• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Morgan’s problem of Boolean control networks

    2017-12-22 06:12:14ShihuaFUYuanhuaWANGDaizhanCHENGJiangboLIU
    Control Theory and Technology 2017年4期

    Shihua FU,Yuanhua WANG,Daizhan CHENG,Jiangbo LIU

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Management Science and Engineering,Shandong Normal University,Jinan Shandong 250014,China;

    3.Department of Computer Science and Information Systems,Bradley University,Peoria,IL,61625,U.S.A.

    Morgan’s problem of Boolean control networks

    Shihua FU1,Yuanhua WANG2,Daizhan CHENG1,Jiangbo LIU3?

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Management Science and Engineering,Shandong Normal University,Jinan Shandong 250014,China;

    3.Department of Computer Science and Information Systems,Bradley University,Peoria,IL,61625,U.S.A.

    This paper investigates the Morgan’s problem of Boolean control networks.Based on the matrix expression of logical functions,two key steps are proposed to solve the problem.First,the Boolean control network is converted into an outputdecomposed form by constructing a set of consistent output-friendly subspaces,and a necessary and sufficient condition for the existence of the consistent output-friendly subspaces is obtained.Secondly,a type of state feedback controllers are designed to solve the Morgan’s problem if it is solvable.By solving a set of matrix equations,a necessary and sufficient condition for converting an output-decomposed form to an input-output decomposed form is given,and by verifying the output controllability matrix,the solvability of Morgan’s problem is obtained.

    Boolean control network,Morgan’s problem,regular subspace,y-friendly subspace,semi-tensor product of matrices

    1 Introduction

    The Boolean network,which is first introduced by Kauffman[1],is known as a useful model to describe and simulate the behavior of genetic regulatory networks.Using semi-tensor product method and the matrix expression of logical functions,the dynamics of a Boolean network can be converted into a linear discrete-time system[2].And in recent decades,many classical problems for Boolean networks were solved by using this method,including stability and stabilization[3],controllability[4],observability[5],identification[6],optimal control[7],output tracking problem[8],weighted l1-gain problem[9]and so on.

    In modern control theory the Morgan’s problem is one of the most famous problems for both linear and non-linear control systems.Consider a linear control system

    where x∈Rnis the set of state variable,u∈Rmis the control,y∈Rpis the output.Assume m≥p.The Morgan’s problem means to find a partition of u as u={u1,...,up},such that each uicontrols yiwithout affecting yj,j≠i[10].When m=p,the problem has been completely solved by providing a necessary and sufficient condition as the decoupling matrix is nonsingular[11].Unfortunately,as for the general case,it is still open till now.The situation of the nonlinear case is similar[12,13].

    As for the Boolean control networks,it is obvious that the input-output decomposition is also a theoretically interesting and practically useful problem.But because of certain difficulties,the problem has not been discussed much.A closely related but easier one is the disturbance decoupling problem,which has been discussed by several authors[14,15].The system decomposition with respect to inputs for Boolean control networks has been investigated by[16].A recent work on input-output decomposition of Boolean networks is presented in[17],which considers the case of m=p and does not use the coordinate transformation.Besides,[17]just proposed a method to evaluate whether a Boolean control network was input-output decoupled or not,and didn’t give a controller design algorithm to make a given Boolean control network input-output decoupled.

    This paper considers the input-output decoupling of Boolean control networks under more general case,where m≥p.Moreover,similar to the nonlinear system[18],a coordinate transformation and state feedback controls are allowed.

    For the statement ease,a list of notations is presented as follows:

    1)Mm×n:the set of m × n real matrices.

    2)D:={0,1}.

    3)δin:the ith column of the identity matrix In.

    4)Δn:={δin|i=1,...,n}.

    6)0p×q:a p × q matrix with zero entries.

    7)Coli(M)(Rowi(M)):the ith column(row)of M.

    8)A matrix L ∈ Mm×nis called a logical matrix if the columns of L are of the form of δkm.That is,Col(L)? Δm.Denote by Lm×nthe set of m × n logical matrixes.

    9)If L ∈ Ln×r,by definition it can be expressed asFor the sake of compactness,it is briefly denoted as L=δn[i1,i2,...,ir].

    10)A matrix L ∈ Mm×nis called a Boolean matrix,if all its entries are either 0 or 1.Bm×n:the set of m × n Boolean matrices(Bn:the set of n dimensional Boolean vectors).

    11)Let{x1,...,xk}be a set of logical variables.F?(x1,...,xk)is the set of logical functions of{x1,...,xk}.

    12)Let A ∈ Mm×kand B ∈ Mn×k.Then A?B ∈ Mmn×kis the Khatri-Rao product of A and B[19].

    The rest of this paper is organized as follows:Section2 presents some necessary preliminaries.The Morgan’s problem formulation is given in Section3.In Section4,a necessary and sufficient condition for the existence of the output-decomposed form is given,and the form is obtained by constructing a set of consistent outputfriendly subspaces.Section5 proposes a controller design method to solve the input-output decoupling problem.Based on the input-output decomposition form,the solvable condition of the Morgan’s problem is presented in Section6.Section7 is a brief conclusion.

