• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed and recursive blind channel identification to sensor networks

    2017-12-22 06:12:00RuiLIUHanFuCHEN
    Control Theory and Technology 2017年4期

    Rui LIU,Han-Fu CHEN

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    Distributed and recursive blind channel identification to sensor networks

    Rui LIU?,Han-Fu CHEN

    Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    In this paper,the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output(SIMO)systems of sensor networks(both time-invariant and time-varying networks).At any time,each agent updates its estimate using the local observation and the information derived from its neighboring agents.The algorithms are based on the truncated stochastic approximation and their convergence is proved.A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.

    Blind channel identification,distributed and recursive algorithm,truncated stochastic approximation,sensor networks

    1 Introduction

    Because of its potential application in wireless communication and other areas,blind channel identification has attracted great research interest in signal processing and communication(see,e.g.,[1,2]),and many estimation algorithms have been proposed(see,e.g.,[3–11]).Most results published so far are concerned with the centralized algorithms,i.e.,the estimation for channel coefficients is carried out after having output data of all channels been collected.In contrast to this,motivated by the emergence of large-scale and inexpensive sensor networks,the distributed algorithms are proposed in the recent papers[10,11],where the estimate for channel coefficients is updated by using the local observation and the information derived from neighboring agents.As discussed in[12],compared with the centralized approach,the distributed approach is more robust,better to protect privacy,easier to be extended,less complicated in computation,and less expansive in communication.

    For system parameter estimation,there usually are two approaches:block algorithms and on-line recursive algorithms.This is also the case for blind channel identification.For the block algorithms(see,e.g.,[3,5,6]),a block of data samples is collected first and then processed together to obtain the estimate.It is clear that the block algorithms require huge storage space and endure heavy instantaneous computational burden.Several on-line recursive algorithms have been proposed,such as adaptive least squares smoothing algorithm[7]and stochastic approximation based algorithm[8,9].

    In this paper,we develop the distributed and recursive blind identification algorithms for SIMO systems of sensor networks for both time-invariant and time-varying networks.Compared with the existing works,the proposed approach can handle more complicated situations,for example,not only noise-free but also noisy observations;not only deterministic but also statistic input signals;not only the time-invariant but also the randomly time-varying sensor networks.The algorithms proposed in the paper are recursive and they have the obvious advantage over the block algorithms,because they are continuously improving the estimate while receiving new signals and they require less computation.

    The main thought is to design a global function,which is a sum of local functions and whose root is the parameters to be estimated.Consequently,parameter estimation for blind identification is transformed to a distributed stochastic approximation problem.To achieve this,a diagonal matrix is designed for sensor networks,and the local function for each sensor is obtained with the help of the designed matrix.Each sensor estimates the root by the observations of local functions(with or without noise)and information derived from its neighbors.

    The proposed algorithms are based on the distributed truncated stochastic approximation algorithm and convergence of the algorithms is proved for the following four cases:a)time-invariant network with finite number of noise-free observations;b)time-invariant network with finite number of noisy observations;c)timeinvariant network with infinite number of noisy observations;and d)time-varying network with infinite number of noisy observations.A simulation example is presented and it is shown that the computation results are consistent with theoretical analysis.

    This paper is organized as follows.Section2 presents the blind channel identification problem of sensor networks.In Section3,the problem is transformed to root seeking for an unknown function.Identifiability of parameters is discussed in Section4.The estimation algorithms and their convergence are presented in Section5.A simulation example is presented in Section6and some concluding remarks are given in Section7.

    The following notations will be used throughout this paper.Am×nrepresents an m × n-dimensional matrix with its elements denoted as aij(i=1,2,...,m;j=1,2,...,n).Particularly,Inrepresents an n×n dimensional identity matrix,1n×1represents an n dimensional vector with all entries equal to 1,0n×1represents an n-dimensional vector with all entries equal to 0.Rm×ndenotes the set of m × n-dimensional real matrices.?denotes the Kronecker product[13].For a given vector or matrix x,xTdenotes its transpose,?x?denotes its Euclidean norm.E(x)stands for the expectation of a random variable x,and tr(A)is the trace of a square matrix A.

