• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NOTE ON THE UNIQUENESS AND THE NON-DEGENERACY OF POSITIVE RADIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS AND ITS APPLICATION?

    2018-09-08 07:49:42ShinjiADACHI

    Shinji ADACHI

    Department of Mathematical and Systems Engineering,Faculty of Engineering,Shizuoka University,3-5-1 Johoku,Naka-ku,Hamamatsu 432-8561,Japan

    E-mail:adachi@shizuoka.ac.jp

    Masataka SHIBATA

    Department of Mathematics,Tokyo Institute of Technology,2-12-1 Oh-okayama,Meguro-ku,Tokyo 152-8551,Japan

    E-mail:shibata@math.titech.ac.jp

    Tatsuya WATANABE

    Department of Mathematics,Faculty of Science,Kyoto Sangyo University,Motoyama,Kamigamo,Kita-ku,Kyoto 603-8555,Japan

    E-mail:tatsuw@cc.kyoto-su.ac.jp

    Abstract In this paper,we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations.Using detailed ODE analysis,we extend previous results to cases where nonlinear terms may have sublinear growth.As an application,we obtain the uniqueness and the non-degeneracy of ground states for modified Schr?dinger equations.

    Key words positive radial solution;uniqueness;non-degeneracy;shooting method

    1 Introduction and Main Results

    In this paper,we consider the uniqueness and the non-degeneracy of positive radial solutions for the following semilinear elliptic problem

    where N ≥2 and g:[0,∞)→R.Especially we are interested in the case where the nonlinear term g may have a sublinear growth at infinity.

    Equation(1.1)appeared in various fields of mathematical physics and biology,and was studied widely.Particularly,almost optimal conditions for the existence of nontrivial solutions were obtained in[5,6,17].Equation(1.1)has the variational structure and solutions of(1.1)can be characterized as critical points of the functional E:H1(RN)→R defined by

    There are lots of works concerning with the uniqueness of positive radial solutions for(1.1).See[10,20]for the model case g(u)= ?u+u3or g(u)= ?u+upand[4,18,22,23,25–27,29]and references therein for more general nonlinearities.But there still remains a gap between sufficient conditions for the existence and those for the uniqueness.Especially when the nonlinear term may have sublinear growth at infinity,the uniqueness is not known in general.

    Once we could obtain the uniqueness of positive solutions of(1.1)and go back to its proof,we can also show that the unique positive solution of(1.1)is non-degenerate,that is,the linearized operator L= ?+g′(u)has exactly N-dimensional kernel which is given by span(see also Corollary 2.4 below).This type of non-degeneracy can be applied in various ways.See for example[14,24]for singularly perturbed problems,[21]for the existence of traveling waves of nonlinear Schr?dinger equations and[30]for the(in)stability of standing waves for nonlinear Schr?dinger equations.

    Our aim of this paper is to prove the uniqueness and the non-degeneracy of positive radial solutions of(1.1)for general nonlinearities to which previous results cannot be applied.Especially as we have mentioned above,we are interested in the case where the nonlinear term may have sublinear growth at infinity.

    To state our main result,we impose the following conditions on the nonlinear term g:

    (G1)g ∈ C1[0,∞),g(0)=0 and g′(0)<0.

    (G3)There exists ζ>b such that G(ζ)=g(s)ds>0.

    (G4)There exists s?∈ (b,]such that Kg(s)is decreasing on(b,s?)and Kg(s)>1 on(b,s?).If s?

    (G5)Kg(s)≤1 on(0,b),

    here Kg(s)is the growth function of g(s)which is defined by Roughly speaking,the function Kgmeasures growth orders at zero and infinity.For example if g(s)= ?s+sp,we can easily see that Kg(0)=1 and Kg(∞)=p.Especially when Kg(∞) ∈ (0,1),the nonlinear term g has sublinear growth at infinity.We also note that if b< ∞,then it follows that kukL∞

    In this setting,we obtain the following result.

    Theorem 1.1 Assume(G1)–(G5).Then(1.1)has at most one positive radial solution.Moreover the corresponding linearized operator L= ? +g′(u)does not have 0-eigenvalue in

    As for the existence of a positive radial solution of(1.1),it suffices to assume(G1),(G3)and the following additional conditions(see[5,6,17]):

    Although the existence of a positive radial solution can be obtained under weaker assumptions,we don’t give precise statements here.By Theorem 1.1 and Corollary 2.4 below,we have the following result.

    Corollary 1.2 Assume(G1)–(G6).Then the positive radial solution of(1.1)is unique and non-degenerate.

    Now since we are interested in the positive radial solutions,(1.1)reduces to the following ordinary differential equation

    To obtain the uniqueness of positive radial solutions of(1.3),we apply the shooting method as in[20,22].More precisely,let us consider the initial value u(0)=d for d>0 and denote by R(d)the first zero of u=u(r,d).Then it suffices to show that there exists a unique d0>0 such that R(d0)= ∞.To this end,we consider the variation δ(r,d)=(r,d).As in[20,22],the key is to construct a suitable comparison function which has the same zero as δ.Although a general method based on I-theorem was established in[22],this method may fail if the nonlinear term has a sublinear growth at infinity.Thus our main purpose is the construction of the comparison function without using I-theorem(see also Remarks 2.6,3.7 below).Consequently,we are able to improve the result in[22]to obtain the non-degeneracy of the unique positive radial solution of(1.1).

    As an application of Theorem 1.1,we study the uniqueness and the non-degeneracy of ground states for the following modified Schr?dinger equation

    where N≥2,λ>0,κ>0 and p>1.In Section 4,we will see that the quasilinear problem(1.4)can be transformed into a semilinear problem of form(1.1).Then by Theorem 1.1,two advances on previous results for(1.4)can be made:one is the uniqueness result for N=2 which was not studied in[3],and the other is the non-degeneracy result for 1

    This paper is organized as follows.In Section 2,we classify the set of initial values as in[20,22]and prove Theorem 1.1,leaving the proof of the main proposition into Section 3.Section 3 is the most technical part and we will construct a suitable comparison function by using detailed ODE analysis.Finally in Section 4,we study the uniqueness of positive radial solutions for a class of quasilinear elliptic problems.Especially we will apply Theorem 1.1 to obtain a completely optimal result for the uniqueness and the non-degeneracy of complex valued ground states of modified Schr?dinger equations in Subsection 4.4.

    2 Classification of the Set of Initial Values and Preliminaries

    In this section,we give some preliminaries and prove Theorem 1.1.To this end,we study the structure of radial solutions of the following ODE

    For d>0,we denote the unique solution of(2.1)by u(·,d).Then as in[20]and[22],we can classify the sets of initial values as follows

    When d ∈ N,we may assume that R(d)is a first zero of u(r,d).Then it follows that u′(R)<0.Furthermore when d∈G,we set R(d)=∞.In this setting,we have the following result.