    2 Preliminaries

    This section presents some related concepts about semi-tensor product of matrices,state space of Boolean control networks and its subspaces.We refer to[2,14]for details.

    Def i nition 1[2]Let M ∈ Mm×nand N ∈ Mp×q,and t=lcm{n,p}be the least common multiple of n and p.The semi-tensor product of M and N is defined as

    where?is the Kronecker product.

    Throughout this paper,we assume the product of two matrices is the semi-tensor product,and the symbolis omitted without the confusion.

    Lemma 1[2] Consider a logical mapping f:Δn→Δk.There exists a unique matrix Mf∈ L2k×2n,called the structure matrix of f,such that

    Consider a Boolean control network(BCN)

    where xi(i=1,...,n),uj(j=1,...,m)and yk(k=1,...,p)are logical variables.That is,they can take values 0 or 1.

    Identify 1~ δ12and 0~ δ22.Using Lemma 1,the algebraic expression of(2)can be described as

    Def i nition 2[14] Consider the BCN(2).

    1)The state space of(2)is described as

    that is,the state space is the set of logical functions of{x1,x2,...,xn}.

    2)Let{y1,...,yk}?X.A subspace Y?X,generated by{y1,...,yk},is

    Given a subspace Y=F?(y1,...,yk)? X.Since yi,i=1,...,k,are functions of{x1,...,xn},we can use the vector expression of yiand express yiin algebraic form as

    where x=ni=1xi,and Gi∈ L2×2n,i=1,...,k.Setting y=kj=1yj,then we have

    where G=G1?...?Gk.Then G is called the structure matrix of the subspace Y.

    Definition 3[14]Let{z1,...,zn}?X and Z=F?(z1,...,zn).Then Ψ :x → z is called a coordinate transformation(or coordinate change)if Ψ is one to one and onto.

    Proposition 1[14] Let z=and the structure matrix of Z be T.That is z=Tx.Then Ψ :x → z is a coordinate transformation,if and only if,T ∈ L2n×2nis nonsingular.

    Def i nition 4[14]Let Z=F?(z1,...,zk)? X.Z is called a regular subspace if there exists a set of logical variables{zk+1,...,zn}? X such that Ψ :(x1,...,xn)→(z1,...,zn)is a coordinate transformation.

    Proposition 2[14]Let Z=F?(z1,...,zk)? X,and its structure matrix be T0.That is,

    where z=kj=1zj.Then Z is a regular subspace,if and only if the elements of T0satisfy

    Example 1Consider X=F?(x1,x2,x3)and its subspace Z=F?(z1,z2)? X.

    1)Assume z1=x1∧x3,z2=x3.Then z=Gx,where

    Z is not a regular subspace.

    2)Assume z1=x1?x3,z2=x3.Then z=Gx,where

    Z is a regular subspace.

    Definition 5[14]Let Y?X be a subspace and Z?X a regular subspace.If Y?Z,then Z is called a Y-friendly subspace.If Z is the smallest size of Y-friendly subspace,it is called a minimum Y-friendly subspace.

    Lemma 2[14] Assume y has its algebraic form y=Hx,and

    1)There is a Y-friendly subspace of dimension r,iff nj,j=1,2,...,2phave a common factor 2n?r.

    2)Assume 2n?ris the largest common factor,which has the form2s,ofnj,j=1,2,...,2p.Then the minimum Y-friendly subspace is of dimension r.

    Proposition 3[2] Define a power reducing matrix

    Let x∈Δn,then

    3 Problem formulation

    Definition 6Consider BCN(2)and assume m≥p.The input-output decomposition problem is:finding a coordinate transformation x→z and a state feedback

    where K ∈ L2p×2n+p,such that(2)can be converted into an input-output decomposed form

    where z=(z0,z1,...,zp)is a partition of z=(z1,z2,...,zn),v(t)=(v1(t),v2(t),...,vp(t)),and vi(t)∈D,j=1,...,p are the reference inputs.Moreover,if vjcan completely control yj,the problem is called the Morgan’s problem of Boolean control networks.

    System(7)motivates the following concept.

    Definition 7Let

    be a set of regular subspaces of X.{Zj|j=1,...,p}is called a set of consistent regular subspaces,if there exists z0,such that{z0,z1,...,zp}form a new coordinate frame.

    The following proposition follows from Definition 7 immediately.

    Proposition 4{Zj|j=1,...,p}is called a set of consistent regular subspaces,if and only if,

    is a structure matrix of a regular subspace.Precisely speaking,T satisfies Proposition 2.

    As a corollary,we have the following necessary condition.

    Corollary 1Assume the input-output decomposition problem is solvable.Then there exists a set of consistent regular subspaces Zj|j=1,...,p,such that Zjis yj-friendly,j=1,...,p.Such a set of yj-friendly consistent regular subspaces is called a consistent yfriendly subspaces.

    From Definition 6,one sees that the Morgan’s problem can be solved in two steps:i)finding consistent regular subspaces Zjsuch that yj∈Zj,j=1,2,...,p;ii)designing a controller,such that zj(t+1)is a function of zj(t)and vj(t),moreover,vjcan completely control yj.

    4 Output decomposition

    This section devotes to finding a set of consistent yjfriendly subspaces of system(2).

