• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A unified approach to output synchronization of heterogeneous multi-agent systems via L2-gain design

    2017-12-22 06:12:22ShanZUOYongduanSONGHamidrezaMODARESFrankLEWISAliDAVOUDI
    Control Theory and Technology 2017年4期

    Shan ZUO,Yongduan SONG,Hamidreza MODARES,Frank L.LEWIS,Ali DAVOUDI

    1.School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China;

    2.The University of Texas at Arlington Research Institute,Fort Worth,TX 76118,U.S.A.

    A unified approach to output synchronization of heterogeneous multi-agent systems via L2-gain design

    Shan ZUO1,2?,Yongduan SONG1,Hamidreza MODARES2,Frank L.LEWIS2,Ali DAVOUDI2

    1.School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China;

    2.The University of Texas at Arlington Research Institute,Fort Worth,TX 76118,U.S.A.

    In this paper,a unified design procedure is given for output synchronization of heterogeneous multi-agent systems(MAS)on communication graph topologies,using relative output measurements from neighbors.Three different control protocols,namely,full-state feedback,static output-feedback,and dynamic output-feedback,are designed for output synchronization.It is seen that a unified design procedure for heterogeneous MAS can be given by formulation and solution of a suitable local L2-gain design problem.Sufficient conditions are developed in terms of stabilizing the local agents’dynamics,satisfying a certain small-gain criterion,and solving the output regulator equations.Local design procedures are presented for each agent to guarantee that these sufficient conditions are satisfied.The proposed control protocols require only one copy of the leader’s dynamics in the compensator,regardless of the dimensions of the outputs.This results in lower-dimensional compensators for systems with high-order outputs,compared to the p-copy internal model approach.All three proposed control protocols are verified using numerical simulations.

    Heterogeneous systems,output-feedback,output synchronization,small-gain theorem

    1 Introduction

    Distributed control protocols of multi-agent systems(MAS)studied in[1–6]assure that all agents reach agreement on certain quantities of interests(leaderless consensus)or follow the trajectory of a leader node(leader follower consensus).A rich body of literature has been developed on state synchronization of homogeneous MAS,in which all agents have identical dynamics[7–11].

    However,in many practical applications,the agents are heterogeneous in that the dynamics and even statespace dimensions of the agents are different.For these systems,state synchronization is meaningless.Therefore,distributed output synchronization of heterogeneous MAS has attracted compelling attention in the literature[12–24].Controller design for heterogeneous MAS is complicated by the fact that the agents have different dynamics and so the standard Kronecker product cannot be used.The upshot is that the closed-loop dynamics has the local controller design and the global graph properties intermingled in a very complex manner.Design of suitable local distributed protocols is consequently difficult.

    There are generally three main approaches to solve the leader-follower output synchronization problem for heterogeneous MAS.In the first approach,a distributed observer is first designed to estimate the leader’s state for all agents.Then,a static compensator is designed for each agent,often based on the output regulator equations[12–16].

    In the second approach,the relative output information from neighbors is used to design a control protocol and the leader’s state is not estimated[17–20].The output synchronization problem is addressed in[17]under the assumption that the communication graph contains no cycle.Su et al.[18]removed the no-cycle assumption,however,the nominal dynamics of all agents are restricted to be the same.Huang et al.[19]and Yaghmaie et al.[20]solved the output synchronization problem using an H∞criterion.All of these works use the p-copy internal model principle.A dynamic compensator is designed for each agent,which incorporates a p-copy internal model of the leader’s dynamics,with pthedimension of the agents’outputs.This approach can cope with uncertainties in the agent dynamics,and does not require the solution of the output regulator equations.However,it may lead to a complicated high-dimensional compensator,which introduces redundant dynamics.This is because the compensator of each agent must essentially have p copies of the leader’s dynamics.Therefore,the compensator dimension and complexity is high if the agents have high-order outputs.

    The third approach deals with the output synchronization problem for heterogeneous networks of nonintrospective agents[21–24],which do not have selfknowledge,such as their own state/output,and only possess information that is transmitted over the communication network,such as the relative output information from neighbors.A minimum-phase condition is needed.

    The main idea is to first homogenize the heterogeneous network using a state transformation to obtain a dynamical model that is substantially the same as for the other agents.Then,the model differences occur only in particular locations where they can be suppressed by using high-gain observer techniques.The internal observer dynamics are constructed to estimate unmeasured states,which introduces additional computational complexity.The agents in[21–23]are assumed to exchange not only the relative output information from neighbors,but also the relative information about their internal estimates,via the communication network.Reference[24]removes the additional communication channel for exchanging controller states,based on a combination of low-and high-gain design techniques.

    This paper investigates the output synchronization problem for heterogeneous MAS.Three standard control protocols using full-state feedback,static out put feedback(OPFB)and dynamic OPFB,are designed at each agent.The contributions of this paper are as follows:

    .A unified approach to the design of synchronizing protocols for heterogeneous MAS,using neighbors’relative output measurements,is provided by formulation and solution of a suitable local L2-gain design problem.This L2-gain problem can be solved by local design algorithms that guarantee the local gains are bounded by a certain value depending on the global graph structure.

    .The global and local sufficient conditions for the existence of the three control protocols are derived.The dynamic compensator employed in each approach incorporates only one copy of the leader’s dynamics,regardless of the dimensions of the outputs.This results in simpler and lower-dimensional compensator and controller for systems with high-order outputs,compared to the p-copy internal model principle.

    .The dynamic OPFB control protocol addresses a more challenging case of heterogeneous nonintrospective agents,in which the relative output information of each agent and its neighbors,is the only available information.Compared to[21–24],our approach does not need to homogenize the heterogeneous network using a state transformation.Moreover,our approach does not need the additional communication channel for exchanging controller states via network,and is consequently computationally inexpensive.

    The rest of the paper is organized as follows:In Section2,we give the preliminaries on the graph theory,and define three types of output synchronization problems for heterogeneous MAS using different control laws.In Section 3,we present our main results.Sufficient local conditions to solve the output synchronization problem with the proposed three control protocols are presented.Local design procedures are addressed,respectively.In Section 4,we give two simulation cases to illustrate our designs.Finally,in Section5we present our conclusions.

