• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving Lyapunov equation by quantum algorithm

    2017-12-22 06:11:59HeSUNJingZHANG
    Control Theory and Technology 2017年4期

    He SUN,Jing ZHANG

    Department of Automation,Tsinghua University,Beijing 100084,China

    Solving Lyapunov equation by quantum algorithm

    He SUN,Jing ZHANG?

    Department of Automation,Tsinghua University,Beijing 100084,China

    Lyapunov equation is one of the most basic and important equations in control theory,which has various applications in,e.g.,stability analysis and robust analysis of linear control systems.Inspired by the recent progresses of quantum algorithms,we find that solving Lyapunov equation can be exponentially accelerated by quantum algorithms rather than traditional classical algorithms.Our algorithm is more efficient especially when the system matrix is sparse and has a low condition number.The results presented in this paper open up new dimensions of research in controlling classical system by quantum information processors,which has rarely been considered in the existing literature.

    Quantum control,linear Lyapunov equation,large-scale complex system

    1 Introduction

    Linear systems are a class of physical systems which satisfy the superposition principle and homogeneity between the input and output.Using a set of first-order differential equations,we can describe the dynamics of the linear systems by the state-space representation,analyze the qualitative properties of the system such as stability,controllability and observability,and solve the control laws to steer the system behaviors by digital signal processors such as computers.A considerable number of studies have been focused on the improvement of the numerical algorithms for solving the control laws to control linear systems in the past few decades[1–3].

    For designing the control to steer practical linear systems,it is crucial to find an efficient way considering the high dimension of their dynamical equations.Such large-scale linear systems can be easily seen in various systems,such as power networks,urban traffic networks,digital communications networks,flexible manufacturing networks,ecological systems and economic systems,etc.[4].Another significant source of largescale linear control systems comes from discretizing the partial derivatives of spatial coordinates for a system dominated by a partial differential equation[5].These have posed a challenge to the classical computers,with increasing scale of the practical system in contrast to the limited computational capacity of the classical computers.When the miniaturization of integrated circuits reaches a certain degree,the heat dissipation problem and the quantum effects will make the increasing of the computational capacity of the classical computers difficult to continue as declared by the Moore’s law.

    The main strategy dealing with large-scale linear systems currently is to exploit the special structure,such as sparseness,of the system matrices.Some approaches based on the sparse-matrix algorithms can reduce the computational complexity to some extent[5,6].In recent few decades,a new area called“quantum computation”arose and soon came into the researchers’attention[7].Pointed out by Feynman in 1982,quantum computation is a kind of computational theory based on the superposition principle of quantum mechanics,which totally differs from classical computation[8].Due to the quantum parallelism induced by quantum superposition principle and quantum entanglement,various quantum algorithms are proposed and proven to be much more efficient than the classical algorithms in dealing with some specific problems.Even some problems with unaccessible computational complexity on classical computers can be effectively solved using quantum algorithms.One possible example is the Shor’s algorithm[9,10],which shows that factoring an integer into the product of the prime factors can be done in polynomial time by quantum computers,rather than the subexponential time by classical computers.Another possible example is the Grover’s algorithm,which achieves a quadratic acceleration compared with the classical algorithm in searching data in an unordered database[11].Hitherto,there have been various quantum algorithms applied in algebraic and number theory[12,13],graph theory[14–16],pattern matching[17–19],quantum simulation[20–22],and many other related fields.

    A more recent progress of quantum algorithm in 2009 shows that solving linear algebraic equation Ax=b can be exponentially speeded up by quantum algorithm[23],especially when the matrix A is sparse and the condition number(the ratio between the largest and smallest eigenvalue)of A is low.So far,this algorithm has been applied to various related problems such as solving ordinary differential equations[24–26],data fitting[27],and support vector machine[28].Several experiments have also been carried out to verify these quantum algorithms[29,30]in optical and nuclear magnetic resonance(NMR)systems.Borrowing idea from these quantum algorithms,we here propose a quantum algorithm to solve the Lyapunov equation,for which the classical numerical methods need a computing time no less than O(n3)and a memory space of O(n2)[31],where n is the order of the Lyapunov equation.It is shown that an norder Lyapunov equation can be solved by our quantum algorithm with computational complexity of O(log(n))and thus is exponentially speeded up.The paper is organized as follows:in Section2,we convert the Lyapunov equation from the matrix form into vector form by tensor product.Our quantum algorithm and the corresponding quantum circuits are presented in Section3.In Section4,we give a numerical example of our algorithm.The conclusion and forecast of the future work are drawn in Section5.

    NotationIn this paper,we use standard notation of quantum mechanics.|φ〉denotes the state of a quantum system,which is a normalized column vector defined on the complex Hilbert space,?indicates a tensor product.We use log(x)to denote a logarithm of base 2 throughout the paper.

