一区二区三区| 精品国产国语对白av| 免费黄频网站在线观看国产| 老鸭窝网址在线观看| 两个人看的免费小视频| 午夜精品国产一区二区电影| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 亚洲精品第二区| 亚洲国产日韩一区二区| 老司机午夜十八禁免费视频| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 另类亚洲欧美激情| 两性夫妻黄色片| 午夜福利视频精品| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 在线观看国产h片| 久久精品国产a三级三级三级| 黄频高清免费视频| 国产精品人妻久久久影院| 丰满饥渴人妻一区二区三| 精品久久久久久久毛片微露脸 | 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 亚洲第一av免费看| 久久99精品国语久久久| 亚洲国产欧美网| 午夜福利乱码中文字幕| 亚洲色图 男人天堂 中文字幕| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 观看av在线不卡| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 欧美日韩av久久| www.av在线官网国产| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆乱淫一区二区| 国产成人精品在线电影| 国产男女内射视频| 国产一级毛片在线| 国产伦人伦偷精品视频| 久久ye,这里只有精品| 久久精品国产a三级三级三级| 欧美精品人与动牲交sv欧美| 久久久久久久精品精品| 一个人免费看片子| 国产精品国产三级专区第一集| 国产免费一区二区三区四区乱码| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 日本欧美国产在线视频| 亚洲视频免费观看视频| 视频区图区小说| 下体分泌物呈黄色| 欧美激情极品国产一区二区三区| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 99精品久久久久人妻精品| 高清欧美精品videossex| 欧美黄色片欧美黄色片| 菩萨蛮人人尽说江南好唐韦庄| 少妇 在线观看| 精品久久久久久久毛片微露脸 | 久久久精品国产亚洲av高清涩受| 老司机亚洲免费影院| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 亚洲欧美激情在线| 精品免费久久久久久久清纯 | 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看 | 男女午夜视频在线观看| 国产精品偷伦视频观看了| 高清欧美精品videossex| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 久久久精品区二区三区| 久久人妻福利社区极品人妻图片 | 欧美激情 高清一区二区三区| e午夜精品久久久久久久| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯 | 韩国精品一区二区三区| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 男人添女人高潮全过程视频| 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 国产一区二区激情短视频 | 国精品久久久久久国模美| 欧美黑人精品巨大| 久久这里只有精品19| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费| 久久久久久久精品精品| av欧美777| 亚洲国产av新网站| 少妇 在线观看| 亚洲欧美一区二区三区黑人| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 首页视频小说图片口味搜索 | 国产精品成人在线| 久久久久网色| 午夜福利在线免费观看网站| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 久久这里只有精品19| 另类精品久久| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区久久| 欧美黑人欧美精品刺激| 777米奇影视久久| 三上悠亚av全集在线观看| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 中文字幕人妻丝袜一区二区| 777米奇影视久久| 97在线人人人人妻| 在线观看免费午夜福利视频| 秋霞在线观看毛片| 日本a在线网址| av国产久精品久网站免费入址| 蜜桃在线观看..