    Proposition 2.1 We obtain the following properties.

    (i)The sets N,G and P are disjoint,N ∪P ∪G=(0,b)and(0,b]? P.Especially if u is a solution of(1.3),then u(0)>b.Furthermore N and P are both open in(0,b).

    (ii)If d∈N∪G,then the corresponding solution u(r,d)of(2.1)is monotone decreasing with respect to r.

    (iii)If d∈G,then u(k)(r,d),k=0,1,2 decay exponentially at infinity.Moreover it follows that

    Next in order to study the uniqueness and the non-degeneracy of the positive radial solution of(2.1),we consider the following linearized problem For a solution u=u(·,d)of(2.1),we denote the unique solution of(2.3)by δ(·,d)and sometimes we denote it by δ(·)for simplicity.Our first purpose is to establish the following result.

    Proposition 2.2 Suppose(G1)–(G4)hold.

    (i)If d ∈ G,then δ(r,d)has at least one zero in(0,∞).

    (ii)Let d0=inf(N ∪ G).Then d0∈ G and δ(r,d0)has exactly one zero rδ∈ (0,∞).Moreover it follows that

    (iii)Let d ∈ G and suppose that δ(r)→ ?∞ as r→ ∞.Then there exists ε>0 such that(d,d+ ε)? N and(d? ε,d)? P.

    Proof When b< ∞,the proof can be found in[25].Thus it suffices to consider the case b=∞.

    To prove(i),we suppose by contradiction that δ(r,d)>0 on(0,∞).First differentiating(2.1),we have

    Then by a direct calculation,we obtain the following Picone identity

    Integrating it over(r,r)for any(r,r)?(0,∞),we get

    Now since both u and u′decay exponentially at infinity,also decays exponentially.Moreover it follows that either δ),δ′()→0 or δ(),δ′()→ ∞as→ ∞(see[22]Lemma 2(b)for the proof).In the former case,δ,δ′decay exponentially and δ′/δ→pas→∞.In the latter case,we also have δ′()/δ(r)>0 for larger.Thus in both cases,we obtain

    On the other hand since δ(0)=1,δ′(0)=0 and u′(0)=0,we have from(2.1)that

    Thus it follows that

    This is a contradiction and hence δ has at least one zero.

    Finally proofs of(ii)and(iii)can be done by similar arguments in[22]Lemmas 3(b)and 10. ?

    We note that if δ(r,d)has exactly one zero in(0,R)for d ∈ N ∪ G,then d is called admissible.Moreover if d is admissible,and δ(R,d)<0 for d ∈ N or δ(r) → ?∞ as r → ∞for d∈G,then d is said to be strictly admissible(see[20]and[22]).Our goal is to prove the following result which shows the strict admissibility of any admissible d∈N∪G.We will give its proof in Section 3.

    Proposition 2.3 Assume(G1)–(G5)and let d ∈ N ∪ G.Suppose further that δ(r,d)has exactly one zero in(0,R).Then it follows that δ(R,d)<0 for d ∈ N or= ?∞ for d∈G.

    Now we are ready to prove Theorem 1.1.

    Proof of Theorem 1.1 First we prove the uniqueness.To this end,we suppose by contradiction that problem(1.3)has at least two positive radial solutions.Especially one has G 6=?.

    Now by Proposition 2.2(ii),d0=inf(N∪G)∈G is admissible and hence d0is strictly admissible by Proposition 2.3.Thus by Proposition 2.2(iii),there exists ε>0 such that

    Moreover taking ε smaller if necessary,we may assume that d ∈ (d0,d0+ε)is admissible.In fact since d0is strictly admissible,it follows that δ(r0,d0)<0,δ′(r0,d0)<0 andfor sufficiently large r0>0.Thus for d sufficiently close to d0,δ(r,d)has exactly one zero on(0,r0],δ(r0,d)<0,δ′(r0,d)<0 and g′?u(r,d)?<0 for r ∈ (r0,R(d)).If δ(r)= δ(r,d)has a zero r1∈ (r0,R(d)),then δ has a negative minimum at r2∈ (r0,r1)and hence

    This is a contradiction.Thus d ∈ (d0,d0+ε)is admissible,that is,δ(r,d)has exactly one zero on(0,R(d))for any d∈(d0,d0+ε).

    Next since we assumed that the set G has at least two elements,we have(d0,) ∩ G 6= ?and hence we can define

    Then from(2.4),it follows that d1>d0.Moreover by the definition,we can see that(d0,d1)?N.Finally since N and P are open by Proposition 2.1(i),we also have d1∈G.Especially by Proposition 2.2(i),δ(r,d1)has at least one zero on(0,R).

    Let N(d)be the number of zeros of δ(r,d)on(0,R(d)).Next we claim that N(d) ≤ 1 for d∈(d0,d1)?N.Indeed we know that N(d)=1 for any d∈(d0,d0+ε).Moreover by the continuity of zeros of δ(r,d)with respect to d,N(d)changes only one by one as d increases.Especially by Proposition 2.3,it cannot happen that N(d)increases from 1 to 2,otherwise such a d∈(d0,d1)is admissible but not strictly admissible.This implies that N(d)≤1 for any d∈(d0,d1).

    Now suppose that δ(r,d1)has exactly one zero.Then by Proposition 2.3,it follows that d1is strictly admissible and hence(d1? ε′,d1) ? P for some ε′>0 by Proposition 2.2(iii).But this contradicts to the definition of d1.Next we suppose that δ(r,d1)has at least two zeros.Since zeros of δ(r,d)depend continuously on d,we have N(d) ≥ 2 for d

    Finally,let L= ? +g′(u):H2(RN) → L2(RN)be the linearized operator around u,and suppose that ?0is a nontrivial radial eigenfunction corresponding to 0-eigenvalue of L,that is,

    Since ?0and δ satisfy the same initial condition at the origin, ?0is a constant multiple of δ.Then by Proposition 2.3,we have ?0→ ?∞ as r → ∞ and hence ?06∈(RN).This completes the proof. ?

    Once we could obtain the uniqueness of the positive radial solution,one can show more precise information on the spectrum of L.Indeed we can prove the following result.

    Corollary 2.4 Assume(G1)–(G6)and let L= ? +g′(u)be the linearized operator around the unique positive radial solution u of(1.1).Then the following properties hold.

    (i) σ(L)= σp(L)∪σe(L),where σp(L)and σe(L)are the point spectrum and the essential spectrum of L respectively.

    (ii) σe(L)=(?∞,g′(0)]and σp(L) ? (g′(0),∞).

    (iii)Ifμ ∈ σp(L),then the corresponding eigenfunction ?(x)satisfies

    for any small ε>0 and some C?>0.