    2 Problem formulation

    Consider a system consisting of N finite impulse response(FIR)channels with L being the maximum order of the channels.Let sk,k=0,1,2,...,M,be one dimensional input signal,andk=L,L+1,...,M,be the output signal,where M is the number of samples and may not be fixed;the superscript(i)denotes the output signal of the ith channel,and the subscript k is the time index.Then

    are unknown channel coefficients.Denote by

    the coefficients of the ith channel,i=1,2,...,N,and by a long vector

    the coefficients of the whole system.

    Assume the observation of the output is corrupted by noise,and the observation at time k is

    where

    is the observation noise and where

    The problem of the distributed blind channel identification is to estimate h?at any i∈ V={1,2,...,N}on the basis of its local observation and the information obtained from its neighbors.Let us denote by h(ki)the estimate for h?given by sensor i at time k.It is desired that all estimates h(i)ki=1,2,...,N as k→∞tend to the same limit equal to h?possibly with a constant multiplier.

    The information exchanging among the N sensors at time k is described by a digraph G(k)=(V,E(k),A(k)),where V={1,2,...,N}denotes the node set with node i representing sensor i;E(k)?V×V is the edge set with(j,i)∈E(k)if sensor i can obtain information from sensor j at time k by assuming(i,i)∈E(k);is the associated adjacent matrix with aij(k)>0 if and only if(j,i)∈E(k),and aij(k)=0 otherwise.Denote by Ni(k)={j∈ V|(j,i)∈E(k)}={j(1i)(k),...,j(nii)(k)}the neighbors(neighboring sensors)of sensor i at time k.

    A time-independent digraph G=(V,E,A)is called strongly connected if for any i,j∈V there exists a directed path from i to j.By this we mean a sequence of edges(i,i1),(i1,i2),...,(ip?1,j)in the digraph with distinct nodes ik∈V ?k:0≤l≤ p?1,where pis called the length of the directed path.A non-negative square matrix A is called doubly stochastic if A1=1,1TA=1T.

    3 Transforming problem to root-seeking

    In the case of the centralized channel parameter estimation,i.e.,the estimation is based on output data of all channels,it is known that the problem in question can be transformed to root-seeking of a linear regression function[8,9].Let us briefly describe the approach.

    For any i∈V,equation(1)can be written as

    with z being the backward shift operator

    From equation(3),we have

    Using the output data of the ith and jth channels,the above set of equations can be written in a matrix form

    is an(L+1)× (L+1)–dimensional matrix ?k=3L,3L+1,...,M.

    Using all the output data of the system,we have

    Therefore,to estimate h?is equivalent to find the root of(6).

    We are now in the distributed estimation situation.In a network,sensor i can only receive the information from itself and its neighboring sensors.Can the problem still be transformed to root-seeking for some regression functions?We state the answer as a theorem.

    Theorem 1The distributed channel estimation of h?can be transformed to distributed seeking root h?of the following function:

    where f(i)(h)=R(i)h is a linear function observed possibly with noise by sensor i at h(ki)at time k.

    ProofLet us first consider the case where the number of input signals is finite and the observation is free of noise.

    It is clear that whether or not the functioncan be observed by sensor i atat time k it depends on the digraph G(k).At time k,the answer is positive if and only if both sensors p and q are the neighbors of i,which in turn is equivalent to aip(k)aiq(k)>0.Based on this observation,we define the following-dimensionaldiagonal matrixconsisting of diagonal sub-matrices.Each of them is an L+1-dimensional identity matrix multiplied by a coefficient.The total number of coefficients is,which are as follows:

    where I[inequality]is an indicator function,i.e.,I[inequality]=1 if the inequality is satisfied,otherwise,I[inequality]=0.Thus,we have

    ?i=1,2,...,N,k=3L,3L+1,...,M.

    Since recursive algorithms cannot reach the true value in a finite number of steps,we need to repeatedly use the data.Set

    The sequence is periodical with period length equal to M?3L+1.