    2 Problem formulation

    The n-order continuous-time Lyapunov equation we are interested in can be expressed as

    where A is an n×n square matrix and ATis the transpose of A.Q=QTis a non-negative definite matrix.We use k1,k2,...,knto denote the eigenvalues of A,then the Lyapunov equation has a unique solution of Hermitian n×n matrix X if and only if ki+kj≠0 for all i and j.If the solution X is non-negative definite,then all the eigenvalues of A must have negative real part.Lyapunov equation plays a very important role in control theory,communications and dynamic systems.

    The Lyapunov equation can be transformed into a linear algebraic equation in the Kronecker product form.Let A?B denote the Kronecker product of two n-order matrices A and B,i.e.,

    and define vec(C)as

    where ciis the ith column vector of the n-order matrix C.Thus,the Lyapunov equation(1)can be converted into the following linear algebraic equation:

    where I is the n×n identity matrix.Here,the solution of equation vec(X)contains all the elements of the matrix X.The coefficient matrix of equation(4),i.e.,H=I?AT+A?I,can then be expressed as

    3 Quantum algorithm and circuit for Lyapunov equation

    Based on the preparations given in Section2 and borrowing ideas from[23],we give our quantum algorithm for solving Lyapunov equation as follows:

    1)To solve equation(4),we first need to encode the vector?vec(Q)into the following quantum state

    where qiis the ith element of the vector?vec(Q)and|i〉is the ith basis vector of the quantum Hilbert space.Usually,we set Q to be identity matrix I,then we have

    The above quantum state can be efficiently prepared using the method in[32].|?vec(Q)〉can also be expressed as

    where|uj〉is the jth eigenvector of the matrix H and βjis the corresponding coefficient.

    2)We use the technique of phase estimation(see,e.g.,[33])to find the eigenvalues λ1,λ2,...,λn2of the matrix H and store them in another quantum register(labelled as M here).The quantum circuit[7]for phase estimation is given in Fig.1.

    This step is first done by conducting the Walsh-Hadamard transformation(given by the “H”gates in Fig.1)onto the register M which composed of m qubits all initialized in|0〉to obtain a superposition state with equal weights of each computational basis states{|τ〉}

    where m must be large enough to guarantee the computational accuracy of the phase estimation algorithm.Then we apply the operationto the quantum state|Ψ〉? |? vec(Q)〉,and in addition an inverse Fourier transformation to the state on the register M.After that,we can obtain the quantum state

    The most vital part of phase estimation is the quantum simulation of the controlled Hamiltonian which produces the transformation eiHtfrom an Hermitian matrix H with t conditioned by the eigenvalue λjs.It is pointed out that eiHtcan be simulated in time O(log(n)s4t)when the Hermitian matrix H is sparse[34].Here,the word“sparse”means that H has at most s(? n)nonzero entries in each row which can be read with time in scale of O(s).Due to this reason,we here assume A to be symmetric and sparse.As a result,H=I?AT+A?I is also symmetric and sparse,thus eiHtcan be efficiently simulated.

    Fig.1 Quantum circuit for phase estimation.Two quantum registers are needed in this circuit:one is used to store the vector?vec(Q),the other,which is labelled as M,is initialized in|0〉?m,and is used to store the eigenvalues.The phase estimation is conducted by Walsh-Hadamard transformation,controlled Hamiltonian simulations and inverse Fourier transformation.

    3)Add an ancilla qubit|0〉and apply rotation gates to it.The rotation gates are controlled by register M.Conditioned on|λj〉,the rotation gates transform the ancilla qubit from|0〉towhere C is a normalization constant.After this step,the state of the system can be expressed as

    This step can be realized via the quantum circuit given in Fig.2.

    Fig.2 Quantum circuit for the controlled rotation.2msingle-qubit gates which are controlled by register M are needed.When the state of register M is|i〉,the gate Riwill act on the ancilla qubit and change the state of ancilla qubit from|0〉to

    4)Finally,we apply the inverse phase estimation to the system,which change the state of the register M into the initial states|0〉?m,and we get the quantum state

    Then we measure the ancillary qubit.If the state of ancilla qubit after measurement is|1〉,then the quantum state of system will collapse to

    That is the final result we need.Otherwise,the computation process fails,we need to repeat the above steps until we get a successful result.A brief quantum circuit for solving Lyapunov equation is shown in Fig.3.

    Fig.3 Quantum circuit for solving Lyapunov equation.Two multi-qubit quantum registers initialized in|? vec(Q)〉and|0〉?mrespectively,and an ancilla qubit initialized in|0〉is needed.The whole process can be divided into four steps:phase estimation,controlled rotation,inverse phase estimation,and measurement.