    2 Preliminaries and problem formulation

    2.1 Preliminaries

    Suppose that the interaction among the followers is represented by a weighted graph G=(V,E,A)with a nonempty finite set of N nodes V={v1,v2,...,vN},a set of edges or arcs E?V×V,and the associated adjacency matrix A=[aij]∈ RN×N.Here,the digraph is assumed to be time-invariant,i.e.,A is constant.An edge rooted at node j and ended at node i is denoted by(vj,vi),which means information can flow from node j to node i.aijis the weight of edge(vj,vi),and aij>0 if(vj,vi)∈E,otherwise aij=0.Node j is called a neighbor of node i if(vj,vi)∈E.The set of neighbors of node i is denoted as Ni={j|(vj,vi)∈E}.Define the in-degree matrix as D=diag{di}∈ RN×Nwithand the Laplacian matrix as L=D?A.In this paper,we consider a group of N+1 agents,composed of N followers and one leader.The leader has no incoming edges and so exhibits autonomous behavior.The followers have incoming edges and receive direct information from the neighbors.Digraph=(V,E)shows the interaction among the followers and the leader.Digraphis said to have a spanning tree,if there is a node ir(called the root),such that there is a directed path from the root to every other node in the graph.

    We use the following notations throughout this paper:R represents the real domain and C represents the complex domain.is the closed right half-complex plane. ρ(X)and σ(X)are the spectral radius and the spectrum of some square matrix X.IN∈ RN×Nis the identity matrix.Kronecker product is denoted by?.The operator diag{·}builds a block diagonal matrix from its argument.

    2.2 Output regulation problem

    Consider N heterogeneous linear dynamical MAS

    where xi∈Rniis the state,ui∈Rmiis the input,and yi∈Rpis the output for i=1,...,N.

    The dynamics of a leader are given by

    where S ∈ Rq×q,R ∈ Rp×qare constant matrices,ζ0(t)∈Rqis the reference state,and y0(t)∈Rpis the reference output.

    The following assumptions are made in this paper:

    Assumption 1The real parts of the eigenvalues of S are nonnegative.

    Assumption 2is stabilizable,(Ai,Ci)is detectable,andis detectable for all i∈N.

    Assumption 3

    Assumption 4The directed graphhas a spanning tree with the leader as its root.

    Remark 1Assumption 1 is a standard one made to avoid the trivial case of stable S.The modes associated with the eigenvalues of S with negative real parts will exponentially decay to zero and will in no way affect the asymptotic behavior of the closed-loop system.Assumption 3 can be paraphrased by saying that the transmission zeros of the followers’system(1)do not coincide with the eigenvalues of the leader’s system(2),and it is often simply called the transmission zeros condition.Assumptions 2 and 4 are standard assumptions for the output regulation problem and will be used in the main result.

    The objective of the output synchronization is to design control protocols uiin(1)to assure the followers’outputs yitrack the leader’s output y0.To this end,define the output synchronization error as

    The relative output information of each agent with respect to its neighbors is the only information exchanged inthecommunicationnetwork.Therefore,wedefinethe following local neighborhood output tracking error for each agent,which is a linear combination of its output relative information

    This is known as relative output-feedback(OPFB).Three types of output synchronization problems for heterogeneous MAS using different control laws are defined as follows.These are standard control laws used in the literature.

    Problem 1The output synchronization problem via relative OPFB and local full-state feedback is to design distributed control protocols as follows:

    Problem 2The output synchronization problem via relative OPFB and local static OPFB is to design distributed control protocols as follows:

    Problem 3The output synchronization problem via relative OPFB and dynamic OPFB is to design distributed control protocols as follows:

    Remark 2Problem 1 requires the full state information of each agent.This information,however,may not be available in some practical applications.This issue is obviated in Problem 2 by considering a static OPFB design.Both Problems 1 and 2 require absolute values of state or output of each agent.In some applications,however,the agents are non-introspective,and the only information available to each agent is a linear combination of the relative outputs with respect to its neighbors received over the network.Problem 3 uses the dynamic OPFB design to address this issue.This solution,however,comes at the cost of a higher-order compensator and controller in(8)compared to that in(6)and(7).

    The solutions to these problems rest on the following lemma.

    In global form these are written as

    This situation is shown in Fig.1,where

    Define the local transfer functions for i∈ N as Ti(s)≡Ci(s?i)?1i.Then,the global transfer function is T(s)≡diag{Ti(s)}.

    Fig.1 Closed-loop system of(10).

    The next result is from[25,26].

    Lemma 1Using the small-gain theorem.Systems(9)are stable for i∈N,ifiis stable and

    Remark 3In Lemma 1,the small-gain theorem is used to decouple the control design at each agent from the global information of the communication graph structure,which appears in ρ(A)in(11).

    3 Main results and design procedures for Problems 1–3

    In this section,the sufficient local conditions for the existence of solutions to Problems 1–3 are provided.Moreover,the local design procedures are presented,respectively.It is seen that the control design for each problem depends on formulation and solution of a L2-gain design problem.

    3.1 Sufficient conditions and local controller design algorithm for problem 1

    Given control protocols(6),assume the graph is normalized so that

    Then,(5)can be reformulated as

    Systems(1)and(4),under full-state feedback controller(6),have the following closed-loop form

    and xi=[xiT,ziT]T,i=[0 GiT]T,Ci=[Ci0]for all i∈N.Then,(14)can be rewritten as

    The following is a main result.

    Theorem 1For systems(16),suppose the following three conditions hold for each i∈N:

    iii)There exists a unique solution Xito the output regulator equations

    Then,Problem 1 is solved.

    ProofDefine tracking error vectorsThen according to(17),one has

    This gives the closed-loop tracking error dynamics as

    It is seen that,if there exists a unique solution Xito(17)for each i∈N,solving Problem 1 is equivalent to stabilizing systems(20).Using Lemma 1,ifin(15)is Hurwitz,andthen systems(20)are stable.Hence,Problem 1 is solved.

    This result relies on solution of the global output regulator equations(17).Next,we give a local design procedure that guarantees(17)has a unique solution.The next technical result is needed.

    Lemma 2[12,Theorem 1.9]Given Assumption3,the local output regulator equations

    have unique solution pairs(Πi,Γi),respectively.

    The next result addresses condition iii)in Theorem 1.

    Theorem 2Assume that for each i∈N,the matrixiis Hurwitz.Make Assumption 3,and let(Πi,Γi)be solutions to(21).Then,under Assumption 1,there exists a unique solution Xi=[ΠiTIq]Tto equations(17)for each i∈N,if the matrices Ki,Hi,Fi,and Giare designed as

    where Kiis such that Ai+BiKiis Hurwitz,and Giis such that(S,Gi)is controllable.