    (iv)Ifμ∈σp(L)∩(0,∞),then the corresponding eigenfunction is radially symmetric.

    (v)The principal eigenvalue μ1(L)>0 is simple,and the corresponding eigenfunction ? can be chosen to be positive.

    (vi)The second eigenvalueμ2(L)is zero,and the eigenspace associated with the eigenvalueμ=0 is spanned by

    Proof The proof can be done in a similar way as in[4,Theorem 5.4,P.259].Thus we omit the proof. ?

    Now we give some preliminaries to prove Proposition 2.3.For s>0 and λ>0,we define the I-function by

    We note by the definition of Kg(s)that

    Lemma 2.5 Assume(G1)–(G5).

    (i)For each t∈ (b,s?),there exists a unique Λ(t)>0 such that

    Moreover the map t 7→ Λ(t)is continuous.

    (iii)If s?<,then I(s,λ)<0 for all s ∈ [s?,)and λ >0.

    Proof (i)First we claim that I(s,λ)>0 for 00 for 00,from which we conclude that I(s,λ)>0 on(0,b].

    Next by(G4),Kg(s)is decreasing on(b,s?)and Kg(t)>1 for t∈ (b,s?).Thus there exists a unique λ>0 such that Kg(t)=1+.Putting Λ(t)=,(i)holds.

    (iii)Let s ∈ [s?,b).Then one has from(G4)that Kg(s) ≤ 1 and>1.Thus from(2.5),the claim follows.?

    Remark 2.6 Ifb=s?= ∞,Lemma 2.5(i)shows that I-theorem in[22]holds(see[22,Theorem 1]).Then Proposition 2.3 follows from Lemma 8 in[22].

    3 Proof of the Strict Admissibility

    In this section,we prove Proposition 2.3.To this end,let d ∈ N∪G and assume that δ(r,d)has exactly one zero in(0,R).Furthermore we suppose by contradiction that δ(R)=0 when d ∈ N and δ(r)stays bounded at infinity when d ∈ G.Then by Proposition 2.2 and from(2.2),we can show that δ′(R)>0 if d ∈ N and δ(r) → 0 exponentially as r → ∞ if d ∈ G(see[22,Lemma 2,p.497]).

    To derive a contradiction,we define

    We note that vλ(0)= λu(0)>0.Moreover one can see that vλsatisfies

    Our aim is to compare δ with vλ,and our goal is to show the following lemma.

    Lemma 3.1(Key lemma) Let rδ∈ (0,R)be the unique zero of δ(r,d).Then there exists λ0>0 such that

    As we will see later,we can prove Proposition 2.3 by Lemma 3.1(see also Remark 3.7 below).The proof of Lemma 3.1 consists of several lemmas.

    Lemma 3.2 Let λ>0.Then we obtain the following properties.

    (i) For sufficiently large r>0,it follows that vλ(r)<0(vλ(R)<0 when R< ∞).Especially vλhas a zero on(0,R).

    (ii)For sufficiently large λ >0,vλdoes not have any zeros on[0,rδ].Especially it follows that vλ>0 on[0,rδ].

    Proof (i)First we consider the case d∈G.By the definition of vλand from(2.2),one has

    Since vλis continuous and vλ(0)>0,the claim holds.When d ∈ N,the claim also follows from vλ(R)=Ru′(R)<0.

    (ii)By the definition of vλ,it follows that

    Thus the r.h.s of(3.3)is positive for sufficiently large λ. ?

    Lemma 3.3 Let rδbe the unique zero of δ(r)and suppose that δ(r)→ 0 as r → R.Then it follows that b

    Proof First we show that b

    Integrating(3.4)over[rδ,r]and using the integration by parts,we get

    Now suppose that d ∈ G.Then since u,u′and δ decay exponentially as r → ∞,we can pass the limit r→∞to obtain

    However since g(u)<0 and δ<0 on(rδ,∞),this is a contradiction.Next let d ∈ N.In this case,one has u(R)=0,u′(R)<0,δ(R)=0 and δ′(R)>0.Taking r=R,we get

    This is a contradiction again and hence b

    Next we prove u(rδ)

    Moreover taking large λ >0,we have by Lemma 3.2(ii)that vλ>0 on(0,rδ).Thus we obtain From(2.3),(3.2)and δ(rδ)=0,we can apply the Sturm Comparison Principle(Lemma A.1(b)below)to show that vλhas a zero on(0,rδ).This contradicts to Lemma 3.2(ii)and hence the claim holds. ?

    Now by Lemma 3.3,we can apply Lemma 2.5(i)with t=u(rδ).Putting λ = Λ?u(rδ)?,we get

    Then by Lemma 2.5(ii)and the continuity of u,we also have

    Finally since u is decreasing,we obtain

    Next we investigate the sign of vλnear its zero.

    Lemma 3.4 We obtain the following properties.

    (i) Let λ ≥ λ and suppose that vλhas a zero r0∈ (rδ,R).Then it follows that either(r0)0,or(r0)=0 and(r0)>0.In other words,if vλis negative before r0,then vλmust be positive after r0.

    (ii)Suppose that vλhas a zero r0∈(0,rδ).Then it follows that either(r0)6=0,or(r0)=0 andr0)<0.In other words,ifis positive before r0,then vλmust be negative after r0.

    Proof Assume that vλ(r0)=0 and(r0)=0 for some r0∈(rδ,R).Then from(3.1)and(3.5),one has

    Thus the claim holds.(ii)can be shown in a similar way. ?

    Lemma 3.5 Let λ ≥ λ.Then vλhas at most one zero on(rδ,R).More precisely if vλhas a zero r0∈ (rδ,R),then it follows that

    Proof First we prove the following claim.

    Indeed suppose by contradiction that vλ(r)>0 for r>nearThen by Lemma 3.2(i),vλhas a next zero∈(,R)and vλ>0 on().Thus from(3.5),one has

    In this case,we can apply Lemma A.1(a)to conclude that δ must have a zero on(?r0, r0)?(rδ,R).This contradicts to the assumption which we made in the beginning of this section and hence the claim holds.

    Now we assume that there exists r0∈ (rδ,R)such that vλ(r0)=0.Then by the claim above,it follows that vλ<0 on a right neighborhood of r0.Moreover if vλhas a next zero r1>r0,then vλmust change its sign from negative to positive by Lemma 3.4(i).This contradicts to the above claim provided=r1and hence

    Next we observe from(3.6)and by Lemma 3.4(i)that vλ>0 on a left neighborhood of r0.If there exists r2∈ (rδ,r0)such that vλ(r2)=0,it follows that vλ>0 on(r2,r0)? (rδ,R).Then by applying the above claim with?r=r2,we obtain a contradiction.This implies that vλ>0 on(rδ,r0)andr0)<0.?