    4 Numerical example

    We give a numerical example here to illustrate our quantum algorithm.The system matrix A is chosen to be

    a 2×2 symmetric matrix with eigenvalues 1 and 2.Then the Lyapunov equation(1)can be equivalently transformed into a linear algebraic equation with 4 unknowns

    The eigenvalues of H are λ1=2, λ2=3, λ3=3,λ4=4,which can be encoded in binaries of three bits,thus three qubits are enough for the storage of these eigenvalues.What’s more,two qubits for the storage of vector b and an ancilla qubit are needed.To sum up,we altogether need six qubits to solve equation(15).The quantum circuit designed to complete the computation is given in Fig.4.

    Fig.4 Quantum circuit for the numerical example.Six qubits initialized in|0〉|0〉?3|b〉are needed.The Walsh-Hadamard transformation,controlled Hamiltonians,inverse Fourier transformation,controlled rotation and measurement are given in this circuit.The inverse phase estimation is represented by the“INV”part.

    We first initialize the system into the quantum state

    and conduct the Walsh-Hadamard transformation.ujand βjdenote the eigenvector and coefficient correspond to λjrespectively.According to the clearly established equation

    we can convert the controlled-e2πiHtinto the tensor product of two controlled-e2πiAtgates,as U1,U2,U3shown in Fig.4.Here,

    After this,we obtain the quantum state:

    The next part,which consists of one swap gate,three Hadamard gates and three controlled single-qubit gates,is for the inverse Fourier transformation.Here,

    The quantum state of the system then becomes

    Subsequently,the controlled rotation part computes the reciprocal of eigenvalues and transfers that information into the state of ancilla qubit.To achieve this,we need three controlled single-qubit gates

    each conditioned by three qubits and act on the eigenvalue 2,3,4,respectively.Then we get the quantum state

    After that,we apply the inverse phase estimation to the system(represented as“INV”in Fig.4),namely,we apply the inverse of all the previous procedure except the controlled rotation.As a result,we get

    Finally,we take a measurement to the ancilla qubit.If the measure result is|1〉,then the two qubits initially store|b〉would collapse to the state

    which is the final result after normalization.

    5 Conclusions

    In this paper,we present a quantum algorithm for solving linear continuous-time Lyapunov equation.This algorithm can be finished with time scale of O(logn)for an n-order Lyapunov equation,which means that an exponential acceleration can be realized by our quantum algorithms in comparison to the existing numerical algorithms on classical computers.The method in this paper can also be naturally extended to solve more general Sylvester equations and discrete-time Lyapunov equations.Our study opens up a new dimension of research by using quantum algorithms to speed up the process for solving the control laws in classical control systems.

    [1]P.H.Petkov,N.D.Christov,M.M.Konstantinov.Computational Methods for Linear Control Systems.Hertfordshire:Prentice-Hall,1991.

    [2]B.N.Datta.Numerical Methods for Linear Control Systems.Boston:Elsevier Acadamic Press,2004.

    [3]V.Sima.Algorithms for Linear-quadratic Optimization.New York:Marcel Dekker,1996.

    [4]N.R.Sandell,P.Varaiya,M.Athans,et al.Survey of decentralized control methods for large scale systems.IEEE Transactions on Automatic Control,1978,23(2):108–128.

    [5]P.Benner.Solving large-scale control problems.IEEE Control Systems,2004,24(1):44–59.

    [6]P.Benner,J.R.Li,T.Penzl.Numerical solution of largescale Lyapunov equations,Riccati equations,and linear-quadratic optimal control problems.Numerical Linear Algebra with Applications,2008,15(9):755–777.

    [7]M.A.Nielsen,I.L.Chuang.Quantum Computation and Quantum Information.Cambrige:Cambridge University Press,2000.

    [8]R.P.Feynman.Simulating physics with computers.International Journal of Theoretical Physics,1982,21(6):467–488.

    [9]P.W.Shor.Algorithms for quantum computation:discrete logarithms and factoring.Proceedings of the 35th Annual Symposium on Foundations of Computer Science.Piscataway:IEEE,1994:124–134.

    [10]P.W.Shor.Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.SIAM Review,1999,41(2):303–332.

    [11]L.K.Grover.A fast quantum mechanical algorithm for database search.Proceedings of the 28th ACM Symposium on Theory of Computing.Philadelphia:ACM,1996:212–219.

    [12]S.Hallgren.Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem.Journal of the ACM,2007,54(1):1–19.

    [13]S.Hallgren.Fast quantum algorithms for computing the unit group and class group of a number field.Proceedings of the 37th ACM Symposium on Theory of Computing,New York:ACM,2005:468–474.

    [14]C.D¨urr,M.Heiligman,P.Hoyer,et al.Quantum query complexity of some graph problems.SIAM Journal on Computing,2004,35(6):1310–1328.

    [15]A.Ambainis,A.M.Childs,Y.K.Liu.Quantum property testing for bounded-degree graphs.Proceedings of RANDOM 2011:Lecture Notes in Computer Science 6845.Princeton:Springer,2011:365–376.