| 美女扒开内裤让男人捅视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一区蜜桃| 亚洲五月婷婷丁香| 欧美日韩精品网址| 免费观看av网站的网址| 一级毛片女人18水好多 | 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 亚洲熟女精品中文字幕| 人妻人人澡人人爽人人| 男女床上黄色一级片免费看| 国产一区二区在线观看av| 免费在线观看影片大全网站 | 一区二区三区四区激情视频| 午夜免费男女啪啪视频观看| 国产一区亚洲一区在线观看| 日本五十路高清| 日本午夜av视频| 亚洲欧美精品综合一区二区三区| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 看十八女毛片水多多多| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 中文精品一卡2卡3卡4更新| 国产爽快片一区二区三区| 国产精品久久久久久人妻精品电影 | 人妻 亚洲 视频| 午夜激情久久久久久久| 精品人妻一区二区三区麻豆| 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 国产精品av久久久久免费| 99国产精品99久久久久| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 国产不卡av网站在线观看| 婷婷丁香在线五月| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 日韩大码丰满熟妇| 亚洲专区国产一区二区| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 国产av精品麻豆| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 大片电影免费在线观看免费| 在线观看人妻少妇| 亚洲免费av在线视频| 亚洲av成人不卡在线观看播放网 | 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 国产精品一国产av| 国产亚洲av高清不卡| 母亲3免费完整高清在线观看| 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 日韩免费高清中文字幕av| 国产精品av久久久久免费| 美国免费a级毛片| 欧美国产精品一级二级三级| 国产又爽黄色视频| 首页视频小说图片口味搜索 | 亚洲免费av在线视频| www.自偷自拍.com| 日本一区二区免费在线视频| 中文字幕制服av| 国产精品一国产av| 欧美亚洲日本最大视频资源| 免费看十八禁软件| a 毛片基地| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 日韩av不卡免费在线播放| 久热爱精品视频在线9| 天天操日日干夜夜撸| 国产片特级美女逼逼视频| 香蕉丝袜av| 美国免费a级毛片| 99精国产麻豆久久婷婷| 国语对白做爰xxxⅹ性视频网站| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 国产熟女欧美一区二区| 99国产精品99久久久久| 亚洲人成77777在线视频| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 脱女人内裤的视频| 捣出白浆h1v1| 丰满迷人的少妇在线观看| 亚洲久久久国产精品| 久久99热这里只频精品6学生| 19禁男女啪啪无遮挡网站| 男男h啪啪无遮挡| 五月开心婷婷网| 久久国产亚洲av麻豆专区| 老司机影院毛片| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| av不卡在线播放| cao死你这个sao货| 亚洲精品日本国产第一区| 天天躁夜夜躁狠狠久久av| 一级黄色大片毛片| 国产黄频视频在线观看| 久久精品久久久久久久性| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网 | 国产精品 欧美亚洲| 91麻豆精品激情在线观看国产 | 视频区图区小说| 新久久久久国产一级毛片| 成人国语在线视频| 日本欧美视频一区| 亚洲综合色网址| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 搡老乐熟女国产| 亚洲国产日韩一区二区| 国产1区2区3区精品| 女人久久www免费人成看片| 一本久久精品| 国产成人精品久久二区二区91| 777久久人妻少妇嫩草av网站| 国产成人影院久久av| 一区二区三区激情视频| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 极品少妇高潮喷水抽搐| av网站在线播放免费| 亚洲精品一二三| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 久久久久国产精品人妻一区二区| 如日韩欧美国产精品一区二区三区| 18禁观看日本| 亚洲免费av在线视频| 精品视频人人做人人爽| 久久影院123| 19禁男女啪啪无遮挡网站| 一本久久精品| 高清黄色对白视频在线免费看| 国产视频一区二区在线看| 一区二区三区精品91| 亚洲 国产 在线| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 久久久久久久精品精品| 国产精品av久久久久免费| a 毛片基地| 国产精品一国产av| 亚洲国产精品国产精品| 色综合欧美亚洲国产小说| 18禁国产床啪视频网站| 免费在线观看日本一区| 久久中文字幕一级| 亚洲欧美中文字幕日韩二区| 国产黄频视频在线观看| 亚洲图色成人| 高清av免费在线| 男女床上黄色一级片免费看| 9191精品国产免费久久| 满18在线观看网站| 建设人人有责人人尽责人人享有的| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 伦理电影免费视频| 欧美激情极品国产一区二区三区| 久久精品国产综合久久久| 久久免费观看电影| 蜜桃国产av成人99| 婷婷色综合大香蕉| 国产又爽黄色视频| 亚洲情色 制服丝袜| 欧美日韩综合久久久久久| 亚洲欧美中文字幕日韩二区| 麻豆国产av国片精品| tube8黄色片|