    First,we give two lemmas,which will be used for the deduction.

    Lemma 3Let A ∈ Mm×n,B ∈ Mn×s,C ∈ Mp×q,D ∈Mq×s.Then

    Note that for two column vectors X and Y we have

    Lemma 4Let xi∈ Δki,i=1,...,n.Then

    ProofA straightforward calculation shows that

    Under a new coordinate frame z,if system(2)can be expressed as

    where zj,j=1,...,p are consistent regular subspaces,then we call(8)the output-decomposed form of(2).

    Next,we should determine the existence of the consistent output-friendly subspaces.

    Since the output yj∈X,j=1,2,...,p,we can express it in algebraic form as

    Assume Hjhas njrcolumns which are equal to δr2,r=1,2,then,njrcan be calculated by

    In the following,we give an algorithm for constructing the minimum yj-friendly subspace.We just need to construct a logical matrix,such that we can find a logical matrix,satisfying

    where zj(t)=Tjx(t)is a minimum yj-friendly subspace.

    .Step 1:Calculate the two rows of Hj,where

    .Step 2:Split Rowr(Hj)into mjrblocks as

    It is easy to check that Hj=GjTj.

    By Lemma 4,we can recover zji,i=1,2,...,njfrom zj.We have

    is a set of minimum yj-friendly subspaces.

    Remark 1It is worth noting that for any subspace yj∈X,j=1,2,...,p,the minimum yj-friendly subspace is not unique.

    We have the following theorem.

    Theorem 1Consider BCN(2)with outputs yj,j=1,2,...,p,there exist consistent yj-friendly subspaces,iff(11)is a set of consistent regular subspaces.

    Proof(Necessity)Assume

    is a set of minimum consistent yj-friendly subspaces.Denotethen there exist matrices G′j∈and T′j∈such that

    Since(11)are a set of yj-friendly subspaces,we have

    Let y(t)=pj=1yj(t).Using Lemma 3,we have

    where G=G1?G2?...?Gpand T=T1?T2?...?Tp.Similarly,we have

    where G′=G′1? G′2? ...? G′p.

    From the form of Gjand G′j,j=1,2,...,p,there exist permutation matrices,j=1,2,...,p such that

    Since G′T′=H=GT=andit is obvious that the matrix T sat-By Propositions 2 and 4,we get that(11)are a set of consistent regular subspaces.The conclusion of necessity follows.

    The sufficiency is obvious.

    Now assume zj,j=1,...,p are consistent regular subspaces.Then we can find z0and T0,suchthatz={z0,z1,...,zp}is a new coordinate frame,where

    DenoteT=T0?T1?...?Tp.Then,under coordinate frame z,system(2)can be expressed as

    where z(t)=pj=0zj(t).

    Example 2Consider the following system:

    Then it is easy to figure out that a minimum y1-friendly subspace is

    and a minimum y2-friendly subspace is

    It is ready to verify that{z1,z2}is a regular subspace,and we may choose

    such that z={z0,z1,z2}becomes a new coordinate frame.Moreover,under z,system(13)becomes its output-decomposed form as

    wherez0(t)=z1(t),z1(t)=(z2(t),z3(t)),andz2(t)=z4(t).

    5 Input-output decomposition

    In this section we consider how to convert an outputdecomposed form into an input-output decomposed form.

    Assume the algebraic form of state dynamics of(8)is

    where zj,j=1,...,p is a set of consistent regular subspaces.The state feedback control used for the inputoutput decomposition is

    where K ∈ L2m×2n+p.

    The input-output decomposition problem is:find,if possible,a state feedback control(16)such that the closed form(8)of system(2)can be expressed into an input-output decomposed form as

    We call(17)the input-output decomposed form of(2).

    Plugging(16)into(15)yields

    where Pj∈ L2nj×2nj+1can be chosen freely and

    Summarizing the above argument,we have the following result:

    Theorem 2An output-decomposed system(8)is convertible into an input-output decomposed form by a state feedback control,if and only if,there exist K ∈ L2m×2n+m,Pj∈ L2nj×2nj+1,j=1,...,p,such that

    where Ξjand Θjare defined in(19).

    Example 3Recall Example 2 again.According to Theorem 2,system(14)is input-output decomposable,if and only if,there exist K ∈ L22×26,P1∈ L22×23,P2∈L21×22such that

    There is a standard procedure to calculate the algebraic form of(14),we have

    We can choose P1and P2as

    and

    Then we can check that the following K is a solution of(21):

    By Lemma 4,we get that ui(t)can be calculated as follows:

    where K1=(I2?1T2)K and K2=(1T2?I2)K.

    Using K1and K2,we can construct the state feedback control as

    Then the closed-loop form of(14)becomes

    It is obvious that(23)is an input-output decomposed form.

    Next,we should like to convert(20)into an integrated form,which provides a set of linear algebraic equations.

    Multiplying the equations in(18)together yields

    where M=M1?M2?...?Mp.Define

    Using Lemmas 3 and 4,we have the equation

    where Φ ∈ M2p×2p?1and Ψ ∈ M2p?1×2n+p.Then we have the following result:

    Corollary 2Consider the output-decomposed system(15).If there exist Φ ∈ M2p×2p?1and Ψ ∈ M2p?1×2n+psuch that

    then there exists a feedback control as shown in(16)such that the closed form of(15)becomes an inputoutput decomposed form.