    Lemma 3.6 vλhas a unique zero r ∈ (0,rδ),that is,

    Proof First we show that vλhas at least one zero on(0,rδ).Indeed if vλ>0 on(0,rδ),we have from(3.5)that

    Then by Lemma A.1(b),vλmust have a zero on(0,rδ).This is a contradiction and hence the existence of a zero r ∈ (0,rδ)holds.Moreover we may assume that r is the first zero of vλ.

    Now by Lemma 3.4(ii),vλ<0 on a right neighborhood of r.If vλhas a next zero r1∈ (r,rδ],it follows that vλ<0 on(r,r1).From(3.5),we get

    Then by Lemma A.1(a),δ must have a zero on(r,r1).This contradicts to the assumption of Proposition 2.3 and hence vλ<0 on(r,rδ].In this case,vλcannot have a zero on(rδ,R)by Lemma 3.5.This completes the proof. ?

    Now by Lemma 3.2(ii),we can choose large λ > λ so that vλ>0 on[0,rδ].Then by Lemmas 3.2(i)and 3.5,vλhas a unique zero r ∈ (rδ,R).

    To prove the key lemma,we define

    as in[20].Then one has

    Now we are ready to prove the key lemma.

    Proof of Lemma 3.1 From(3.7),(3.8)and by Lemma 3.5,it follows that

    Moreover by Lemma 3.6,we also have

    Next we claim that θ′>0 on(rδ,r].Indeed suppose by contradiction that θ′(?r)=0 for some?r∈(rδ,r).Putting?λ:=θ(?r),it follows from(3.7)that v?λ(?r)=0.Moreover since>rδ>r,we have from(3.10)that>λ.Thus by Lemma 3.5,we get<0 and hence>0 from(3.8).This is a contradiction and the claim holds.

    Now from(3.9),(3.10)and θ′>0 on(rδ,],it follows that

    Putting λ0:= θ(rδ),we have from(3.7)that

    This implies that vλ0>0 on a right neighborhood of rδ,which contradicts to the fact vλ0<0 on(rδ,R).Thus we obtain(rδ)<0.

    Finally we prove Proposition 2.3 by using Lemma 3.1.

    Proof of Proposition 2.3 As we have mentioned in the beginning of this section,we assume that δ(r,d)has exactly one zero rδ∈ (0,R)and suppose by contradiction that δ(R)=0 when d ∈ N and δ(r)stays bounded at infinity when d ∈ G.Then it follows that δ(r) → 0 exponentially as r→∞if d∈G.

    First we suppose that d∈N.In this case,one has by Lemma 3.1 and(3.5)that

    Since δ(rδ)= δ(R)=0,we can apply Lemma A.1 to show that vλ0has a zero on(rδ,R).But this contradicts to Lemma 3.1.

    Next we consider the case d∈G.We put

    Then from(3.5)and by Lemma 3.1,one has ? < ψ on(rδ,∞).Moreover since vλ06=0 on(rδ,∞),we can rewrite(2.3)and(3.2)as

    respectively.By a direct computation,one can obtain the following Picone identity holds:

    Integrating it over[r,t]? (rδ,∞),we get

    Next from(2.1),(2.2)and by the definition of vλ0,it follows that

    Since δ decays exponentially at infinity,we have

    Moreover since δ(rδ)=0 and vλ0(rδ)=0,we can apply l’H?opital’s rule to obtain

    Thus we also have

    Now from(3.11),(3.12)and(3.13),it follows that

    This is a contradiction because ? < ψ on(rδ,∞)and hence the proof is completed. ?

    Remark 3.7 As we have noted in Remark 2.6,we can obtain Proposition 2.3 by the previous result in[22]when Kg(∞)≥ 1.Actually the key of the proof of the strict admissibility was to construct a comparison function vλhaving the same zero with δ.In[22],this construction was done by applying the I-theorem.Our argument shows that we can construct such vλwithout using the I-theorem.

    We also observe that Kg(∞)≥ 1 is equivalent to the fact that g(s)has superlinear or asymptotically linear growth at infinity.Since we were able to obtain Proposition 2.3 even if Kg(∞)<1,our result can cover the case where the nonlinearity may have sublinear growth or may be negative at infinity.

    4 Application to Ground States of Modified Schr?dinger Equations

    In this section,we study the uniqueness of positive radial solutions for the quasilinear elliptic problem of the form:

    As an application,we will also show the uniqueness and the non-degeneracy of ground states for modified Schr?dinger equations in Subsection 4.4.

    We impose the following conditions on the nonlinear term h(t)and the quasilinear term a(t).

    here Khand Kaare the growth functions of h and a respectively,which are defined in(1.2).We observe that if Ka(t)is non-decreasing on[0,∞),then(A3)automatically holds.

    A typical example of a(t)is given by a(t)=1+ κ|t|?for κ >0 and ?≥ 2.Moreover by direct computations,we can see that a(t)=1+|t|?1+|t|?2for 0< ?1< ?2or a(t)=|t|2+e?ct2for 0

    ?Power nonlinearity:

    ?Defocusing cubic-focusing quintic nonlinearity:

    ?Focusing cubic-defocusing quintic nonlinearity:

    ?Nagumo type nonlinearity:

    By elementary calculations,one can show that these nonlinearities fulfill(H1)–(H5).Similar statements also hold for quadratic-cubic nonlinearities h(t)= ?t±c|t|t?|t|2t.

    In this setting,we obtain the following result.

    Theorem 4.1 Assume(A1)–(A4)and(H1)–(H5).Then(4.1)has a unique positive radial solution u∈C2(RN).Moreover let L:H2(RN)→L2(RN)be the linearized operator of(4.1)which is given by

    4.1 Dual Approach and Auxiliary Lemmas

    In this subsection,we introduce a dual approach of(4.1)and prepare some auxiliary lemmas.

    To this aim,let f(s)be a unique solution of the following ODE

    From(A1),we can see that f is well-defined and f∈C2[0,∞).We also extend f(s)as an odd function for s<0.Then we have the following.

    Lemma 4.2 f(s)satisfies the following properties.

    (i)f>0 and f′>0 on(0,∞).Especially f is monotone on(0,∞)and hence the inverse f?1exists.

    Proof (i)and(ii)follow from(4.2).Moreover from(A4),we can show that(iii)holds(for the proof,we refer to[16]). ?

    Now we consider the following semilinear elliptic problem

    which we call a dual problem of(4.1).We also define the linearized operator L:H2(RN)→L2(RN)of(4.3)by

    Then we have the following relation between(4.1)and(4.3).

    Lemma 4.3 Let X={u∈H1(RN);a(u)|?u|2∈L1(RN)}.

    (i) u∈ X∩C2(RN)is a positive radial solution of(4.1)if and only if v=f?1(u)∈H1∩C2(RN)is a positive radial solution of(4.3).