    Define

    and set

    Therefore,h?is a root of the following function:

    In the noisy observation case(2),similar to X(ki)and Φk,we define Y(ki)and Ψk,and Nk(i)and Ξk,which have the same structure as X(ki)and Φkbut with x(ki)replaced byrespectively.By(2)we have

    Thus,the corresponding observation noiseis

    In the case of infinite number of input signals,assuming that for any i∈ V,satisfies the ergodicity property:

    we then have that h?is a root of equation(9),but the observationis with noise(12).

    4 Identifiability

    When the centralized algorithms are concerned,the sufficient conditions for identifiability of the SIMO system with deterministic input signal are presented in[6],while with statistical input signal in[8].In these papers,two issues were considered:a)the conditions for channel to be identifiable and b)the conditions for inputs to be informative.Since we are planning to propose a distributed algorithm,the conditions on the sensor networks should also be taken into consideration.

    Let us list conditions to be used.

    Conditions on channels and sensors are as follows:

    In this section,we consider under which conditions equation(9)has a unique solution,or what types of sensor networks,channels,and input signals are identifiable.

    A2)h(j)(z),j=1,2,...,p given by(3)have no common factor.

    A3)The(M?2L+1)×(2L+1)-dimensional Hankel matrix(2L+1)is of full rank(=2L+1),which is formed from the input sequence{s0,s1,...,sM,M≥4L}as follows:

    For the sequence of infinite number of input data{sk}k≥0,we need the following condition:

    A4)The input{sk}k≥0is a sequence of mutually independent random variables with E?sk?2≠0.

    The conditions on the graph are as follows:

    B1)For the time-invariant sensor networksthe graph G is strongly connected and the associated adjacent matrix A is a doubly stochastic matrix.

    B2)For the time-varying sensor networks G(k),

    a)A(k),k≥1 are doubly stochastic matrices;

    b)there exists a constant 0<θ<1 such that

    where

    d)there exists a positive integer B such that

    for all(j,i)∈E∞and any k≥ 0.

    Lemma 1Assume B1,A2,and A3 hold.Thenis the unique nonzero vector simultaneously satisfying

    ProofAssume there is another solution

    Similar to h(i)(z),let us define(i)(z).From(15)it follows that

    By(3),we then have

    From here it follows that

    where by h(i,j)we denote the(2L+1)-dimensional vector composed of coefficients of the polynomial(i)(z)kh(j)(z)?(j)(z)h(i)(z)written in the form of increasing orders of z.

    For a fixed j,(16)is valid for all i∈Nj,i≠ j.Therefore,all roots of h(j)(z)should be roots of(j)(z)h(i)(z).By Assumption 3,all roots of h(j)(z)must be roots of(j)(z).Consequently,there is a constant cjsuch that(j)(z)=cjh(j)(z),?j=1,...,N.Substituting this into(16)leads to

    and hence ci=cj,?(i,j)∈ {(i,j)|i≠ j,ai,j> 0,i,j=1,2,...,N}.

    Then by B1),there exists a directed path from p to q,and hence cp=cq=c,?p,q=1,2,...,N.Thus,we conclude that

    If the input signal{sk}is a sequence of infinitely many mutually independent random variables,then we have the following lemma.

    Lemma2AssumeB1),A2),andA4)hold.Thenis the unique unit eigenvector corresponding to zero eigenvalue for the matrices

    and the rank of Bj,kis N(L+1)?1.

    ProofSince{si}is a sequence of mutually independent random variables and E|si|2≠0,it follows that

    is a(2L+1)×(2L+1)-dimensional matrix.

    Proceeding along the lines of the proof of Lemma 1,we arrive at

    This show s that Bj,kis of rank N(L+1)?1?j≥ 0,?k≥ 0,andis the unique unit eigenvector corresponding to the zero eigenvalue.

    Remark 1For the time-varying sensor networks G(k)Lemmas 1 and 2 are still valid if B1)is replaced by B2)in their formulation.

    5 Estimation algorithms and their convergence

    In Theorem 1 the blind channel identification problem is converted to seeking root of the sum function(9).The algorithms for solving this problems are based on the distributed stochastic approximation with fixed truncation given in the appendix.

    In the noise-free case,we take an initial value h3L?1≠0.For any i∈V,the estimate is generated by the following algorithm:

    In the noisy observation case,the estimate is generated by the following algorithm:

    We need the following conditions.