    Remark 2Equation(26)is a linear equation about Φ and Ψ ,where Φ and Ψ are independent unknowns.Hence,to solve the input-output decomposition problem,we can solve the linear equations deduced from(26).

    6 Morgan’s problem

    6.1 Output controllability

    Definition 8Consider system(2)with its algebraic expression(3).

    1)ydis said to be reachable,if for any x(0)there exists a time T>0 and a control sequence u(0),u(1),...,u(T?1)such that driven by this sequence of controls the trajectory will reach a terminal state x(T)such that yd=Hx(T).

    2)System(2)is said to be output controllable,if each y is reachable.

    Split L as

    where Li∈ L2n×2n.Then we define

    and define the controllability matrix of(2)as

    where M(i)is the Boolean matrix product of M(i.e.,a+b=a∨b,a×b=ab).C is called the controllability matrix and we have the following result about the controllability of(2)[2].

    Theorem 3Consider system(2).

    1)The system is reachable from x(0)=to x(T)=i.e.,there exists T>0 and a sequence of controls as in Definition 8 such that the system trajectory can be driven fromif and only if Ci,j=1;

    2)The system is reachable tofrom any x(0),if and only if

    3)The system is controllable,i.e.,from any x(0)to any x(T),if and only if

    Using controllability matrix C,we can construct an output controllability matrix as

    where CYis the Boolean matrix product of H and C,and H is the output structure matrix(see(3)).

    Then the following result is an immediate consequence of Definition 8.

    Theorem 4Consider system(2).

    2)The system is output controllable,if and only if,

    6.2 Solution to Morgan’s problem

    Consider the Morgan’s problem.Since each yjcan be completely controlled by vj,it is clear that the overall system should be output controllable.Hence we have the following necessary condition.

    Proposition 5Consider system(2).If the Morgan’s problem is solvable,then the system is output controllable.

    Then the following result is obvious.

    Theorem 5Consider system(2).The Morgan’s problem is solvable,if

    1)there exist a coordinate transformation z=z(x)and a state feed u=g(v,x),such that the system can be converted into an input-output decomposed form(17);

    2)each subsystem

    j=1,...,m is output controllable.

    By(12)and(18),we know the algebraic form of each subsystem can be expressed as

    where Cyjis the Boolean matrix product of Gjand Czj.

    Example4Considersystem(23).Lettingz1=z2z3and z2=z4,we can obtain the algebraic form of the two subsystems as

    where P1= δ4[1 1 2 3 4 4 4 4]and P2= δ2[1 2 2 1].

    A simple calculation shows that

    where G1=δ2[1 2 2 2],G2=I2.

    that is,the two systems are all output controllable.Thus,the Morgan’s problem of system(13)is solved.

    Remark 3By Theorem 5,we know the output controllability of each subsystem(29)depends completely on the matrices Gjand Pj,j=1,2,...,p.Since Gjis conformed in(10)and Pjcan be chosen freely,thus,to guarantee the solvability of the Morgan’s problem,we should choose the kind of Pjwhich can make subsystem zjoutput controllable.Once Pjis conformed,the Morgan’s problem is converted into solving the matrix equation(25).

    7 Conclusions

    In this paper we have investigated the Morgan’s problem of the Boolean control networks.First,by constructing the output-friendly subspaces,a necessary and sufficient condition for the existence of the outputdecomposed form of a Boolean control network has been presented.Furthermore,the method to converted a Boolean control network into its output-decomposed form has been given.Second,by solving a set of matrix equations,a type of state feedback controllers have been obtained to solve the input-output decoupling problem if it is solvable.Moreover,by constructing the output controllability matrices for each subsystem,the solvability of Morgan’s problem has been converted to verifying whether there exists a solution of(20)which satisfies(31).Since the set of solutions of(20)is finite,the verification is executable.

    [1]S.A.Kauffman.Metabolic stability and epigenesis in randomly constructed genetic nets.Journal of Theoretical Biology,1969,22(3):437–467.

    [2]D.Cheng,H.Qi,Z.Li.Analysis and Control of Boolean Networks–A Semi-tensor Product Approach.London:Springer,2011.

    [3]D.Cheng,H.Qi,Z.Li,et al.Stability and stabilization of Boolean networks.International Journal of Robust and Nonlinear Control,2011,21(2):134–156.

    [4]D.Cheng,H.Qi.Controllability and observability of Boolean control networks.Automatica,2009,45(7):1659–1667.

    [5]D.Laschov,M.Margaliot,G.Even.Observability of Boolean networks:A graph-theoretic approach.Automatica,2013,49(8):2351–2362.

    [6]D.Cheng,Y.Zhao.Identification of Boolean control networks.Automatica,2011,47(4):702–710.

    [7]E.Fornasini,M.E.Valcher.Optimal control of Boolean control networks.IEEE Transactions on Automatic Control,2014,59(5):1258–1270.

    [8]H.Li,Y.Wang.Output tracking of switched Boolean networks underopen-loop/closed-loop switching signals.Nonlinear Analysis:Hybrid Systems,2016,22:137–146.