    ProofSee the appendix.

    Remark 4Here,the control matrices’dimensions are:Fi∈ Rq×q,Gi∈ Rq×p,Ki∈ Rmi×ni,and Hi∈ Rmi×q.By contrast,the control matrices’dimensions using pcopy internal model principle are:Fi∈ Rpq×pq,Gi∈Rpq×p,Ki∈ Rmi×ni,and Hi∈ Rmi×pq.Compared to the p-copy internal model principle,our approach results in a lower-dimensional and computationally inexpensive compensator and controller for systems with high-order outputs.

    Note that Theorem 2 requires the Assumption thatiis Hurwitz.The following design procedure addresses conditions i)and ii)in Theorem 1.

    Based on Theorem 2,we obtain the following local design procedure to solve Problem 1.Using(22)and(20)can be reformulated as

    Define measured outputs

    Then,u1i=Kiwi.Now,(23)can be written as

    The global closed-loop system of(26)is shown in Fig.2,where

    Fig.2 Closed-loop system of(26).

    Now,we give a local L2-gain design procedure for solving Problem 1.

    Theorem 3(L2-gain design)Under Assumptions 1–4,select γi< 1/ρ(A),and design matrices Hi,Fiand Gias in Theorem 2.Then,Problem 1 is solved if,for some positive definite matrices Ri,and scalars αi> 0,there exist matrices Kiand Lisuch that

    where PTi=Pi>0 is the solution to

    ProofBy the same process in[27],systems(26)are OPFB stabilizable with L2gain bounded by γi< 1/ρ(A),if and only if,condition(27)holds with a feasible solution to(28).This satisfies conditions i)and ii)in Theorem1.Design the control matrices as in(22),using Theorem 2,condition iii)in Theorem 1 also holds.Therefore,Problem 1 is solved.

    Remark 5If 1ρ(A)or its estimated information is available to each agent in advance,then condition ii)in Theorem 1 is decentralized so that e/ach agent can design its controller independently.If 1ρ(A)is unknown to each agent,γican be set as small as possible.

    According to[27],necessary conditions for the existence of matrices Ki,Liand Piin Theorem 3 are:

    Theorem4MakeAssumptions2and3,let(S,Gi)be controllable.Then,the necessary conditions(29)hold.

    ProofSee the appendix.

    The procedure to solve Problem 1 is summarized in Algorithm 1.

    Remark 6Motivated by[28],to reduce the effect of the disturbances to a prespecified level,we present a procedure by solving the ARE(28)for successively smaller values of the constant αi.

    3.2 Sufficient conditions and local controller design algorithm for Problem 2

    The full-state feedback control protocol,developed in Section 3.1,requires the complete knowledge of each agent’sstate.This requirement is obviated in this section by using the static OPFB design in(7).

    Systems(1)and(4),under the static OPFB controller(7),have the following closed-loop form

    Then,(30)can be rewritten as(16).Therefore,Theorem 1 holds to solve Problem 2,with the redefined matrixiin(31)and the closed-loop tracking error dynamic systems as in(20).

    To obtain a local design procedure to guarantee the conditions in Theorem 1 for solving Problem 2,the following results are given.

    Theorem 5Assume that for each i∈N,the matrixiin(31)is Hurwitz.Under Assumption 3,there exist unique solutions to(21).Then,under Assumption 1,there exists a unique solution Xi=[ΠiTIq]Tto(17)if the matrices Ki,Hi,Fiand Giare designed as

    where Kiis such that Ai+BiKiCiis Hurwitz,and Giis such that(S,Gi)is controllable.

    ProofThe proof follows that of Theorem 2 with matrices defined in(32).

    Next,we obtain the following local design procedure to solve Problem 2.

    Using(32),(20)can be reformulated as(24)with u1i=KiCi[Ini?Πi]εi.Define measured outputs

    Now,Theorem 3 and Algorithm 1 hold for solving Problem 2 withredefined as in(33).

    Remark 7The difficulties of static OPFB design are well known in the literature[29–31].In this paper,however,we show that the output regulation using fullstate feedback and static OPFB can be confronted using a similar L2-gain design algorithm.Moreover,for the static OPFB design in(7),Theorem 4 also holds.That is,under Assumptions 2 and 3,is stabilizable,and redesigned matrices=are detectable.Therefore,the necessary conditions for the existence of Ki,Li,and Piin(27)and(28)are guaranteed for solving Problem 2.

    3.3 Sufficient conditions and local controller design algorithm for Problem 3

    The full-state feedback and static OPFB control protocols(6)and(7)require the absolute values of state or output of each agent.In this section,a dynamic OPFB control protocol is designed,which only requires the relative OPFB information(5).

    Systems(1)and(4),under dynamic OPFB controller(8),have the following closed-loop form

    Then,(34)can be rewritten as(16).Therefore,Theorem 1 holds to solve Problem 3,with the redefined matrixiin(35)and the closed-loop tracking error dynamic systems as in(20).

    To obtain a local design procedure to guarantee the conditions in Theorem 1 for solving Problem 3,the following results are given.

    Theorem 6Make Assumptions 1–3,let(Πi,Γi)be solutions to(21).Then,the matrixin(35)is Hurwitz,and there exists a unique solution Xi=[X1iTX2iT]T=[ΠiTΠiTIq]Tto equations(17)if the matrices Fi,Giand Hiare designed as

    where Hixis such that Ai+BiHixis Hurwitz,and Giis such thatis Hurwitz.

    ProofSee the appendix.

    Using Theorem6,we obtain the following local design procedure to solve Problem 3.

    Using(36)and(37),one can reformulate(20)as

    Define measured outputs

    Now,(38)can be written as(26).Algorithm 1 can also be used to solve Problem 3.Moreover,since the matrices Fi,Giand Hidesigned in Theorem 6 make the system matrixHurwitz,there always exist feasible solutions to(27)and the ARE(28),with successively smaller values of αi.