    C1){ηk}is a sequence of mutually independent random variables with

    where γ is given in C1).

    C3){sk}and{ηk}are mutually independent and each of them is a sequence of mutually independent random variables such that

    Before establishing theorems,let us cite some results from[12]and present them as lemmas.

    Lemma 3([12],Lemma 7)For a sequence of matrices{Ek},if

    then for any constant T>0,

    Lemma 4([12],Lemma 8)If A1)and B2)hold,then the sequence of estimates{hk}given by(18)–(21)contains at least a bounded sub-sequence{hnk}with

    Lemma 5([12],Lemma 9)Let{hnk}be a bounded sub-sequence with σ(i)nk= σnk,?i∈ V.Assume A1)and B2)hold.Then there exist c1>0,c2>0,M′0>0,T>0 such that for sufficient large k:

    Remark 2It is noteworthy that the above three lemmas are still valid if B2)is replaced by B1).

    For the time-invariant network with finite number of noise-free observations,we have:

    Theorem 2Letbe produced by(18)–(21)with an arbitrary initial valueAssume B1),A2),A3)and C2)(without(26)).Then

    ProofSince the algorithm(18)–(21)is in the same form as the distributed stochastic algorithm with fixed truncation,we use Corollary 1 given in the appendix to prove Theorem 2.For this it suffices to verify B2),D1)–D4)required by Corollary 1.Notice that B2)obviously follows from B1).

    In(18)–(21),

    Thus the observation noise is

    where

    It is sufficient to prove

    Define

    and

    There exists T∈(0,1)such that

    By Lemma 5,{hs:nk≤s≤m(nk,T)+1}is bounded for sufficient large k.Thus,there exists a positive constant c3such that

    for sufficient large k.Notice that

    Hence for sufficient large k and?s:nk≤s≤m(nk,T),there exist constants c4,c5,c6such that

    where θ is defined in B2)b).Since0<θ<1,there exists a positive constant m′such that θm′

    sufficient large k.Hence,we have

    Hence,we see

    Then,we have

    for sufficient large k and?Tk∈[0,T].

    Thus,by Lemma 3 we know

    Then,it follows that

    by Lemma 3 we have

    In summary,we see

    Thus,we conclude

    Thus,we have shown that B2),D1)–D4)hold.Then

    a)there exists a positive integer σ such that

    or in the compact form:

    By Lemma 1,we have

    Then,we see

    By conclusion d)d(〈hk〉we have

    Thus,we need only to consider

    Therefore,we have

    For the time-invariant network with finite number of noisy observations,we have:

    Theorem 3Letbe produced by(22)–(25)with an arbitrary initial valueAssume B1),A2),A3),C1),and C2)hold.Then

    ProofSet

    and then we have

    and hence

    From the proof of Theorem 2,we have

    Therefore,we need only to prove

    By C1),D(ki)is a martingale difference sequence,and by Eη2+γ< ∞ it follows that

    So far,we have shown that B2)and D1)–D4)hold.Then we have the following assertions a)–d).

    a)There exists a positive integer σ such that

    or in the compact form:

    By Lemma 1,we have

    Then,we see

    By conclusion d)d(〈hk〉we have

    Thus,we need only to consider

    Therefore,we have

    For the time-invariant network with infinite number of noisy observations,we have:

    Theorem 4Letbe produced by(22)–(25)with an arbitrary initial valueAssume A1),A2),A4),B1),C2),and C3)hold.Then

    ProofDefine

    From the proof of Theorems 2 and 3,we have

    Thus we need only to considerand to prove

    Then proceeding along the lines of the proof of Theorem 3,we complete the proof.

    For the time-varying network with infinite number of noisy observations,we have:

    Theorem 5Let{h(ki)}be produced by(22)–(25)with an arbitrary initial valueAssume A1),A2),A4),B2),C2),and C3)hold.Then

    This theorem can be proved by a treatment similar to that for Theorem 4.

    6 Simulation example

    In this section,we present a computer simulation example.We illustrate the convergence of the algorithm in a noisy time-invariant network environment.