    [9]M.Meng,J.Lam,J.Feng,et al.l1-gain analysis and model reduction problem for Boolean control networks.Information Sciences,2016,348:68–83.

    [10]B.Morgan.The synthesis of linear multivariable systems by statevariable feedback.IEEE Transactions on Automatic Control,1964,9(4):405–411.

    [11]W.M.Wonham.Linear Multivariable Control.Berlin:Springer,1974.

    [12]A.Glumineau,C.H.Moog.Nonlinear Morgan’s problem:Case of(p+1)inputs and p outputs.IEEE transactions on Automatic Control,1992,37(7):1067–1072.

    [13]H.Nijmeijer.Feedback decomposition of nonlinear control systems.IEEE Transactions on Automatic Control,1983,28(8):861–862.

    [14]D.Cheng.Disturbance decoupling of Boolean control networks.IEEE Transactions on Automatic Control,2011,56(1):2–10.

    [15]M.Yang,R.Li,T.Chu.Controller design for disturbance decoupling of Boolean control networks.Automatica,2013,49(1):273–277.

    [16]Y.Zou,J.Zhu.System decomposition with respect to inputs for Boolean control networks.Automatica,2014,50(4):1304–1309.

    [17]M.E.Valcher.Input/output decoupling of Boolean control networks.IET Control Theory and Applications,2017,11(13):2081–2088.

    [18]W.Respondek.On decomposition of nonlinear control systems.Systems&Control Letters,1982,1(5):301–308.

    [19]D.Cheng,H.Qi,Y.Zhao.An Introduction to Semi-tensor Product of Matrices and Its Applications.Singapore:World Scientific,2012.

    25 May 2017;revised 22 September 2017;accepted 25 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7068-z

    ?Corresponding author.

    E-mail:jiangbo@bradley.edu.Tel.:1-309-6772386.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the National Natural Science Foundation of China(No.61333001).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Shihua FUreceived her M.Sc.degree from the Department of Mathematics,Liaocheng University,Liaocheng,China,in 2014.Since 2014 she has been pursuing her Ph.D.degree at the School of Control Science and Engineering,Shandong University.Her research interests include game theory,logical dynamic systems.E-mail:fush_shanda@163.com.

    Yuanhua WANGreceived her B.Sc.degree and M.Sc.degree from the School of Control Science and Engineering,Shandong University,Jinan,China,in 2004 and 2007,respectively.Since 2013 she is pursuing her Ph.D.at the School of Control Science and Engineering,Shandong University.Currently,she is working in the School of Management Science and Engineering,Shandong Normal University.Her research interests include game theory,analysis and control of logical dynamic systems.E-mail:wyh_1005@163.com.

    DaizhanCHENG(SM’01-F’06)receivedthe B.Sc.degree from Department of Mechanics,Tsinghua University,in 1970,received the M.Sc.degree from Graduate School of Chinese Academy of Sciences in 1981,the Ph.D.degree from Washington University,St.Louis,in 1985.Since 1990,he is a Professor with Institute of Systems Science,Academy of Mathematics and Systems Science,Chinese Academy of Sciences.He is the author/coauthor of over 200 journal papers,9 books and 100 conference papers.He was Associate Editor of the International Journal of Mathematical Systems,Estimation and Control(1990–1993);Automatica(1999–2002);the Asian Journal of Control(2001–2004);Subject Editor of the International Journal of Robust and Nonlinear Control(2005–2008).He is currently Editor-in-Chief of the J.Control Theory and Applications and Deputy Editor-in-Chief of Control and Decision.He was the Chairman of IEEE CSS Beijing Chapter(2006–2008),Chairman of Technical Committee on Control Theory,Chinese Association of Automation,Program Committee Chair of annual Chinese Control Conference(2003–2010),IEEE Fellow(2005–)and IFAC Fellow(2008–).Prof.Cheng’s research interests include nonlinear system control,hamiltonian system,numerical method in system analysis and control,complex systems.E-mail:dcheng@iss.ac.cn.

    Jiangbo LIUreceived his M.Sc.and Ph.D.degrees from Washington University in St.Louis,in 1981 and 1985,respectively.Currently,he is a professor in the Computer Science and Information Systems Department,Bradley University.His research interests include computer networks,distributed computing,mobile computing,and linear and nonlinear control systems.E-mail:jiangbo@bradley.edu.