    4 Simulation results

    Consider a group of eight followers and one leader,with the communication graphdepicted in Fig.3.Based on the communication graph,ρ(A)=0.5.Consider the followers’dynamics in(1),and the leader’s dynamics in(2),with the systems matrices defined as

    Fig.3 Communication graph

    Simulation case1We design the full-state feedback control for followers i=1,...,6,and the static OPFB control for followers i=7,8.Select γi=1.8 < 1/ρ(A).To satisfy the hypothses of Theorem 2,the control matrices Giare chosen as

    The control matrices Kifound by solving(27)and the ARE(28)are

    The simulated output trajectories of all agents,and the output tracking errors of the followers in Case 1 are shown in Fig.4 and Fig.5,respectively.It is seen that the trajectories of the followers converge to the trajectory of the leader and the output tracking errors go to zero asymptotically.

    Fig.4 The simulated output trajectories of all agents in Case1.

    Fig.5 The output tracking errors ηiof the followers in Case1.

    Simulation case 2We design the dynamic OPFB control for all followers.Select γi=1.8 < 1ρ(A).To satisfy the hypotheses of Theorem 6,the control matrices Giare chosen as

    The control matrices Hixfound by solving(27)and the ARE(28)are

    The simulated output trajectories of all agents,and the output tracking errors of the followers in Case 2 are shown in Fig.6 and Fig.7,respectively.It is seen that the trajectories of the followers converge to the trajectory of the leader and the output tracking errors go to zero asymptotically.

    Fig.6 The simulated output trajectories of all agents in Case2.

    Fig.7 The output tracking errors ηiof the followers in Case2.

    5 Conclusions

    This paper investigates the output synchronization problem of linear heterogeneous MAS using full-state feedback,static output-feedback,and dynamic out put feed back control.With a fixed communication network that has a spanning tree,sufficient local conditions are developed in terms of stabilizing the local agents’dynamics,satisfying an small-gain criterion and solving the output regulator equations.A unified design approach for the three proposed control protocols,using relative output information from neighbors,is provided by formulating and solving a local L2-gain design problem.The effectiveness of the proposed three control protocols has been validated by the simulation case studies.

    [1]J.A.Fax,R.M.Murray.Information flow and cooperative control of vehicle formations.IEEE Transactions on Automatic Control,2004,49(9):1465–1476.

    [2]R.O.Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [3]W.Ren,R.W.Beard,E.M.Atkins.Information consensus in multivehicle cooperative control:Collective group behavior through local interaction.IEEE Control Systems Magazine,2007,2(27):71–82.

    [4]Z.Qu.Cooperative Control of Dynamical Systems:Applications to Autonomous Vehicles.London:Springer,2009.

    [5]F.L.Lewis,H.Zhang,K.H.Movric,et al.Cooperative Control of Multi-Agent Systems:Optimal and Adaptive Design Approaches.London:Springer,2014.

    [6]S.Zuo,A.Davoudi,Y.Song,et al.Distributed finite-time voltage and frequency restoration in islanded ac microgrids.IEEE Transactions on Industrial Electronics,2016,63(10):5988–5997.

    [7]G.Wen,Z.Duan,Z.Li,et al.Consensus and its L2-gain performance of multi-agent systems with intermittent information transmissions.International Journal of Control,2012,85(4):384–396.

    [8]Y.Hong,G.Chen,L.Bushnell.Distributed observers design for leader-following control of multi-agent networks.Automatica,2008,44(3):846–850.

    [9]W.Ren,E.Atkins.Distributed multi-vehicle coordinated control via local information exchange.International Journal of Robust and Nonlinear Control,2007,17(10/11):1002–1033.

    [10]Z.Li,Z.Duan,G.Chen,et al.Consensus of multiagent systems and synchronization of complex networks:a unified viewpoint.IEEE Transactions on Circuits and Systems I:Regular Papers,2010,57(1):213–224.

    [11]S.E.Tuna.Synchronizing linear systems via partial-state coupling.Automatica,2008,44(8):2179–2184.

    [12]J.Huang.Nonlinear Output Regulation:Theory and Applications.Philadelphia:SIAM,2004.

    [13]Y.Su,J.Huang.Cooperative output regulation of linear multiagent systems.IEEE Transactions on Automatic Control,2012,57(4):1062–1066.

    [14]P.Wieland,R.Sepulchre,F.Allg¨ower.An internal model principle is necessary and sufficient for linear output synchronization.Automatica,2011,47(5):1068–1074.

    [15]L.Yu,J.Wang.Robust cooperative control for multi-agent systems via distributed output regulation.Systems&Control Letters,2013,62(11):1049–1056.

    [16]Q.Jiao,H.Modares,F.L.Lewis,etal.Distributed L2-gain out put feed back control of homogeneous and heterogeneous systems.Automatica,2016,71:361–368.

    [17]X.Wang,Y.Hong,J.Huang,et al.A distributed control approach to a robust output regulation problem for multi-agent linear systems.IEEE Transactions on Automatic Control,2010,55(12):2891–2895.

    [18]Y.Su,Y.Hong,J.Huang.A general result on the robust cooperative output regulation for linear uncertain multi-agent systems.IEEE Transactions on Automatic Control,2013,58(5):1275–1279.

    [19]C.Huang,X.Ye.Cooperative output regulation of heterogeneous multi-agent systems:An H∞criterion.IEEE Transactions on Automatic Control,2014,59(1):267–273.

    [20]F.A.Yaghmaie,F.L.Lewis,R.Su.Output regulation of linear heterogeneous multi-agent systems via output and state feedback.Automatica,2016,67:157–164.

    [21]H.F.Grip,T.Yang,A.Saberi,et al.Output synchronization for heterogeneous networks of non-introspective agents.Automatica,2012,48(10):2444–2453.

    [22]T.Yang,A.A.Stoorvogel,H.F.Grip,et al.Semi-global regulation of output synchronization for heterogeneous networks of nonintrospective,invertible agents subject to actuator saturation.International journal of robust and nonlinear control,2014,24(3):548–566.

    [23]Z.Meng,T.Yang,D.V.Dimarogonas,et al.Coordinated output regulation of heterogeneous linear systems under switching topologies.Automatica,2015,53:362–368.

    [24]H.F.Grip,A.Saberi,A.A.Stoorvogel.Synchronization in networks of minimum-phase,non-introspective agents without exchangeofcontrollerstates:homogeneous,heterogeneous,and nonlinear.Automatica,2015,54:246–255.

    [25]H.K.Khalil.Nonlinear Systems.3rd ed.New Jersey:Prentice Hall,2002.

    [26]S.Skogestad,I.Postlethwaite.Multivariable Feedback Control:Analysis and Design.New York:Wiley,2007.