    Let the input{sk}be a sequence of iid random variables∈ N(0,1)and observation noise{ηk}be a sequence of iid random variables∈N(0,0.05)and the initial valuesfor all agents are mutually independent and uniformly distributed over the interval[?0.2,0.2].Set the step sizeFor each channel i,the output and input are related as xk=sk? 0.7(1+i)sk?1.

    We consider a four sensor networks,and its topology(shown as Fig.1)and adjacent matrix are as follows.

    Fig.1 Topology of a four-sensor networks.

    To measure the identification performance,we define the normalized error as

    where?hkis the estimate at the kth step and h?denotes the true coefficient vector.βkis a scalar that minimizes the value of?βk?hk?h??;i.e.,

    Figs.2–5 show the identification performance of the algorithm given in Section5 with noisy observations.X-axis stands for iterations and Y-axis stands for the normalized error of each sensor.

    Fig.2 Normalized error for sensor 1.

    Fig.3 Normalized error for sensor 2.

    Fig.4 Normalized error for sensor 3.

    Fig.5 Normalized error for sensor 4.

    7 Conclusions

    In this paper,a mathematical description of the blind channel identification problem for the SIMO system of sensor networks is presented and the identifiability conditions are given as well.The distributed and recursive blind channel identification algorithms are proposed for four different situations.In these algorithms,estimates are updated every time when the local observation and information from its neighbors are derived.The convergence of the algorithms is proved.The proposed distributed and recursive algorithms are easily implemented in real systems such as wireless channels.The algorithm for noisy observations requires knowledge of the co-variance of the noise,but in principle,it can be estimated on the basis of the observed data.For further research,it is of interest to consider the distributed blind channel identification for time-varying SIMO systems and for the multi-input multi-output(MIMO)systems.

    [1] R.Liu.Blind signal processing:an introduction.Proceedings of the 2nd IEEE International Symposium on Circuits and Systems,Atlanta:IEEE,1996:81–84.

    [2]D.Slock.Blind fractionally spaced equalization perfect reconstruction filter banks and multichannel linear prediction.Proceedings of the4th IEEE International Conference on Acoustics,Speech,and Signal Processing,Adelaide,Australia:IEEE,1994:585–588.

    [3]Y.Hua.Fast maximum likelihood for blind identification of multiple FIR channels.IEEE transactions on Signal Processing,1996,44(3):661–672.

    [4]F.Alberg,P.Duhamel,M.Nikolova.Adaptive solution for blind identification/equalization using deterministic maximum likelihood.IEEE Transactions on Signal Processing,2002,50(4):923–936.

    [5]E.Moulines,P.Duhamel,J.Cardoso,et al.Subspace methods for the blind identification of multichannel FIR filters.IEEE Transactions on Signal Processing,1995,43(2):516–525.

    [6]G.Xu,H.Liu,L.Tong,et al.A least-squares approach to blind channel identification.IEEE Transactions on Signal Processing,1995,43(12):2982–2993.

    [7]Q.Zhao,L.Tong.Adaptive blind channel estimation by least squares smoothing.IEEE Transactions on Signal Processing,1999,47(11):3000–3012.

    [8]H.F.Chen,X.Cao,J.Zhu.Convergence of stochastic approximation-based algorithms for blind channel identification.IEEE Transactions on Information Theory,2002,48(5):1214–1225.

    [9]H.Fang,H.F.Chen.Blind channel identification based on noisy observation by stochastic approximation method.Journal of Global Optimization,2003,27(2):249–271.

    [10]R.Abdolee,B.Champagne.Distributed blind adaptive algorithms based on constant modulus for wireless sensor networks.Proceedings of IEEE International Conference on Wireless and Mobile Communications,Valencia,Spain:IEEE,2010:303–308.

    [11]C.Yu,L.Xie,Y.Soh.Distributed blind system identification in sensor networks.Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,Florence,Italy:IEEE,2014:5065–5069.

    [12]J.Lei,H.F.Chen.Distributed estimation for parameter in heterogeneous linear time-varying models with observations at network sensors.Communications in Information and Systems,2015,15(4):423–451.

    [13]J.Brewer.Kronecker products and matrix calculus in system theory.IEEE Transactions on Circuits and Systems,1978,25(9):772–781.