    Let u∈X∩C2(RN)is a positive solution of(4.1)and put v=f?1(u).Then

    (v)u is non-degenerate if and only if v is non-degenerate.

    For the proof of(i),we refer to[16].The proof of(ii)–(v)can be found in[3](see also[2,Lemmas 2.7 and 2.8]).By Lemma 4.3,it suffices to study the uniqueness and the nondegeneracy of positive radial solutions of(4.3).

    Remark 4.4 Let us consider the most typical case

    Then by Lemma 4.2(iii),we can see thatsatisfies

    for some C>0.This implies that if 1

    4.2 Existence of a Positive Radial Solution of(4.1)

    In this subsection,we prove the existence of a positive radial solution u∈C2(RN)of(4.1).To this end,we show that the function

    satisfies(G1),(G3)and(G6)in Section 1.For s<0,we extend g(s)as an odd function.

    First we can easily see that g∈C1[0,∞).Moreover since h(0)=0 and f(0)=0,we also have g(0)=0.Next one has

    and hence(G1)holds.

    To prove(G3),we observe that

    Finally we show that(G6)holds.When N≥3,we have by(H5)and Lemma 4.2(iii)that

    Next suppose that N=2.By Lemma 4.2(iii),there exists C>0 such that f(s)?+2≤ Cs2for large s>0.Moreover by the definition of f(s)and(A1),putting a:=a(t)>0,we also have f′(s)≤Thus from(H5),we obtain

    Now since(G1),(G3)and(G6)are satisfied,we can apply results in[5,6,17]to obtain the existence of a positive radial solution v∈H1∩C2(RN)of(4.3).Then by Lemma 4.3,we obtain the existence of a positive radial solution u∈X∩C2(RN)of(4.1).

    Finally we note that a positive radial solution of(4.1)obtained here is indeed a ground state of(4.1).To be more precise,we define the energy functional J:X→R by

    Moreover one can also show that w is positive and radially symmetric.

    4.3 Proof of Theorem 4.1

    In this subsection,we complete the proof of Theorem 4.1.By Theorem 1.1 and Lemma 4.3,it suffices to prove that(G1)–(G5)in Section 1 hold for

    Since we establish(G1)and(G3)in Subsection 4.2,it remains to show that(G2),(G4)and(G5)hold.To this end,let β,β>0 be constants in(H2)and define b:=f?1(β),b:=f?1(β),respectively.

    Lemma 4.5 The function g(s)defined in(4.4)satisfies(G2).

    Proof First we observe that g and h have same sign because f′>0.Thus from(H2),it follows that g(s)<0 for 00 for b

    Thus from(A1)and(H2),we obtain

    In a similar way,we can show that g(s)<0 on(b,∞)and g′(b)<0 when b< ∞.This completes the proof. ?

    In order to prove(G4)and(G5),we prepare the following lemma.

    Proof For simplicity,we put

    Then from(A1),it follows that φ ∈ C1[β,∞).Thus it suffices to show that φ′(t)≥ 0 on[β,∞).

    Now by a direct computation,one has

    Noticing that t≥ β,we have from(A3)that

    This implies that φ′≥ 0 on[β,∞)and hence the proof is completed. ?

    Lemma 4.7 The function g(s)defined in(4.4)satisfies(G4)and(G5).

    Proof First by the definition of Kg(s),Lemma 4.2(ii)and from(4.5),it follows that

    Since f(b)=β,we have only to show that

    is decreasing on[β,β).Now we can see thatKg(t)is rewritten as

    Thus from(A3),(H4)and by Lemma 4.6,the numerator is decreasing and the denominator is non-decreasing.So,(t)is positive and decreasing onthere existssuch that(t)is decreasing on[β,t]and(t)≤0 onIn either case,(G4)is satisfied.

    Next to prove(G5),it suffices to show that≤1 on(0,β).From(A1),(A2)and(H4),we have

    Thus(G5)holds.This completes the proof.

    4.4 Results for the Complex Valued Ground State for Modified Schr?dinger Equation

    In this subsection,we consider a special case a(t)=1+2κ|t|2,h(t)=|t|p?1t?λt,and study the uniqueness and the non-degeneracy of a complex-valued ground state,which are important in the study of the corresponding time-evolution Schr?dinger equation.

    We consider the following modified Schr?dinger equation

    where κ>0,p>1 and z:R×RN→C.For physical backgrounds,we refer to[7,19].We are interested in standing waves of the form:z(t,x)=u(x)eiλt,where λ >0 and u:RN→ C.Then we obtain the following quasilinear elliptic problem

    From physical as well as mathematical points of view,the most important issue is the stability of the standing wave.It is known that in the study of the stability of standing waves,the uniqueness and the non-degeneracy of ground states of(4.6)plays an important role(see[9,11,12]for results on the(in)stability of standing waves).

    Now we define the energy functional and the energy space by

    A solution w of(4.6)is said to be a ground state if it satisfies

    As for the existence and properties of a complex-valued ground state,we have the following.For the proof,we refer to[11].

    Proposition 4.8 Suppose λ >0,κ >0 andThen problem(4.6)has a ground state w,which has a form w(x)=eiθ|w(x)|for some θ∈ R.

    Moreover let w be a real-valued ground state of(4.6).Then w satisfies the following properties

    (i)w∈C2(RN)and w(x)>0 for all x∈RN.

    (ii)w is radially symmetric and decreasing with respect to r=|x|.

    (iii)There exist c,c′>0 such that

    Proposition 4.8 tells us that up to a phase shift,we may assume that the ground state of(4.6)is real-valued.Moreover any ground states are positive and radially symmetric.Thus the uniqueness of the ground state of(4.6)follows from Theorem 4.1.Finally it is known that p=is the critical exponent for the existence of non-trivial solutions of(4.6).This can be proved by using the Pohozaev type identity(see[1]for the proof).

    Now let G be the set of ground states of(4.6).Since(4.6)is invariant under the translation and the phase shift,we have the following result.

    Theorem 4.9 Suppose that λ >0,κ >0 andLet w be the unique(real-valued)ground state of(4.6).Then we have

    Moreover we also have

    here L is the linearized operator of(4.6)around the unique(real-valued)ground state w,which is given by

    where φ is a complex conjugate of φ.

    Proof To prove Theorem 4.9,we put φ = φ1+iφ2with φ1,φ2∈ H2(RN,R)and decompose L into two operators L1,L2acting on φ1and φ2,respectively.By a direct computation,we have

    By Corollary 2.4,Lemma 4.3 and Theorem 4.1,it follows that

    Next we show that Ker(L2)=span{w}.Although the proof can be found in[28],we give a much simpler proof based on Corollary 2.4.By the definition of L2,one has w∈Ker(L2).We suppose by contradiction that there existsw∈H1(RN)such thatw 6≡w and L2(w)=0.This implies that 0 is not a simple eigenvalue of L2.Then by Corollary 2.4(v),it follows that the principal eigenvalue μ(L2)is negative and the corresponding eigenfunction ψ can be chosen to be positive.