    [16]F.Magniez,M.Santha,M.Szegedy.Quantum algorithms for the triangle problem.SIAM Journal on Computing,2007,37(2):413–424.

    [17]N.Wiebe,A.Kapoor,K.M.Svore.Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning.Quantum Information and Computation,2014,15(3):318–358.

    [18]S.Lloyd,S.Garnerone,P.Zanardi.Quantum algorithms for topological and geometric analysis of data.Nature Communications,2016,7:DOI 10.1038/ncomms10138.

    [19]S.Lloyd,M.Mohseni,P.Rebentrost.Quantum principal component analysis.Nature Physics,2014,10(9):631–633.

    [20]D.S.Abrams,S.Lloyd.Simulation of many-body Fermi systems on a universal quantum computer.Physical Review Letters,1997,79(13):2586–2589.

    [21]I.Kassal,S.P.Jordan,P.J.Love,et al.Quantum algorithms for the simulation of chemical dynamics.Proceedings of the National Academy of Sciences of the United States of America,2008,105(48):18681–18686.

    [22]L.A.Wu,M.S.Byrd,D.A.Lidar.Polynomial-time simulation of pairing models on a quantum computer.Physical Review Letters,2002,89(5):DOI 10.1103/PhysRevLett.89.057904.

    [23]A.W.Harrow,A.Hassidim,S.Lloyd.Quantum algorithm for solving linear systems of equations.Physical Review Letters,2009,15(103):DOI 10.1103/PhysRevLett.103.150502.

    [24]D.W.Berry.High-order quantum algorithm for solving linear differential equations.Journal of Physics A:Mathematical and Theoretical,2014,47(10):DOI 10.1088/1751-8113/47/10/105301.

    [25]S.K.Leyton,T.J.Osborne.A quantum algorithm to solve nonlinear differential equations.arXiv,2008:arXiv:0812.4423.

    [26]Y.D.Cao,A.Papageorgiou,I.Petras,et al.Quantum algorithm and circuit design solving the Poisson equation.New Journal of Physics,2013,15(1):DOI 10.1088/1367-2630/15/1/013021.

    [27]N.Wiebe,D.Braun,S.Lloyd.Quantum algorithm for data fitting.Physical Review Letters,2012,109(5):DOI 10.1103/PhysRevLett.109.05050.

    [28]P.Rebentrost,M.Mohseni,S.Lloyd.Quantum support vector machine for big data classification.Physical Review Letters,2014,113(13):DOI 10.1103/PhysRevLett.113.130503.

    [29]X.D.Cai,C.Weedbrook,Z.E.Su,et al.Experimental quantum computing to solve systems of linear equations.Physical Review Letters,2013,110(23):DOI 10.1103/PhysRevLett.110.230501.

    [30]J.Pan,Y.D.Cao,X.W.Yao,et al.Experimental realization of quantum algorithm for solving linear systems of equations.Physical Review A,2014,89(2):DOI 10.1103/PhysRevA.89.022313.

    [31]S.J.Hammarling.Numerical solution of the stable,non-negative definite Lyapunov equation.IMA Journal of Numerical Analysis,1982,2(3):303–323.

    [32]L.Grover,T.Rudolph.Creating superpositions that correspond to efficiently integrable probability distributions.arXiv,2002:arXiv:quant-ph/0208112.

    [33]A.Luis,J.Pe?rina.Optimum phase-shift estimation and the quantum description of the phase difference.Physical Review A,1996,54(5):4564–4570.

    [34]D.W.Berry,G.Ahokas,R.Cleve,et al.Efficient quantum algorithms for simulating sparse Hamiltonians.Communications in Mathematical Physics,2007,270(2):359–371.

    28 July 2017;revised 11 September 2017;accepted 11 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7091-0

    ?Corresponding author.

    E-mail:jing-zhang@mail.tsinghua.edu.cn.Tel:+86-13661167656.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    He SUNreceived his B.Sc.and M.Sc.degree from School of Information Science and Technology,Nankai University,Tianjin,China,in 2013,and Department of Automation,Tsinghua University,Beijing,China,in 2017,respectively.E-mail:SunHe1992@yeah.net.

    Jing ZHANGreceived his B.Sc.degree from Department of Mathematical Science and Ph.D.degree from Department of Automation,Tsinghua University,Beijing,China,in 2001 and 2006,respectively.From 2006 to 2008,he was a Postdoctoral Fellow at the Department of Computer Science and Technology,Tsinghua University,Beijing,China,and a Visiting Researcher from2008to2009 at the Advanced Science Institute,the Institute of Physical and Chemical Research(RIKEN),Japan.In 2010,he worked as a Visiting Assistant Professor at Department of Physics and National Center for Theoretical Sciences,National Cheng Kung University,Taiwan.He is now an Associate Professor at the Department of Automation,Tsinghua University,Beijing,China.His research interests include quantum control and micro/nano photonics.E-mail:jing-zhang@mail.tsinghua.edu.cn.