    久久久久久久久久久免费av| 久久久国产精品麻豆| 青春草视频在线免费观看| 亚洲精品美女久久久久99蜜臀 | 久久99一区二区三区| 91国产中文字幕| 久久久久久久久久久久大奶| av免费观看日本| 一级片免费观看大全| 日韩一本色道免费dvd| 波野结衣二区三区在线| videosex国产| 国产精品.久久久| 久久av网站| 尾随美女入室| 亚洲欧美成人精品一区二区| 在线观看一区二区三区激情| 97在线人人人人妻| 日本91视频免费播放| 国产亚洲精品第一综合不卡| 波多野结衣av一区二区av| 熟妇人妻不卡中文字幕| av线在线观看网站| avwww免费| 亚洲av电影在线进入| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 久久久久精品性色| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 国产 一区精品| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频| 免费黄频网站在线观看国产| 90打野战视频偷拍视频| 国产精品一国产av| www.精华液| 欧美人与性动交α欧美软件| 一级爰片在线观看| 国产福利在线免费观看视频| 成人国语在线视频| 亚洲欧美清纯卡通| 日韩制服丝袜自拍偷拍| 国产成人精品在线电影| 菩萨蛮人人尽说江南好唐韦庄| 色视频在线一区二区三区| av女优亚洲男人天堂| videos熟女内射| 日韩,欧美,国产一区二区三区| 老鸭窝网址在线观看| 成人国语在线视频| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 美女大奶头黄色视频| e午夜精品久久久久久久| 久久国产亚洲av麻豆专区| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 亚洲激情五月婷婷啪啪| 一级毛片电影观看| 欧美日韩精品网址| 男人添女人高潮全过程视频| 男的添女的下面高潮视频| 中国三级夫妇交换| 欧美国产精品va在线观看不卡| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| 性少妇av在线| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 成人毛片60女人毛片免费| 国产亚洲欧美精品永久| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 黄片无遮挡物在线观看| av卡一久久| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 美女扒开内裤让男人捅视频| 麻豆乱淫一区二区| www.av在线官网国产| 日韩伦理黄色片| 中文字幕高清在线视频| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线 | 99久国产av精品国产电影| 国产日韩欧美在线精品| 亚洲一区二区三区欧美精品| 啦啦啦视频在线资源免费观看| 黄色毛片三级朝国网站| 国产乱人偷精品视频| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 欧美成人午夜精品| 亚洲av日韩精品久久久久久密 | 中文精品一卡2卡3卡4更新| 老司机亚洲免费影院| 青春草视频在线免费观看| 老鸭窝网址在线观看| 国产视频首页在线观看| 999久久久国产精品视频| 午夜福利在线免费观看网站| 久久久国产一区二区| 最近2019中文字幕mv第一页| 国产一区二区三区综合在线观看| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 视频区图区小说| 99九九在线精品视频| 国产日韩欧美在线精品| 亚洲av国产av综合av卡| 毛片一级片免费看久久久久| 日本欧美视频一区| 两性夫妻黄色片| 亚洲 欧美一区二区三区| 亚洲av成人不卡在线观看播放网 | 国产在线免费精品| 操美女的视频在线观看| 国产精品久久久久久精品电影小说| 另类亚洲欧美激情| 欧美日韩视频精品一区| 午夜91福利影院| 午夜福利视频在线观看免费| 成年人免费黄色播放视频| 国产精品久久久久久人妻精品电影 | 欧美日韩亚洲国产一区二区在线观看 | 国产免费一区二区三区四区乱码| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 国产1区2区3区精品| av在线app专区| 在线看a的网站| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 51午夜福利影视在线观看| 又粗又硬又长又爽又黄的视频| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 中文字幕最新亚洲高清| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 老汉色av国产亚洲站长工具| 十分钟在线观看高清视频www| 欧美日韩av久久| 欧美人与善性xxx| 亚洲国产av新网站| 日韩中文字幕欧美一区二区 | 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 少妇的丰满在线观看| 免费黄色在线免费观看| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 国产精品一区二区在线观看99| 色综合欧美亚洲国产小说| 久久久精品区二区三区| 亚洲欧美一区二区三区黑人| 在线观看国产h片| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 午夜日韩欧美国产| 亚洲,欧美精品.| 国产麻豆69| 久久久久网色| 午夜福利在线免费观看网站| 青春草亚洲视频在线观看| 中文字幕制服av| 精品免费久久久久久久清纯 | 蜜桃国产av成人99| 中文字幕人妻丝袜制服| 久久久久人妻精品一区果冻| 精品亚洲成国产av| 亚洲人成电影观看| 99久国产av精品国产电影| 人妻一区二区av| 99久久精品国产亚洲精品| 国产精品99久久99久久久不卡 | 不卡av一区二区三区| 亚洲精品一二三| 日韩制服骚丝袜av| 久久久精品区二区三区| 永久免费av网站大全| 午夜免费鲁丝| 国产淫语在线视频| 免费观看a级毛片全部| 国产在视频线精品| 九草在线视频观看| 久久久国产一区二区| 丝袜在线中文字幕| 在线看a的网站| 国产99久久九九免费精品| 国产成人系列免费观看| bbb黄色大片| 国产精品一区二区精品视频观看| 国产精品.