    [27]J.Gadewadikar,F.L.Lewis,M.A.Khalaf.Necessary and sufficient conditions for H∞static output-feedback control.Journal of Guidance,Control,and Dynamics,2006,29(4):915–920.

    [28]I.R.Petersen.Disturbance attenuation and H∞optimization:A design method based on the algebraic riccati equation.IEEE Transactions on Automatic Control,1987,32(5):427–429.

    [29]F.L.Lewis,V.L.Syrmos.Optimal Control.3rd ed.New York:Wiley,2011.

    [30]B.L.Stevens,F.L.Lewis.Aircraft Control and Simulation.3rd ed.New Jersey:Wiley,2003.

    [31]J.Gadewadikar,F.L.Lewis,L.Xie,et al.Parameterization of all stabilizing H∞static state-feedback gains:application to outputfeedback design.Automatica,2007,43(9):1597–1604.

    [32]F.Gerrish,A.J.B.Ward.Sylvester’s matrix equation and roth’s removal rule.The Mathematical Gazette,1998,82(495):423–430.

    [33]S.Bittanti,P.Colaneri.Lyapunov and riccati equations:periodic inertia theorems.IEEE Transactions on Automatic Control,1986,31(7):659–661.

    24 May 2017;revised 27 July 2017;accepted 2 August 2017

    DOIhttps://doi.org/10.1007/s11768-017-7067-0

    ?Corresponding author.

    E-mail:shan.zuo@uta.edu.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported in part by the State Key Development Program for Basic Research of China(No.2012CB215202),in part by the National Science Foundation(No.ECCS-1405173),in part by the Office of Naval Research(No.N00014-17-1-2239).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Appendix

    Proof of Theorem 2Note that the first equation in(17)is a Sylvester equation,which under Assumption 1,always has a unique solution as long asiis stable.If the above designed control laws also make Xisatisfy the second equation in(17),then the proof is completed.

    Let Xi=[ΠiTIq]T,then,(17)can be expanded as

    It is now required to show that under the hypotheses in the statement of this theorem,Xi=[ΠiTIq]Tis the unique solution satisfying(a1).

    From(21)and(22),we can get the identities

    which can be expanded as

    However,(a3)and(a1)are identical.Therefore,Xi=[ΠiTIq]Tsatisfies both equations in(a1).Sinceiis Hurwitz,then,Xi=[ΠiTIq]Tis the unique solution to(a1),and hence(17).This completes the proof.

    Proof of Theorem 4Given Assumption 3,Lemma 2 holds.Then,from the Roth’s removal rule[32],matricesare similar.For the pair

    Using the PBH test[33],the pairis stabilizable if and only if

    Since(Ai,Bi)is stabilizable,rank[Ai? λIniBi]=nifor all λ∈C+.Also,det(S?λIq)≠0 for all λ?σ(S).Thus,one has

    Write M(λ)=M1(λ)M2(λ),where

    Since(S,Gi)is controllable,for all λ ∈ C,M1(λ)has rank ni+q.By Assumption 3,M2(λ)has rank ni+p+q for all λ ∈ σ(S).Hence,by Sylvester’s inequality,

    Combining(a6)and(a7)gives

    Thus the pair(?Ai,?Bi)=is stabilizable.

    Since(Ai,Ci)is detectable and(S,Gi)is controllable,similarly,using the PBH test,one can prove that(?Ai,Ci)=is detectable.Similarly,using the PBH test,one can prove that=detectable,sinceis detectable and(S,Gi)is controllable.

    Therefore,design the control matrices as in(22),necessary conditions for the existence of solutions to(27)and(28)hold.

    Proof of Theorem 6The first equation in(17)is a Sylvester equation.Under Assumption 1,it always has a unique solution Xias long asiis Hurwitz.If the above designed control laws makeiHurwitz,and also make Xisatisfies the second equation in(17),then the proof is completed.

    Next,we prove that the unique solution Xialso satisfies the second equation of(17).Let Xi=[X1iTX2iT]T.Then,(17)can be expanded as

    Let X1i= Πi,X2i=[ΠiTIq]T.Based on(36)and(37),we can get that

    Using Lemma 2,under Assumption 3,the local output regulator equations in(21)have unique solutions.Now using(21),(a12)and(a13),(a11)can be reformulated as

    It is seen that Xi=[ΠiTΠiTIq]Tsatisfies both equations(a14)and(a15).Since the eigenvalues ofiand S do not coincide under Assumption 1,Xi=[ΠiTΠiTIq]Tis the unique solution that satisfies(a14).By(a15),Xialso satisfies the second equation of(17).This completes the proof.

    Shan ZUOreceived the B.Sc.degree in Physical Electronics from University of Electronic Science and Technology of China,Chengdu,China,in 2012.She is working toward the Ph.D.degree in the School of Automation Engineering,University of Electronic Science and Technology of China since 2012.She is currently working toward the Joint Ph.D.degree in the University of Texas at Arlington,Arlington,TX,U.S.A.since 2014,supported by the China Scholarship Council.Her research interests include distributed synchronization control,distributed containment control,microgrid systems,and smart grid.E-mail:shan.zuo@uta.edu.

    Yongduan SONG(M’92-SM’10)received the Ph.D.degree in Electrical and Computer Engineering from Tennessee Technological University,Cookeville,TN,U.S.A.,in 1992.He held a tenured Full Professor position with North Carolina A&T State University,Greensboro,from 1993 to 2008 and a Langley Distinguished Professor position with the National Institute of Aerospace,Hampton,VA,from 2005 to 2008.He is now the Dean of School of Automation,Chongqing University,and the Founding Director of the Institute of Smart Systems and Renewable Energy,Chongqing University.He was one of the six Langley Distinguished Professors with the National Institute of Aerospace(NIA),Founding Director of Cooperative Systems at NIA.He has served as an Associate Editor/Guest Editor for several prestigious scientific journals.Prof.Song has received several competitive research awards from the National Science Foundation,the National Aeronautics and Space Administration,the U.S.Air Force Office,the U.S.Army Research Office,and the U.S.Naval Research Office.His research interests include intelligent systems,guidance navigation and control,bio-inspired adaptive and cooperative systems,rail traffic control and safety,and smart grid.E-mail:ydsong@cqu.edu.cn.