    在线免费观看的www视频| 黄色配什么色好看| 亚洲av第一区精品v没综合| 久久久久久伊人网av| 日韩欧美国产一区二区入口| 不卡一级毛片| 亚洲第一区二区三区不卡| av福利片在线观看| 又爽又黄a免费视频| 麻豆av噜噜一区二区三区| 在线免费观看不下载黄p国产 | 欧美成人免费av一区二区三区| 非洲黑人性xxxx精品又粗又长| 日本一二三区视频观看| 久久午夜福利片| 91在线精品国自产拍蜜月| 亚洲av成人av| 五月玫瑰六月丁香| 欧美最新免费一区二区三区| 男女下面进入的视频免费午夜| 亚洲自拍偷在线| 国产美女午夜福利| 欧美又色又爽又黄视频| 日韩欧美 国产精品| 欧美日韩黄片免| 亚洲中文字幕日韩| 九九在线视频观看精品| 国产高清不卡午夜福利| 变态另类成人亚洲欧美熟女| 日韩精品中文字幕看吧| h日本视频在线播放| 亚洲国产精品合色在线| 伦精品一区二区三区| 午夜日韩欧美国产| 欧美激情国产日韩精品一区| 日韩精品青青久久久久久| 欧美最黄视频在线播放免费| av黄色大香蕉| 国产大屁股一区二区在线视频| 亚洲欧美精品综合久久99| 蜜桃亚洲精品一区二区三区| 无人区码免费观看不卡| 国产美女午夜福利| 少妇人妻精品综合一区二区 | 人妻久久中文字幕网| 日本在线视频免费播放| 国产大屁股一区二区在线视频| 精品国内亚洲2022精品成人| 中文字幕高清在线视频| 在线播放无遮挡| 日韩精品中文字幕看吧| 一级黄色大片毛片| 亚洲一区二区三区色噜噜| 午夜免费成人在线视频| 村上凉子中文字幕在线| 国内揄拍国产精品人妻在线| 男女做爰动态图高潮gif福利片| 久久久久久伊人网av| 久久久久久久久久黄片| 国产成人福利小说| 欧美一区二区国产精品久久精品| 18禁在线播放成人免费| 搡老妇女老女人老熟妇| 久久亚洲真实| 亚洲四区av| 夜夜夜夜夜久久久久| 久久久国产成人精品二区| 色视频www国产| 18禁黄网站禁片午夜丰满| 亚洲五月天丁香| 成年人黄色毛片网站| 久9热在线精品视频| 久久久久性生活片| 干丝袜人妻中文字幕| 午夜福利成人在线免费观看| 别揉我奶头 嗯啊视频| 国产成人a区在线观看| 可以在线观看毛片的网站| 午夜视频国产福利| 18+在线观看网站| 国产探花在线观看一区二区| 麻豆一二三区av精品| 国产毛片a区久久久久| 日韩中文字幕欧美一区二区| 欧美+亚洲+日韩+国产| 18禁黄网站禁片免费观看直播| 国产蜜桃级精品一区二区三区| 99在线人妻在线中文字幕| 亚洲七黄色美女视频| 俺也久久电影网| 国产美女午夜福利| 国产精品永久免费网站| 天堂网av新在线| 中国美白少妇内射xxxbb| 亚洲aⅴ乱码一区二区在线播放| 天堂8中文在线网| 亚洲高清免费不卡视频| 少妇猛男粗大的猛烈进出视频| 久久国内精品自在自线图片| 插阴视频在线观看视频| 午夜老司机福利剧场| 日韩亚洲欧美综合| 国产黄色视频一区二区在线观看| 51国产日韩欧美| 国产视频内射| 少妇精品久久久久久久| 午夜视频国产福利| 夜夜爽夜夜爽视频| 日韩欧美一区视频在线观看 | 亚洲综合精品二区| 国产精品嫩草影院av在线观看| 水蜜桃什么品种好| 三级国产精品片| 精品99又大又爽又粗少妇毛片| 亚洲人成网站高清观看| 久久毛片免费看一区二区三区| 看免费成人av毛片| 精品熟女少妇av免费看| 亚洲精品乱码久久久久久按摩| av免费观看日本| 各种免费的搞黄视频| 国产高清国产精品国产三级 | 一个人免费看片子| 美女中出高潮动态图| 人妻制服诱惑在线中文字幕| av.在线天堂| av播播在线观看一区| 亚洲伊人久久精品综合| 丰满人妻一区二区三区视频av| 草草在线视频免费看| 丰满乱子伦码专区| 亚洲色图综合在线观看| 卡戴珊不雅视频在线播放| av卡一久久| a 毛片基地| 国产爽快片一区二区三区| 夜夜爽夜夜爽视频| 亚洲最大成人中文| av.在线天堂| 2022亚洲国产成人精品| 久久久午夜欧美精品| 看非洲黑人一级黄片| 日韩大片免费观看网站| 欧美国产精品一级二级三级 | 99热这里只有是精品在线观看| 热re99久久精品国产66热6| 免费看日本二区| 中文在线观看免费www的网站| 又爽又黄a免费视频| 丝袜喷水一区| 亚洲无线观看免费| 在线精品无人区一区二区三 | 一级毛片久久久久久久久女| 99久久综合免费| 大片免费播放器 马上看| 大片免费播放器 马上看| 亚洲国产精品成人久久小说| 又爽又黄a免费视频| 亚洲欧美成人综合另类久久久| 99久久中文字幕三级久久日本| 高清日韩中文字幕在线| 久久久久久久精品精品| 激情 狠狠 欧美| 国产精品熟女久久久久浪| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 