久久久| www.精华液| 免费黄网站久久成人精品| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| av网站在线播放免费| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 看免费av毛片| 考比视频在线观看| 中国三级夫妇交换| 欧美亚洲日本最大视频资源| 亚洲第一区二区三区不卡| 天堂8中文在线网| 日本欧美视频一区| 少妇人妻 视频| 97精品久久久久久久久久精品| 色94色欧美一区二区| 伦理电影免费视频| www.自偷自拍.com| 午夜av观看不卡| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| 免费久久久久久久精品成人欧美视频| 亚洲国产精品国产精品| 美女主播在线视频| 亚洲精品日本国产第一区| 在线天堂中文资源库| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 国产精品熟女久久久久浪| 19禁男女啪啪无遮挡网站| 国产精品欧美亚洲77777| 人人妻,人人澡人人爽秒播 | xxx大片免费视频| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 在线观看免费午夜福利视频| 亚洲精品在线美女| 亚洲av国产av综合av卡| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费| 少妇猛男粗大的猛烈进出视频| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| av福利片在线| 亚洲av综合色区一区| 精品福利永久在线观看| 高清欧美精品videossex| 日本黄色日本黄色录像| 人人澡人人妻人| 久久狼人影院| 国产一区亚洲一区在线观看| 国产野战对白在线观看| 精品国产一区二区久久| 亚洲精品中文字幕在线视频| 欧美亚洲 丝袜 人妻 在线| 日本欧美国产在线视频| videosex国产| 日本爱情动作片www.在线观看| 午夜福利一区二区在线看| 女人精品久久久久毛片| 日日啪夜夜爽| 十八禁人妻一区二区| 老司机影院成人| 亚洲人成77777在线视频| 我的亚洲天堂| a级片在线免费高清观看视频| 最新在线观看一区二区三区 | 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 我要看黄色一级片免费的| www.av在线官网国产| 丰满迷人的少妇在线观看| 国产淫语在线视频| 高清av免费在线| 亚洲成人免费av在线播放| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 观看av在线不卡| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 久久精品亚洲熟妇少妇任你| 亚洲第一区二区三区不卡| netflix在线观看网站| 日韩,欧美,国产一区二区三区| 中国国产av一级| 欧美97在线视频| 亚洲av男天堂| 丁香六月天网| 国产成人免费观看mmmm| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 亚洲精品第二区| 久久99一区二区三区| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 9色porny在线观看| 黄片小视频在线播放| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 狂野欧美激情性xxxx| 高清在线视频一区二区三区| 操美女的视频在线观看| 日本91视频免费播放| 国产一区二区在线观看av| 婷婷成人精品国产| 日本午夜av视频| 国产亚洲一区二区精品| 青草久久国产| 丰满饥渴人妻一区二区三| 18在线观看网站| 国产精品99久久99久久久不卡 | 国产成人欧美| 看非洲黑人一级黄片| 国产精品蜜桃在线观看| 99热国产这里只有精品6| 晚上一个人看的免费电影| 亚洲色图 男人天堂 中文字幕| 亚洲精品成人av观看孕妇| 麻豆av在线久日| 丝袜脚勾引网站| 交换朋友夫妻互换小说| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 久热爱精品视频在线9| 伊人亚洲综合成人网| 成年人午夜在线观看视频| 免费观看av网站的网址| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 丝袜脚勾引网站| 伊人亚洲综合成人网| 国产 精品1| a级毛片在线看网站| 国产 精品1| 老鸭窝网址在线观看| 欧美日韩精品网址| 丝袜人妻中文字幕| 精品国产超薄肉色丝袜足j| 在线观看免费日韩欧美大片| 飞空精品影院首页| 一区二区av电影网| 日本91视频免费播放| 18禁裸乳无遮挡动漫免费视频| 波多野结衣av一区二区av| 一本色道久久久久久精品综合| av在线老鸭窝| 免费久久久久久久精品成人欧美视频| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| 19禁男女啪啪无遮挡网站| 中文字幕av电影在线播放| 欧美激情极品国产一区二区三区| 在线观看免费高清a一片| 看十八女毛片水多多多| 精品久久久精品久久久| 国产成人精品久久二区二区91 | 丝袜美腿诱惑在线| 在线 av 中文字幕| 一级,二级,三级黄色视频| 最近2019中文字幕mv第一页| 91国产中文字幕| 999精品在线视频| 少妇被粗大猛烈的视频| 日日啪夜夜爽| av网站在线播放免费| 欧美黑人精品巨大| 9色porny在线观看| 国产精品.久久久| 99久久99久久久精品蜜桃| 天天添夜夜摸| 久久久久网色| 欧美亚洲 丝袜 人妻 在线| 免费看av在线观看网站| 午夜老司机福利片| 无遮挡黄片免费观看| 中文精品一卡2卡3卡4更新| 秋霞伦理黄片| 黑人欧美特级aaaaaa片| 日韩熟女老妇一区二区性免费视频| av卡一久久| 国产av码专区亚洲av| 我要看黄色一级片免费的| 成人毛片60女人毛片免费| 最近2019中文字幕mv第一页| 制服诱惑二区| 亚洲精品一区蜜桃| 大片电影免费在线观看免费| 亚洲精华国产精华液的使用体验| 观看美女的网站| 国产精品.