    Hamidreza MODARESreceived the B.Sc.degree from the University of Tehran,Tehran,Iran,in 2004,the M.Sc.degree from the Shahrood University of Technology,Shahrood,Iran,in 2006,and the Ph.D.degree from The University of Texas at Arlington,Arlington,TX,U.S.A.,in 2015.He was a Senior Lecturer with the Shahrood University of Technology,from 2006 to 2009 and a Faculty Research Associate with the University of Texas at Arlington,from 2015 to 2016.He is currently an Assistant Professor in the Electrical and Computer Engineering Department,Missouri University of Science and Technology,Rolla,MO,U.S.A.His current research interests include cyber-physical systems,reinforcement learning,distributed control,robotics,and machine learning.He is an Associate Editor for the IEEE Transactions on Neural Networks and Learning Systems.He has received Best Paper Award from 2015 IEEE International Symposium on Resilient Control Systems.E-mail:modaresh@mst.edu.

    FrankL.LEWISMember,NationalAcademy of Inventors.Fellow IEEE,Fellow IFAC,Fellow AAAS,Fellow U.K.Institute of Measurement&Control,PE Texas,U.K.Chartered Engineer.UTA Distinguished Scholar Professor,UTA Distinguished Teaching Professor,and Moncrief-ODonnell Chair at the University of Texas at Arlington Research Institute.Qian Ren Thousand Talents Consulting Professor,Northeastern University,Shenyang,China.He obtained the Bachelor’s degree in Physics/EE and the MSEE at Rice University,the MS in Aeronautical Engineering from Univ.W.Florida,and the Ph.D.at Ga.Tech.He works in feedback control,intelligent systems,cooperative control systems,and nonlinear systems.He is author of 7 U.S.patents,numerous journal special issues,journal papers,and 20 books,including Optimal Control,Aircraft Control,Optimal Estimation,and Robot Manipulator Control which are used as university textbooks worldwide.He received the Fulbright Research Award,NSF Research Initiation Grant,ASEE Terman Award,Int.Neural Network Soc.Gabor Award,U.K.Inst Measurement&Control Honeywell Field Engineering Medal,IEEE Computational Intelligence Society Neural Networks Pioneer Award,AIAA Intelligent Systems Award.Received Outstanding Service Award from Dallas IEEE Section,selected as Engineer of the year by Ft.Worth IEEE Section.Was listed in Ft.Worth Business Press Top 200 Leaders in Manufacturing.Texas Regents Outstanding Teaching Award 2013.He is Distinguished Visiting Professor at Nanjing University of Science&Technology and Project 111 Professor at Northeastern University in Shenyang,China.Founding Member of the Board of Governors of the Mediterranean Control Association.E-mail:lewis@uta.edu.

    Ali DAVOUDI(S04-M11-SM15)received his Ph.D.in Electrical and Computer Engineering from the University of Illinois,Urbana-Champaign,IL,U.S.A.,in 2010.He is currently an Associate Professor in the Electrical Engineering Department,University of Texas,Arlington,TX,U.S.A.He is an Associate Editor for the IEEE Transactions on Transportation Electrification,the IEEE Transactions on Energy Conversion,and the IEEE Power Letters.He has received 2014 Ralph H.Lee Prize Paper Award from IEEE Transactions on Industry Applications,Best Paper Award from 2015 IEEE International Symposium on Resilient Control Systems,2014-2015 Best Paper Award from IEEE Transactions on Energy Conversion,2016 Prize Paper Award from the IEEE Power and Energy Society,and 2017 IEEE Richard M.Bass Outstanding Young Power Electronics Engineer Award.E-mail:davoudi@uta.edu.