    Since ψ satisfies

    multiplying(4.8)by w and integrating over RN,we get

    On the other hand,multiplying(4.6)with u=w by ψ,we also have

    Subtracting these equations,we obtain

    However sinceμ<0,ψ>0 and w>0,this is a contradiction.This implies that Ker(L2)=span{w}.This completes the proof of Theorem 4.9. ?

    Remark 4.10 In[3]and[28],the authors required a technical assumption 3≤p to obtain the non-degeneracy of the ground state of(4.6).We could remove this additional assumption in Theorem 4.9.The key is to obtain Proposition 2.3 even when the nonlinear term may have a sublinear growth.

    We also note that our result covers the case N=2.In[1],the uniqueness for the case N=2 is obtained under the assumption 3 ≤ p and some largeness condition on λ and κ.Theorem 4.9 enables us to obtain the uniqueness without any restrictions on κ,λ and p.

    Finally by Corollary 2.4,we can obtain more precise information on the linearized operator around the unique real-valued ground state.Indeed let L1be the linearized operator defined in(4.7).Then we have the following results,which answer the question raised in[1,Remark 5.6]and complete previous results on the non-degeneracy in[3,28].

    (i) σ(L1)= σp(L1)∪ σe(L1),σe(L1)=[λ,∞)and σp(L1)? (?∞,λ).

    (ii)Ifμ ∈ σp(L1),then the corresponding eigenfunction ?(x)satisfies

    for any small ε >0 and some C?>0.

    (iii)Ifμ ∈ σp(L1)∩(?∞,0),then the corresponding eigenfunction is radially symmetric.

    (iv)The principal eigenvalueμ1(L1)<0 is simple,and the corresponding eigenfunction ?1can be chosen to be positive.

    (v)The second eigenvalueμ2(L1)is zero and Ker(L1)=span

    respectively on some interval(μ,ν) ? [0,∞).Suppose that g and G are continuous,G ≥ g and G 6≡ g on(μ,ν).Assume further that one of the following conditions holds

    (a) μ >0 and U(μ)=U(ν)=0.

    (b) μ =0 and U′(μ)=V′(μ)=U(ν)=0.

    Then V has at least one zero on(μ,ν).