久久久| 欧美乱码精品一区二区三区| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 精品久久蜜臀av无| 韩国精品一区二区三区| 这个男人来自地球电影免费观看 | 久久精品aⅴ一区二区三区四区| 亚洲熟女精品中文字幕| 亚洲欧美一区二区三区国产| 亚洲成色77777| 男女国产视频网站| 国产一区有黄有色的免费视频| 日韩不卡一区二区三区视频在线| 看免费av毛片| a级毛片黄视频| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 精品视频人人做人人爽| 女人精品久久久久毛片| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 天堂8中文在线网| 国产色婷婷99| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影 | 国产一卡二卡三卡精品 | 亚洲三区欧美一区| 天天躁夜夜躁狠狠久久av| 久久亚洲国产成人精品v| 桃花免费在线播放| 如何舔出高潮| 婷婷色麻豆天堂久久| 中文乱码字字幕精品一区二区三区| 波野结衣二区三区在线| 黄色怎么调成土黄色| 久久亚洲国产成人精品v| 日韩av免费高清视频| 新久久久久国产一级毛片| 美女主播在线视频| 国产精品嫩草影院av在线观看| 国产免费现黄频在线看| 两个人看的免费小视频| 99香蕉大伊视频| 国产精品久久久久久精品电影小说| 亚洲成色77777| 久久97久久精品| 亚洲精品美女久久久久99蜜臀 | 精品第一国产精品| 国产免费现黄频在线看| 亚洲欧美中文字幕日韩二区| 一区在线观看完整版| 日日啪夜夜爽| www.熟女人妻精品国产| 亚洲中文av在线| 热99国产精品久久久久久7| 日韩大码丰满熟妇| 国产深夜福利视频在线观看| 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美软件| 超色免费av| 黑人巨大精品欧美一区二区蜜桃| 高清av免费在线| 亚洲成av片中文字幕在线观看| av国产久精品久网站免费入址| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 国产一区二区在线观看av| 一区福利在线观看| 国产av国产精品国产| 欧美日韩一区二区视频在线观看视频在线| 久热爱精品视频在线9| 操出白浆在线播放| 美女午夜性视频免费| 丰满迷人的少妇在线观看| 久久女婷五月综合色啪小说| 97人妻天天添夜夜摸| 国产 一区精品| 丝袜喷水一区| 成人漫画全彩无遮挡| 成人亚洲欧美一区二区av| 久久久久精品性色| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 人人妻人人添人人爽欧美一区卜| 狠狠婷婷综合久久久久久88av| 欧美成人午夜精品| 99热网站在线观看| 亚洲视频免费观看视频| 99九九在线精品视频| 亚洲激情五月婷婷啪啪| 黑人巨大精品欧美一区二区蜜桃| 男女边吃奶边做爰视频| 五月开心婷婷网| 下体分泌物呈黄色| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看| 国产成人免费无遮挡视频| 国产女主播在线喷水免费视频网站| 国产成人欧美| av网站在线播放免费| 欧美日本中文国产一区发布| 成年人午夜在线观看视频| 亚洲国产欧美一区二区综合| 一边摸一边做爽爽视频免费| 人人妻人人澡人人爽人人夜夜| 又大又爽又粗| 最近2019中文字幕mv第一页| 欧美在线一区亚洲| 五月天丁香电影| 亚洲国产欧美一区二区综合| 一级a爱视频在线免费观看| 国产成人精品久久久久久| 亚洲一区中文字幕在线| 伊人亚洲综合成人网| 下体分泌物呈黄色| 色精品久久人妻99蜜桃| 久久久久国产精品人妻一区二区| 色精品久久人妻99蜜桃| 青春草国产在线视频| 亚洲美女黄色视频免费看| 如何舔出高潮| 日韩不卡一区二区三区视频在线| 亚洲少妇的诱惑av| 狂野欧美激情性xxxx| 一区福利在线观看| 欧美精品av麻豆av| 久久精品国产亚洲av涩爱| 午夜福利视频精品| 色94色欧美一区二区| 天天躁日日躁夜夜躁夜夜| 51午夜福利影视在线观看| 国产 精品1| 亚洲精品,欧美精品| 中文字幕亚洲精品专区| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| avwww免费| 9色porny在线观看| av有码第一页| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 秋霞在线观看毛片| 成人国语在线视频| 欧美日本中文国产一区发布| 欧美精品亚洲一区二区| 国产成人91sexporn| 亚洲第一青青草原| 热99国产精品久久久久久7| 看非洲黑人一级黄片| 国产精品久久久人人做人人爽| 丰满少妇做爰视频| 日本av免费视频播放| 日韩电影二区| 丝袜美足系列| 欧美日韩成人在线一区二区| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| 视频在线观看一区二区三区| 无遮挡黄片免费观看| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠久久av| 国产日韩欧美亚洲二区| 国产成人av激情在线播放| 国产成人精品久久久久久| 国产爽快片一区二区三区| 一边亲一边摸免费视频| 老司机影院毛片| 婷婷色av中文字幕| 亚洲国产中文字幕在线视频| 大陆偷拍与自拍| 国产精品久久久久久精品古装| 国产精品三级大全| 天天添夜夜摸| 老汉色∧v一级毛片| 国产精品欧美亚洲77777| 国产熟女欧美一区二区| 18禁动态无遮挡网站| 欧美精品av麻豆av| 亚洲欧美精品自产自拍| www.自偷自拍.com| 黄片播放在线免费| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 久久精品久久精品一区二区三区| 日韩一本色道免费dvd| av在线老鸭窝| 午夜福利视频精品| 青草久久国产| 日韩欧美一区视频在线观看| 最近手机中文字幕大全| 看非洲黑人一级黄片| 黄片小视频在线播放| 亚洲欧美中文字幕日韩二区|