    日本av免费视频播放| 自线自在国产av| 国产男女内射视频| 免费看不卡的av| 亚洲高清免费不卡视频| 日韩av不卡免费在线播放| 精品99又大又爽又粗少妇毛片| 一级二级三级毛片免费看| 亚洲一区二区三区欧美精品| 久久久久久久久久久丰满| 亚洲综合色网址| 蜜桃在线观看..| 中文字幕精品免费在线观看视频 | 少妇被粗大的猛进出69影院 | 日本与韩国留学比较| 国产色爽女视频免费观看| 日日摸夜夜添夜夜爱| 9色porny在线观看| 欧美国产精品一级二级三级| 我的女老师完整版在线观看| 视频区图区小说| 蜜臀久久99精品久久宅男| 国产免费一级a男人的天堂| 夫妻性生交免费视频一级片| h视频一区二区三区| 老熟女久久久| 99热这里只有是精品在线观看| 国产精品熟女久久久久浪| 国产国拍精品亚洲av在线观看| 亚洲欧美成人综合另类久久久| 国产精品 国内视频| 亚洲经典国产精华液单| 日韩成人伦理影院| 午夜影院在线不卡| 国产亚洲一区二区精品| videossex国产| 有码 亚洲区| 九九久久精品国产亚洲av麻豆| 国产熟女午夜一区二区三区 | 国产精品久久久久久久久免| 在线观看人妻少妇| 午夜视频国产福利| 午夜福利,免费看| 九草在线视频观看| 国产熟女欧美一区二区| 人成视频在线观看免费观看| 你懂的网址亚洲精品在线观看| 一个人看视频在线观看www免费| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费 | 亚洲欧洲精品一区二区精品久久久 | 日韩欧美精品免费久久| 精品人妻熟女av久视频| 51国产日韩欧美| 大香蕉97超碰在线| 日韩欧美精品免费久久| 毛片一级片免费看久久久久| 91精品伊人久久大香线蕉| 久久人人爽av亚洲精品天堂| 亚洲精品av麻豆狂野| 青春草亚洲视频在线观看| 久久久久人妻精品一区果冻| 久久青草综合色| 国产精品久久久久成人av| 水蜜桃什么品种好| 亚洲成人一二三区av| a级毛色黄片| 飞空精品影院首页| 欧美精品高潮呻吟av久久| 午夜福利,免费看| 最近中文字幕2019免费版| 欧美另类一区| av免费观看日本| av免费在线看不卡| 丰满乱子伦码专区| 午夜老司机福利剧场| 久久人人爽人人片av| 美女cb高潮喷水在线观看| 亚洲人与动物交配视频| 久久精品国产亚洲网站| 亚洲久久久国产精品| 五月伊人婷婷丁香| 插阴视频在线观看视频| av在线老鸭窝| 视频在线观看一区二区三区| 9色porny在线观看| 亚洲精品乱码久久久v下载方式| 五月开心婷婷网| 免费播放大片免费观看视频在线观看| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 国产男女超爽视频在线观看| 日韩大片免费观看网站| 熟女人妻精品中文字幕| 在线精品无人区一区二区三| 亚洲怡红院男人天堂| 美女内射精品一级片tv| 日本91视频免费播放| 99视频精品全部免费 在线| 国产成人91sexporn| 99久久精品国产国产毛片| 日本欧美视频一区| 国产精品国产三级专区第一集| 制服人妻中文乱码| 人妻系列 视频| 午夜免费男女啪啪视频观看| 中文欧美无线码| 校园人妻丝袜中文字幕| 亚洲少妇的诱惑av| 高清午夜精品一区二区三区| 国产精品 国内视频| 国产黄色免费在线视频| 香蕉精品网在线| 性色av一级| 18禁动态无遮挡网站| 免费人成在线观看视频色| 亚洲中文av在线| 全区人妻精品视频| 午夜av观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看美女被高潮喷水网站| 天美传媒精品一区二区| 99久久综合免费| 蜜桃国产av成人99| 国产av码专区亚洲av| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕 | 国产精品一区二区在线观看99| 最近最新中文字幕免费大全7| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 久久狼人影院| 国产 一区精品| 热re99久久国产66热| 在线观看人妻少妇| 中文欧美无线码| 男男h啪啪无遮挡| 国产精品麻豆人妻色哟哟久久| 边亲边吃奶的免费视频| 精品少妇久久久久久888优播| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 草草在线视频免费看| 成人18禁高潮啪啪吃奶动态图 | 母亲3免费完整高清在线观看 | 精品国产乱码久久久久久小说| 久久午夜福利片| 一级爰片在线观看| 国产一区二区三区av在线| av国产久精品久网站免费入址| 午夜影院在线不卡| 欧美日韩精品成人综合77777| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 男人操女人黄网站| 免费日韩欧美在线观看| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 国产精品一区www在线观看| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 亚洲av免费高清在线观看| 夜夜爽夜夜爽视频| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看| av在线播放精品| 婷婷成人精品国产| 寂寞人妻少妇视频99o| 国产亚洲最大av| 中文字幕亚洲精品专区| 亚洲精品乱码久久久久久按摩| 日本爱情动作片www.在线观看| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 精品一区二区三卡| 视频区图区小说| 亚洲国产色片| 久久久国产精品麻豆| xxx大片免费视频| 大片免费播放器 马上看| 国产精品嫩草影院av在线观看| 老女人水多毛片| 久久久午夜欧美精品| 黄色毛片三级朝国网站| 国产av一区二区精品久久| 99热国产这里只有精品6| 大香蕉97超碰在线| 十八禁网站网址无遮挡| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| 国产永久视频网站| 热re99久久国产66热| 男女无遮挡免费网站观看| 日本与韩国留学比较| 精品卡一卡二卡四卡免费| 亚洲精品久久成人aⅴ小说 | 国产精品一二三区在线看| 亚洲成人av在线免费| 多毛熟女@视频| 亚洲国产成人一精品久久久| 男女免费视频国产| 嫩草影院入口| 国产成人freesex在线| 各种免费的搞黄视频| 国产黄色视频一区二区在线观看| 中文字幕免费在线视频6| 尾随美女入室| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 大片免费播放器 马上看| 建设人人有责人人尽责人人享有的| 欧美激情极品国产一区二区三区 | 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 51国产日韩欧美| 免费高清在线观看日韩| 99九九线精品视频在线观看视频| 亚洲国产精品国产精品| 日本av免费视频播放| 热re99久久国产66热| 久久久精品免费免费高清| 九九久久精品国产亚洲av麻豆| 亚洲精品第二区| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 久久狼人影院| 成人国产av品久久久| 2022亚洲国产成人精品| 高清欧美精品videossex| 十八禁网站网址无遮挡| 日韩av免费高清视频| 香蕉精品网在线| 国产永久视频网站| 日本欧美国产在线视频| 亚洲成人av在线免费| 久久综合国产亚洲精品| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| av黄色大香蕉| 只有这里有精品99| 水蜜桃什么品种好| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 国产色爽女视频免费观看| 成人黄色视频免费在线看| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 亚洲精品国产色婷婷电影| 极品少妇高潮喷水抽搐| av福利片在线| 婷婷色av中文字幕| 18在线观看网站| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| 欧美另类一区| 在线观看免费视频网站a站| 国产一区二区在线观看av| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 中文字幕av电影在线播放| 少妇的逼水好多| 亚洲av男天堂| 丝袜在线中文字幕| 亚洲精品亚洲一区二区| 高清欧美精品videossex| www.av在线官网国产| 欧美另类一区| 秋霞伦理黄片| 九色成人免费人妻av| av黄色大香蕉| 亚洲伊人久久精品综合| 日本黄色片子视频| 美女大奶头黄色视频| 精品国产国语对白av| 在线精品无人区一区二区三| 欧美性感艳星| 热99久久久久精品小说推荐| 十分钟在线观看高清视频www| 美女视频免费永久观看网站| 国产精品无大码| 欧美xxxx性猛交bbbb| 亚洲第一区二区三区不卡| 91精品伊人久久大香线蕉| 久久av网站| 国产精品欧美亚洲77777| 97在线人人人人妻| 国产 一区精品| 国产成人aa在线观看| 国产熟女欧美一区二区| 最后的刺客免费高清国语| 黄色配什么色好看| 午夜免费鲁丝| 国产探花极品一区二区| 观看美女的网站| 热99久久久久精品小说推荐| 一级a做视频免费观看| 一个人免费看片子| 精品国产一区二区久久| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 久久精品国产亚洲网站| 最新的欧美精品一区二区| 亚洲综合精品二区| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| kizo精华| 精品一区在线观看国产| 亚洲三级黄色毛片| 