    小说图片视频综合网站| 欧美三级亚洲精品| 99riav亚洲国产免费| 国产精品三级大全| 九九久久精品国产亚洲av麻豆| 精品国产亚洲在线| av在线蜜桃| 久久香蕉精品热| 少妇熟女aⅴ在线视频| 国产精品国产高清国产av| 久久国产精品影院| 亚洲午夜理论影院| 91在线观看av| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 免费av观看视频| 亚洲国产日韩欧美精品在线观看 | 成人欧美大片| 亚洲天堂国产精品一区在线| 国产精品永久免费网站| 亚洲第一欧美日韩一区二区三区| 色av中文字幕| 成人鲁丝片一二三区免费| x7x7x7水蜜桃| 欧美色欧美亚洲另类二区| 真人一进一出gif抽搐免费| 最近在线观看免费完整版| 久99久视频精品免费| 久久午夜亚洲精品久久| 俺也久久电影网| 超碰av人人做人人爽久久 | 国产真实乱freesex| 亚洲欧美日韩高清专用| tocl精华| 男人的好看免费观看在线视频| 午夜精品在线福利| 久久久久九九精品影院| 午夜精品在线福利| 久久性视频一级片| 亚洲成av人片免费观看| 桃红色精品国产亚洲av| 精品欧美国产一区二区三| 欧美乱妇无乱码| 免费人成视频x8x8入口观看| 狠狠狠狠99中文字幕| 成人午夜高清在线视频| 岛国在线免费视频观看| 天天躁日日操中文字幕| 色播亚洲综合网| 狠狠狠狠99中文字幕| 俺也久久电影网| 国产麻豆成人av免费视频| 亚洲第一欧美日韩一区二区三区| 校园春色视频在线观看| 亚洲av电影不卡..在线观看| 精品久久久久久成人av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丰满乱子伦码专区| 噜噜噜噜噜久久久久久91| 欧美日韩中文字幕国产精品一区二区三区| 国产精品爽爽va在线观看网站| 搡老妇女老女人老熟妇| 18禁美女被吸乳视频| 成人午夜高清在线视频| 中国美女看黄片| 亚洲av第一区精品v没综合| 国产精品久久视频播放| 嫩草影院入口| 免费观看的影片在线观看| 狂野欧美白嫩少妇大欣赏| www国产在线视频色| 国产精品 欧美亚洲| 最近最新中文字幕大全电影3| 啦啦啦韩国在线观看视频| 欧美日本视频| 欧美日韩精品网址| 老司机深夜福利视频在线观看| 亚洲国产中文字幕在线视频| 特大巨黑吊av在线直播| 99热6这里只有精品| 高清毛片免费观看视频网站| 偷拍熟女少妇极品色| 19禁男女啪啪无遮挡网站| 亚洲无线在线观看| 99国产综合亚洲精品| av视频在线观看入口| 高清毛片免费观看视频网站| 亚洲人与动物交配视频| 色视频www国产| 中出人妻视频一区二区| 国产高清三级在线| 免费一级毛片在线播放高清视频| 国产精品99久久久久久久久| 九九在线视频观看精品| 神马国产精品三级电影在线观看| 午夜福利欧美成人| 国产一区二区在线av高清观看| 俄罗斯特黄特色一大片| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久com| 日本黄色片子视频| 最新美女视频免费是黄的| 丁香六月欧美| 少妇高潮的动态图| 日本免费一区二区三区高清不卡| 欧美+亚洲+日韩+国产| 色噜噜av男人的天堂激情| 天堂动漫精品| 国产精品女同一区二区软件 | 身体一侧抽搐| 村上凉子中文字幕在线| 久久久久久久久久黄片| 偷拍熟女少妇极品色| 毛片女人毛片| 一卡2卡三卡四卡精品乱码亚洲| 日韩大尺度精品在线看网址| 久久久久免费精品人妻一区二区| 国产视频一区二区在线看| 欧美+亚洲+日韩+国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲内射少妇av| 免费搜索国产男女视频| av片东京热男人的天堂| 天堂影院成人在线观看| 国产亚洲精品一区二区www| 成年女人看的毛片在线观看| 欧美av亚洲av综合av国产av| 老汉色av国产亚洲站长工具| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 亚洲精品乱码久久久v下载方式 | 国产成人福利小说| 亚洲黑人精品在线| 国产中年淑女户外野战色| 久久久久精品国产欧美久久久| 久久久久免费精品人妻一区二区| 欧美区成人在线视频| 亚洲国产精品999在线| 在线免费观看的www视频| 欧美一区二区亚洲| 高清毛片免费观看视频网站| 欧美黄色淫秽网站| 国产探花在线观看一区二区| 亚洲av二区三区四区| 好男人电影高清在线观看| eeuss影院久久| 淫秽高清视频在线观看| 国产又黄又爽又无遮挡在线| 又爽又黄无遮挡网站| 一级毛片女人18水好多| 国产乱人伦免费视频| 伊人久久大香线蕉亚洲五| 国产成年人精品一区二区| 夜夜爽天天搞| 亚洲第一欧美日韩一区二区三区| 国内精品久久久久精免费| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区四那| 日本a在线网址| 欧美在线一区亚洲| 1024手机看黄色片| 精品久久久久久成人av| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 国产免费一级a男人的天堂| 精品国产三级普通话版| 国产一区二区三区在线臀色熟女| 日韩高清综合在线| www国产在线视频色| 18+在线观看网站| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 亚洲性夜色夜夜综合| 亚洲精品久久国产高清桃花| av片东京热男人的天堂| 99热这里只有是精品50| 欧美激情久久久久久爽电影| 成人av一区二区三区在线看| 黄色女人牲交| 我要搜黄色片| 两人在一起打扑克的视频| 国产av麻豆久久久久久久| 国产精品亚洲美女久久久| 搡老熟女国产l中国老女人| 国产亚洲精品一区二区www| 国产亚洲精品av在线| 亚洲午夜理论影院| 在线国产一区二区在线| av专区在线播放| 日日夜夜操网爽| 最新美女视频免费是黄的| 一本精品99久久精品77| 欧美中文综合在线视频| 美女高潮的动态| 少妇的丰满在线观看| 亚洲精品456在线播放app | 国产av一区在线观看免费| 亚洲第一欧美日韩一区二区三区| 国产亚洲欧美98| 亚洲第一欧美日韩一区二区三区| 欧美黄色淫秽网站| 国产精品久久电影中文字幕| 国产又黄又爽又无遮挡在线| 国语自产精品视频在线第100页| 3wmmmm亚洲av在线观看| 欧美性感艳星| 在线看三级毛片| 亚洲国产欧美网| 国内少妇人妻偷人精品xxx网站| 亚洲内射少妇av| 国产成人aa在线观看| a级一级毛片免费在线观看| av天堂中文字幕网| 国产成人系列免费观看| or卡值多少钱| bbb黄色大片| 一级毛片高清免费大全| 精品国产亚洲在线| 国产精品av视频在线免费观看| 91在线精品国自产拍蜜月 | 婷婷精品国产亚洲av在线| 哪里可以看免费的av片| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 又紧又爽又黄一区二区| 在线观看一区二区三区| 91在线精品国自产拍蜜月 | 最好的美女福利视频网| 午夜福利免费观看在线| 99精品久久久久人妻精品| 99热这里只有是精品50| 国产精品久久久久久久电影 | 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 国产成人系列免费观看| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| svipshipincom国产片| 久久精品国产综合久久久| 免费看a级黄色片| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 午夜视频国产福利| 91久久精品电影网| 亚洲熟妇熟女久久| 黄片大片在线免费观看| 中文字幕人妻熟人妻熟丝袜美 | 51午夜福利影视在线观看| 国产97色在线日韩免费| 波多野结衣巨乳人妻| 午夜福利高清视频| 免费高清视频大片| 亚洲最大成人手机在线| 日本一本二区三区精品| 小说图片视频综合网站| 他把我摸到了高潮在线观看| 欧美黑人巨大hd| 国产精品永久免费网站| 免费av不卡在线播放| 他把我摸到了高潮在线观看| 国产国拍精品亚洲av在线观看 | 亚洲国产精品久久男人天堂| 成人精品一区二区免费| 午夜日韩欧美国产| 亚洲成人久久性| 亚洲自拍偷在线| 国产三级黄色录像| 成人性生交大片免费视频hd| 脱女人内裤的视频| 精品一区二区三区视频在线观看免费| 国产私拍福利视频在线观看| 日韩欧美精品免费久久 | 久久人妻av系列| 日韩精品中文字幕看吧| 在线视频色国产色| 日韩欧美免费精品| 亚洲欧美精品综合久久99| 老司机深夜福利视频在线观看| 啦啦啦免费观看视频1| 91在线精品国自产拍蜜月 | 成人三级黄色视频| 观看美女的网站| 久久久国产成人精品二区| 日韩国内少妇激情av| 亚洲精品成人久久久久久| 99国产精品一区二区蜜桃av| 久久伊人香网站| 小说图片视频综合网站| 欧美黑人欧美精品刺激| 国产精品嫩草影院av在线观看 | 女人高潮潮喷娇喘18禁视频| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 成人永久免费在线观看视频| 美女免费视频网站| 欧美黑人巨大hd| 99久久成人亚洲精品观看| 免费av不卡在线播放| 88av欧美| 日韩亚洲欧美综合| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| av视频在线观看入口| 精品久久久久久久久久久久久| 久久香蕉精品热| 亚洲熟妇中文字幕五十中出| bbb黄色大片| 国产伦在线观看视频一区| 亚洲成人中文字幕在线播放| 