亚洲精品国产av蜜桃| 91狼人影院| 亚洲精品日韩在线中文字幕| 国产国拍精品亚洲av在线观看| 丰满少妇做爰视频| 久久久久久人妻| 国产成人freesex在线| 国产亚洲5aaaaa淫片| 免费久久久久久久精品成人欧美视频 | 久久久欧美国产精品| 寂寞人妻少妇视频99o| 少妇人妻久久综合中文| av国产精品久久久久影院| 国产乱来视频区| 另类亚洲欧美激情| 22中文网久久字幕| 久久久久久久久久成人| 亚洲在久久综合| 日本免费在线观看一区| 日本-黄色视频高清免费观看| 美女主播在线视频| 亚洲精品国产成人久久av| 精品午夜福利在线看| 少妇人妻久久综合中文| 偷拍熟女少妇极品色| 国产精品久久久久久精品电影小说 | 免费观看无遮挡的男女| 欧美xxxx性猛交bbbb| 伊人久久国产一区二区| 99re6热这里在线精品视频| av.在线天堂| 日韩制服骚丝袜av| 久久青草综合色| 国产人妻一区二区三区在| 国产精品久久久久久久久免| a级一级毛片免费在线观看| 国产av精品麻豆| 日本色播在线视频| 国产男女内射视频| 丝袜脚勾引网站| 高清不卡的av网站| 中文字幕精品免费在线观看视频 | 色婷婷久久久亚洲欧美| 成人综合一区亚洲| freevideosex欧美| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 黄色一级大片看看| 国产一区二区在线观看日韩| 免费大片18禁| 欧美日韩国产mv在线观看视频 | 天堂俺去俺来也www色官网| 中文字幕久久专区| 亚洲成色77777| av国产免费在线观看| 在线观看国产h片| a 毛片基地| 亚洲三级黄色毛片| av.在线天堂| 日本vs欧美在线观看视频 | 一二三四中文在线观看免费高清| 日韩 亚洲 欧美在线| 亚洲人成网站高清观看| 亚洲成色77777| 亚洲天堂av无毛| 99九九线精品视频在线观看视频| 国语对白做爰xxxⅹ性视频网站| 麻豆乱淫一区二区| 免费少妇av软件| 夫妻性生交免费视频一级片| 哪个播放器可以免费观看大片| 国产综合精华液| 日韩成人伦理影院| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说| 国产欧美另类精品又又久久亚洲欧美| 欧美xxxx黑人xx丫x性爽| 国产精品一二三区在线看| 久久婷婷青草| 成人毛片a级毛片在线播放| 大码成人一级视频| av不卡在线播放| 国产成人a区在线观看| 日本黄大片高清| 国产伦精品一区二区三区视频9| 99久久综合免费| 国产爽快片一区二区三区| 少妇高潮的动态图| 欧美日韩视频精品一区| 97精品久久久久久久久久精品| 国产午夜精品一二区理论片| 免费观看无遮挡的男女| 欧美另类一区| 精品午夜福利在线看| 最近手机中文字幕大全| 久久精品国产亚洲网站| 国产毛片在线视频| 亚洲电影在线观看av| 国产欧美亚洲国产| 国产色爽女视频免费观看| 在线亚洲精品国产二区图片欧美 | 麻豆乱淫一区二区| 亚洲国产最新在线播放| 精品人妻熟女av久视频| 国产精品久久久久久精品古装| 久久久久久人妻| 国产在视频线精品| 天天躁日日操中文字幕| 亚洲,一卡二卡三卡| 黄色怎么调成土黄色| 成年免费大片在线观看| 国产成人一区二区在线| 久久人妻熟女aⅴ| 纵有疾风起免费观看全集完整版| 国内揄拍国产精品人妻在线| 免费大片18禁| 春色校园在线视频观看| 久久久久久久国产电影| 亚洲久久久国产精品| 在线播放无遮挡| 女人久久www免费人成看片| 国产亚洲5aaaaa淫片| 亚洲国产av新网站| 色视频在线一区二区三区| 好男人视频免费观看在线| 性色av一级| 国产成人a区在线观看| 99国产精品免费福利视频| 高清毛片免费看| 亚洲四区av| 国产成人aa在线观看| 熟女人妻精品中文字幕| 亚洲欧美日韩另类电影网站 | 熟女人妻精品中文字幕| 国产成人aa在线观看| 建设人人有责人人尽责人人享有的 | 一级爰片在线观看| 国产日韩欧美在线精品| a级一级毛片免费在线观看| 麻豆成人av视频| 观看免费一级毛片| 如何舔出高潮| 黄色欧美视频在线观看| 国产毛片在线视频| 亚洲电影在线观看av| 欧美精品一区二区免费开放| 日韩大片免费观看网站| 欧美一区二区亚洲| 美女cb高潮喷水在线观看| 国产爽快片一区二区三区| 成人午夜精彩视频在线观看| 久久久久久久久久人人人人人人| 制服丝袜香蕉在线| 日本与韩国留学比较| www.