久久久国产一区二区| av在线老鸭窝| 中国三级夫妇交换| 亚洲av不卡在线观看| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 国内精品宾馆在线| 日本黄大片高清| av国产久精品久网站免费入址| 国产成人精品福利久久| 国产av国产精品国产| 亚洲,欧美,日韩| 在线观看国产h片| 久久婷婷青草| 免费av中文字幕在线| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 日韩三级伦理在线观看| 精品一区二区三卡| 一级a做视频免费观看| 成人综合一区亚洲| 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 精品午夜福利在线看| 新久久久久国产一级毛片| 一区二区av电影网| 九九爱精品视频在线观看| 看非洲黑人一级黄片| 免费看av在线观看网站| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 日韩av不卡免费在线播放| videosex国产| 国产日韩一区二区三区精品不卡 | 日日撸夜夜添| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 亚洲少妇的诱惑av| 亚洲一级一片aⅴ在线观看| 国产日韩欧美亚洲二区| 国产欧美另类精品又又久久亚洲欧美| 午夜福利视频在线观看免费| 各种免费的搞黄视频| 91成人精品电影| 日本vs欧美在线观看视频| 18禁观看日本| 少妇人妻 视频| 欧美成人精品欧美一级黄| 国产精品无大码| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 国产成人精品婷婷| h视频一区二区三区| 国产男人的电影天堂91| 久久这里有精品视频免费| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 欧美另类一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 我的老师免费观看完整版| 老司机亚洲免费影院| 免费观看av网站的网址| 在现免费观看毛片| 久久久亚洲精品成人影院| 午夜激情福利司机影院| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 男人操女人黄网站| 高清毛片免费看| 国产成人91sexporn| 乱码一卡2卡4卡精品| 七月丁香在线播放| 天天影视国产精品| 国产精品三级大全| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 国产免费现黄频在线看| 丰满少妇做爰视频| 高清黄色对白视频在线免费看| 亚洲国产精品成人久久小说| 亚洲精品视频女| a级毛色黄片| 日本av免费视频播放| 欧美 日韩 精品 国产| 日本午夜av视频| 纯流量卡能插随身wifi吗| 草草在线视频免费看| 国产亚洲av片在线观看秒播厂| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 伦理电影免费视频| 亚洲在久久综合| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 一级毛片我不卡| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 国产精品无大码| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| xxx大片免费视频| 一区二区日韩欧美中文字幕 | 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 国产 精品1| 免费高清在线观看视频在线观看| 国产欧美日韩一区二区三区在线 | 国产av一区二区精品久久| 成人18禁高潮啪啪吃奶动态图 | 伦理电影免费视频| 日韩,欧美,国产一区二区三区| 99久久综合免费| 久久人妻熟女aⅴ| 午夜91福利影院| 亚洲中文av在线| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 午夜福利,免费看| 丰满乱子伦码专区| 一个人免费看片子| 中国三级夫妇交换| 精品亚洲成a人片在线观看| 又大又黄又爽视频免费| 香蕉精品网在线| 大香蕉久久成人网| 国产精品99久久99久久久不卡 | 日本av免费视频播放| 国产成人a∨麻豆精品| 蜜桃在线观看..| 亚洲av.av天堂| 国产精品一二三区在线看| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 午夜影院在线不卡| 日本午夜av视频| 三级国产精品片| 国产女主播在线喷水免费视频网站| 中文字幕av电影在线播放| 人妻 亚洲 视频| 国产精品国产三级国产av玫瑰| 青春草国产在线视频| 国产黄色视频一区二区在线观看| 熟女av电影| 亚洲美女视频黄频| 少妇 在线观看| 久久久久久久久久人人人人人人| 成人影院久久| 少妇精品久久久久久久| 久久99蜜桃精品久久| 国产精品嫩草影院av在线观看| 免费大片黄手机在线观看| 精品久久国产蜜桃| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到 | 天堂俺去俺来也www色官网| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| 少妇被粗大的猛进出69影院 | 久久99蜜桃精品久久| 99热全是精品| 国产精品 国内视频| 高清欧美精品videossex| 国产白丝娇喘喷水9色精品| 观看美女的网站| 精品人妻熟女毛片av久久网站| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| av一本久久久久| 日日摸夜夜添夜夜添av毛片| 美女xxoo啪啪120秒动态图| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 欧美精品高潮呻吟av久久| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 在线观看美女被高潮喷水网站| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 久久国产亚洲av麻豆专区| 久久精品人人爽人人爽视色| 久久午夜福利片| 国产精品久久久久久久电影| 大香蕉97超碰在线| 国产成人精品无人区| 成年人午夜在线观看视频| 中文天堂在线官网| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 性色av一级| 国产精品一国产av| 嘟嘟电影网在线观看| 国产欧美日韩综合在线一区二区| 亚洲美女搞黄在线观看| 亚洲综合色惰| 午夜影院在线不卡| 有码 亚洲区| av视频免费观看在线观看| 在线观看国产h片| 午夜福利,免费看| 久久久久久久精品精品| 精品酒店卫生间| 热re99久久国产66热| 国产av码专区亚洲av| 女性被躁到高潮视频| 一级,二级,三级黄色视频| 国产精品一二三区在线看| 日本色播在线视频| 国产深夜福利视频在线观看| 日日撸夜夜添| 欧美97在线视频| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 性高湖久久久久久久久免费观看| 成人无遮挡网站| 全区人妻精品视频| 能在线免费看毛片的网站| 色网站视频免费| 精品久久久精品久久久| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 日本免费在线观看一区| 大香蕉97超碰在线| 在线看a的网站| 简卡轻食公司| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 久久久亚洲精品成人影院| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 欧美精品亚洲一区二区| 日韩av不卡免费在线播放| 97精品久久久久久久久久精品| 中文天堂在线官网| 国产精品一区www在线观看| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 99热6这里只有精品| 亚洲精品视频女| 久久99热6这里只有精品| 如日韩欧美国产精品一区二区三区 | 男女边吃奶边做爰视频| 国产av一区二区精品久久| 男女国产视频网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品成人久久小说| 人成视频在线观看免费观看| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 三级国产精品片| 男人操女人黄网站| 18禁动态无遮挡网站| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲av天美| 成人国产av品久久久| xxx大片免费视频| 人妻 亚洲 视频| 人人澡人人妻人| 人人妻人人澡人人爽人人夜夜| 王馨瑶露胸无遮挡在线观看| 成人亚洲欧美一区二区av| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 久久久久精品性色| 大话2 男鬼变身卡| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 精品久久久久久久久亚洲| 精品亚洲成a人片在线观看| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 中国国产av一级| 久久精品国产亚洲av涩爱| 精品少妇久久久久久888优播| 久久久久久久久久久免费av| 欧美日韩国产mv在线观看视频| 日本免费在线观看一区| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 秋霞在线观看毛片|