一个人免费在线观看电影| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 成年人黄色毛片网站| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| 少妇的丰满在线观看| 国产毛片a区久久久久| 黄色女人牲交| 给我免费播放毛片高清在线观看| 高潮久久久久久久久久久不卡| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 狂野欧美激情性xxxx| 波野结衣二区三区在线 | 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 中出人妻视频一区二区| 婷婷精品国产亚洲av| 亚洲av免费在线观看| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 日本 av在线| 久久九九热精品免费| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 色精品久久人妻99蜜桃| 精品人妻一区二区三区麻豆 | 两个人的视频大全免费| 国产精品乱码一区二三区的特点| 无人区码免费观看不卡| 天天躁日日操中文字幕| 免费看美女性在线毛片视频| 精华霜和精华液先用哪个| 日韩人妻高清精品专区| 亚洲精品在线美女| 国产欧美日韩一区二区三| 国产麻豆成人av免费视频| 国产精品亚洲美女久久久| 久久精品国产亚洲av香蕉五月| 欧美乱妇无乱码| 免费av观看视频| 免费电影在线观看免费观看| 欧美乱妇无乱码| 在线国产一区二区在线| 在线视频色国产色| 嫩草影院入口| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| 久久久久国内视频| 怎么达到女性高潮| 午夜福利在线在线| 嫩草影院入口| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品电影一区二区三区| 成人三级黄色视频| 中国美女看黄片| 国产伦精品一区二区三区四那| 亚洲国产精品999在线| 久久九九热精品免费| 中文资源天堂在线| 在线观看一区二区三区| 亚洲成av人片免费观看| 91九色精品人成在线观看| 久久亚洲精品不卡| 日韩有码中文字幕| 日韩精品中文字幕看吧| 日韩欧美三级三区| 首页视频小说图片口味搜索| 亚洲av二区三区四区| 变态另类丝袜制服| 99热这里只有精品一区| 全区人妻精品视频| 亚洲av日韩精品久久久久久密| e午夜精品久久久久久久| 小说图片视频综合网站| 色综合站精品国产| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 国产视频一区二区在线看| 一个人免费在线观看的高清视频| 日韩欧美在线二视频| 久久久久久人人人人人| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 狂野欧美白嫩少妇大欣赏| 两性午夜刺激爽爽歪歪视频在线观看| 日本精品一区二区三区蜜桃| 最新在线观看一区二区三区| 99视频精品全部免费 在线| 久久精品影院6| 欧美3d第一页| 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 操出白浆在线播放| 一个人看的www免费观看视频| 舔av片在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线播放国产精品三级| 日韩人妻高清精品专区| 国产精品 国内视频| 国产伦一二天堂av在线观看| 黄片小视频在线播放| 欧美成人免费av一区二区三区| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 国产97色在线日韩免费| 亚洲国产日韩欧美精品在线观看 | 18美女黄网站色大片免费观看| 99热这里只有精品一区| 色老头精品视频在线观看| avwww免费| 舔av片在线| 国产精品亚洲av一区麻豆| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 国产精品自产拍在线观看55亚洲| 97超级碰碰碰精品色视频在线观看| 天堂av国产一区二区熟女人妻| 精品电影一区二区在线| 女生性感内裤真人,穿戴方法视频| 夜夜看夜夜爽夜夜摸| 丰满的人妻完整版| 久久久国产成人精品二区| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 少妇的逼水好多| 亚洲av美国av| 欧美国产日韩亚洲一区| 国产男靠女视频免费网站| 欧美成狂野欧美在线观看| 精品福利观看| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 久久这里只有精品中国| 国产成人欧美在线观看| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| 黄色日韩在线| 一个人免费在线观看电影| 中文字幕av在线有码专区| 中文字幕人妻丝袜一区二区| 日本三级黄在线观看| 国产一区在线观看成人免费| 免费在线观看亚洲国产| 每晚都被弄得嗷嗷叫到高潮| 欧美成人一区二区免费高清观看| 免费看光身美女| 国产一区二区三区在线臀色熟女| 日日夜夜操网爽| 深夜精品福利| 国产精品久久久久久久久免 | 亚洲国产精品合色在线| 嫩草影院精品99| 国产探花在线观看一区二区| 欧美午夜高清在线| 午夜福利成人在线免费观看| av天堂在线播放| 久久久国产成人免费| 色哟哟哟哟哟哟| 成人无遮挡网站| 国产一区二区在线av高清观看| 国产高清videossex| 午夜福利欧美成人| 成年女人毛片免费观看观看9| av中文乱码字幕在线| 可以在线观看的亚洲视频| 午夜福利在线观看免费完整高清在 | 熟妇人妻久久中文字幕3abv| 精品久久久久久久毛片微露脸| 免费一级毛片在线播放高清视频| 长腿黑丝高跟| 免费观看精品视频网站| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 男女下面进入的视频免费午夜| 亚洲第一欧美日韩一区二区三区| 日本与韩国留学比较| 国产麻豆成人av免费视频| 国产免费一级a男人的天堂| 久久性视频一级片| 全区人妻精品视频| 免费看十八禁软件| 婷婷精品国产亚洲av| 日韩av在线大香蕉| 日本熟妇午夜| 69人妻影院| 日本熟妇午夜| 一夜夜www| 国产精品99久久久久久久久| 欧美性感艳星| 欧美乱码精品一区二区三区| 国产三级黄色录像| 丁香六月欧美| 少妇的逼好多水| 制服人妻中文乱码| 日韩欧美三级三区| 亚洲在线自拍视频| 亚洲av美国av| 观看免费一级毛片| 久久中文看片网| 久久国产精品人妻蜜桃| 国产精品免费一区二区三区在线| 色尼玛亚洲综合影院| 午夜a级毛片| 法律面前人人平等表现在哪些方面| avwww免费| 亚洲不卡免费看| 国产主播在线观看一区二区| 亚洲人成网站在线播| avwww免费| 内地一区二区视频在线| 亚洲片人在线观看| 色综合欧美亚洲国产小说| www日本黄色视频网| 亚洲av不卡在线观看| 国产精品香港三级国产av潘金莲| 亚洲久久久久久中文字幕| 日韩欧美国产一区二区入口| 国产亚洲av嫩草精品影院| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 久久香蕉精品热| tocl精华| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 波多野结衣高清无吗| 亚洲成a人片在线一区二区| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx| 国产不卡一卡二| 亚洲人成网站在线播| 他把我摸到了高潮在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美区成人在线视频| 午夜免费激情av| 不卡一级毛片| 在线观看免费午夜福利视频| 男人舔奶头视频| 久久久久性生活片| 亚洲国产精品sss在线观看| 欧美成人免费av一区二区三区| 亚洲成人中文字幕在线播放| 精品日产1卡2卡| 日韩 欧美 亚洲 中文字幕| 国产久久久一区二区三区| 丰满人妻一区二区三区视频av | 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 久久久久亚洲av毛片大全| e午夜精品久久久久久久| 久久人人精品亚洲av| 久久久国产成人精品二区| 中文字幕人成人乱码亚洲影| 欧美国产日韩亚洲一区| 国产精品,欧美在线| 免费观看精品视频网站| 亚洲无线在线观看| 亚洲一区二区三区不卡视频| 国产黄色小视频在线观看| 国产精品一区二区三区四区免费观看 | 99国产综合亚洲精品| 欧美绝顶高潮抽搐喷水| 嫩草影院入口| 国产视频一区二区在线看| 久久久国产成人免费| 国产av在哪里看| 免费看日本二区| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 国内毛片毛片毛片毛片毛片| 久久久久国产精品人妻aⅴ院| 最后的刺客免费高清国语| 欧美日韩黄片免| 99热6这里只有精品| 美女大奶头视频| 国产精品永久免费网站| www.999成人在线观看| 看片在线看免费视频| 午夜亚洲福利在线播放| 变态另类成人亚洲欧美熟女| 欧美色视频一区免费| 男人舔奶头视频| 婷婷丁香在线五月| 国产91精品成人一区二区三区| 中文字幕久久专区| 舔av片在线| 亚洲av五月六月丁香网| 久久九九热精品免费| 成人国产一区最新在线观看| 婷婷丁香在线五月| 欧美午夜高清在线| 欧美最黄视频在线播放免费|