色视频.com| 国产精品精品国产色婷婷| 亚洲精品国产av成人精品| 国产视频内射| 男人添女人高潮全过程视频| 亚洲经典国产精华液单| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级 | 亚洲国产精品专区欧美| 欧美性感艳星| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 国产成人一区二区在线| 亚洲精品乱码久久久久久按摩| 啦啦啦在线观看免费高清www| 国产精品熟女久久久久浪| 亚洲国产毛片av蜜桃av| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 欧美另类一区| 大香蕉97超碰在线| 99热这里只有精品一区| 久久久久久久久久成人| freevideosex欧美| 成人特级av手机在线观看| 国产中年淑女户外野战色| 午夜免费观看性视频| 国产成人精品久久久久久| 十分钟在线观看高清视频www | 26uuu在线亚洲综合色| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 高清av免费在线| 好男人视频免费观看在线| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 国产精品久久久久成人av| 直男gayav资源| 十八禁网站网址无遮挡 | 欧美成人精品欧美一级黄| 欧美极品一区二区三区四区| 在线观看免费视频网站a站| 亚洲国产日韩一区二区| 日韩欧美 国产精品| 色视频在线一区二区三区| 妹子高潮喷水视频| 精品亚洲成国产av| 欧美日韩综合久久久久久| 日韩人妻高清精品专区| 日韩不卡一区二区三区视频在线| 久久青草综合色| 天堂俺去俺来也www色官网| 又爽又黄a免费视频| 不卡视频在线观看欧美| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 欧美另类一区| 国产精品99久久99久久久不卡 | 国产黄色视频一区二区在线观看| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 久久 成人 亚洲| 男人添女人高潮全过程视频| 国产真实伦视频高清在线观看| 18禁在线无遮挡免费观看视频| 国产 精品1| 99热这里只有是精品在线观看| 欧美丝袜亚洲另类| 久久久a久久爽久久v久久| 丝瓜视频免费看黄片| 国产爽快片一区二区三区| 高清在线视频一区二区三区| 在线观看免费视频网站a站| 亚洲丝袜综合中文字幕| 国产欧美日韩精品一区二区| 久久精品熟女亚洲av麻豆精品| 国产欧美日韩精品一区二区| 亚洲三级黄色毛片| 日本欧美视频一区| 欧美人与善性xxx| 大香蕉久久网| 欧美亚洲 丝袜 人妻 在线| 久久99精品国语久久久| 国产精品成人在线| 少妇人妻 视频| 亚洲一级一片aⅴ在线观看| 日韩中文字幕视频在线看片 | 日本欧美国产在线视频| 老司机影院成人| 简卡轻食公司| 97精品久久久久久久久久精品| 少妇熟女欧美另类| 99热这里只有是精品在线观看| 国产精品伦人一区二区| 国产91av在线免费观看| 国产深夜福利视频在线观看| 一级爰片在线观看| 男人添女人高潮全过程视频| 人妻一区二区av| 国产精品蜜桃在线观看| 又爽又黄a免费视频| 人人妻人人看人人澡| 国产精品久久久久久久久免| 91精品国产九色| 韩国高清视频一区二区三区| 日本黄大片高清| 成人亚洲欧美一区二区av| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 黑人高潮一二区| 免费大片18禁| 天天躁日日操中文字幕| 在线 av 中文字幕| 少妇 在线观看| 亚洲性久久影院| 国产伦精品一区二区三区视频9| 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| 纵有疾风起免费观看全集完整版| 国产精品精品国产色婷婷| 亚洲av在线观看美女高潮| 插逼视频在线观看| 狂野欧美激情性xxxx在线观看| 一级av片app| 午夜福利在线观看免费完整高清在| 成人特级av手机在线观看| 欧美一级a爱片免费观看看| 国产极品天堂在线| 欧美成人一区二区免费高清观看| 男女无遮挡免费网站观看| 亚洲成人中文字幕在线播放| 国产亚洲精品久久久com| 国产成人一区二区在线| 各种免费的搞黄视频| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 免费av中文字幕在线| 中文字幕制服av| 高清黄色对白视频在线免费看 | 我的女老师完整版在线观看| 简卡轻食公司| 国产在线免费精品| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 三级国产精品片| 老师上课跳d突然被开到最大视频| 身体一侧抽搐| 色视频在线一区二区三区| 中文在线观看免费www的网站| av网站免费在线观看视频| 91精品国产国语对白视频| 精品视频人人做人人爽| 欧美日韩在线观看h| 中文字幕精品免费在线观看视频 | 久久久久久久久久成人| 午夜激情久久久久久久| 久久久久久久久久久丰满| 国产精品福利在线免费观看| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 午夜免费鲁丝| 精品99又大又爽又粗少妇毛片| 午夜福利网站1000一区二区三区| 天美传媒精品一区二区| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 午夜福利影视在线免费观看| 国产精品.久久久| 97在线视频观看| 蜜桃久久精品国产亚洲av| av在线蜜桃| 免费观看无遮挡的男女| 久久久欧美国产精品| 中国三级夫妇交换| 日本黄色片子视频| 亚洲av欧美aⅴ国产| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| www.色视频.com| 伊人久久国产一区二区| 国产精品无大码| 久久久久国产精品人妻一区二区| 人人妻人人澡人人爽人人夜夜| 欧美性感艳星| 黄色欧美视频在线观看| 一级毛片 在线播放| 国产av一区二区精品久久 | 国产欧美另类精品又又久久亚洲欧美| 女的被弄到高潮叫床怎么办| 欧美精品一区二区大全| 久久韩国三级中文字幕| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 日本av手机在线免费观看| 97超碰精品成人国产| 亚洲内射少妇av| tube8黄色片| 成人国产麻豆网| 女的被弄到高潮叫床怎么办| 精品人妻偷拍中文字幕| 好男人视频免费观看在线| 高清视频免费观看一区二区| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| 国内揄拍国产精品人妻在线| 美女高潮的动态| 大话2 男鬼变身卡| 欧美日韩国产mv在线观看视频 | 国产国拍精品亚洲av在线观看| 亚洲精品一区蜜桃| 亚洲精品亚洲一区二区| 我要看黄色一级片免费的| 亚洲国产日韩一区二区| 狂野欧美激情性xxxx在线观看| videos熟女内射| 国内少妇人妻偷人精品xxx网站| 亚洲综合精品二区| 国产伦在线观看视频一区| 免费av中文字幕在线| 最近最新中文字幕大全电影3| 最黄视频免费看| 91精品国产九色| 亚洲精品,欧美精品| 少妇人妻精品综合一区二区| 国产成人精品久久久久久| 一区二区三区免费毛片| 亚洲av二区三区四区| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区 | 女的被弄到高潮叫床怎么办| 在线观看美女被高潮喷水网站| 久久婷婷青草| 美女国产视频在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美成人综合另类久久久| 国产v大片淫在线免费观看| 在线观看免费日韩欧美大片 | 亚洲成人av在线免费| 91精品国产国语对白视频| 国产探花极品一区二区| 国产精品欧美亚洲77777| 国产高清三级在线| 国产精品免费大片| 久久国产精品男人的天堂亚洲 | av国产精品久久久久影院| 国产精品99久久久久久久久| 超碰av人人做人人爽久久| 亚洲精华国产精华液的使用体验| 成人影院久久| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 亚洲av福利一区| h视频一区二区三区| 欧美精品国产亚洲| 久热这里只有精品99| 97超视频在线观看视频| 成年女人在线观看亚洲视频| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 国产伦精品一区二区三区视频9| 91精品国产九色| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 欧美日韩精品成人综合77777| 日本黄色片子视频| 日日啪夜夜撸| 美女视频免费永久观看网站| 精品久久久久久久久亚洲| 欧美 日韩 精品 国产| 亚洲欧美精品专区久久| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 在线免费十八禁| 国产成人精品久久久久久| 亚洲四区av| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 国产有黄有色有爽视频| 亚洲高清免费不卡视频| 亚洲国产精品999| 免费观看无遮挡的男女| 国产探花极品一区二区| 亚洲,一卡二卡三卡| 国产在线男女| 久久影院123| 久久久久久久久久成人| 观看美女的网站| 日本黄色日本黄色录像| 久久韩国三级中文字幕|