    [14]J.Lei,H.F.Chen.Distributed stochastic approximation algorithm with expanding truncations:algorithm and applications.arXiv,2014:arXiv:1410.7180.

    3 July 2017;revised 15 September 2017;accepted 15 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7086-x

    ?Corresponding author.

    E-mail:liurui14@mails.ucas.ac.cn.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the National Key Basic Research Program of China(973 program,No.2014CB845301),and the National Center for Mathematics and Interdisciplinary Science,Chinese Academy of Sciences.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Appendix

    The distributed stochastic approximation algorithm with expanding truncations is proposed to seek roots of the sum of local functions in[14].Consider the sum function given by

    where f(i)(h):is called the local function assigned to agent i and can be observed only by agent:f(h)=0}denote the root set of f(·).For any i∈ V,according to[14]the estimate for G is generated by the following algorithm:

    We list the conditions to be used.

    D2)There exists a continuously differentiable function v(·):RN(L+1)→ R such that

    D3)The local functions f(i),?i∈ V are continuous.

    D4)For any i∈ V the noise sequencesatisfies

    b)along in dices{nk}wheneverconverges,

    ?Tk∈ [0,T]for any sufficient large K,where m(k,T)≤ T},?T > 0.

    Define the vectors

    Proposition 1(Theorem 3.3 in[14]) Letbe produced by(a1)–(a4)with an arbitrary initial value h0.Assume B2)and D1)–D3)hold.Then for the sample path ω for which D4)holds for all agents,the following assertions a)–c)take place:

    or in the compact form

    c)There exists a connected subset G?? G such that

    where 〈hk〉

    If a bounded region containing G is known,then the expanding truncations can be replaced by a fixed truncation bound.Let us assume that?x?< g1,?x∈G={x:f(x)=0},where g1is a known constant.Then we can replacein(a3)and(a4)with a constantwhere cis defined0in the D2)c).In this case,the algorithm(a1)–(a4)becomes a distributed stochastic approximation algorithm with a fixed truncation:

    The following Corollary1 directly follows from Proposition1.

    Corollary 1Assume?x?< g1,?x∈G={x:f(x)=0},and set g=g1∨c0.Letbe produced by a5)–a8)with an arbitrary initial value h0.Assume B2)and D1)–D3)hold.Then for the sample path ω for which D4)holds for all agents,the following assertions a)–c)take place:

    or in the compact form

    c)There exists a connected subset G?? G such that

    Rui LIUreceived her B.Sc.degree in Statistics from Nankai University in 2014 and M.Sc.degree in Operations Research and Cybernetics from Academy of Mathematics and Systems Science,Chinese Academy of Sciences in 2017.Her research interests lie in distributed algorithms and stochastic approximation and its applications to systems,control,and signal processing.E-mail:liurui14@mails.ucas.ac.cn.

    Han-Fu CHENis a Professor at the Key Laboratory of Systems and Control of Chinese Academy of Sciences.His research interests are mainly in stochastic systems,including system identification,adaptive control,and stochastic approximation and its applications to systems,control,and signal processing.He served as an IFAC Council Member(2002–2005),President of the Chinese Association of Automation(1993–2002),and a Permanent member of the Council of the Chinese Mathematics Society(1991–1999).He is an IEEE Fellow,IFAC Fellow,a Member of TWAS,and a Member of Chinese Academy of Sciences.E-mail:hfchen@iss.ac.cn.

    免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 免费搜索国产男女视频| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 12—13女人毛片做爰片一| 久久亚洲精品不卡| 久久久久久久久久黄片| 日韩人妻高清精品专区| 欧美+日韩+精品| 级片在线观看| 男人的好看免费观看在线视频| 亚洲av免费在线观看| 只有这里有精品99| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久人妻蜜臀av| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 最近中文字幕高清免费大全6| 99热全是精品| 91精品一卡2卡3卡4卡| 一进一出抽搐gif免费好疼| 色综合亚洲欧美另类图片| 69av精品久久久久久| 性欧美人与动物交配| 中文字幕av在线有码专区| 一进一出抽搐gif免费好疼| 中文精品一卡2卡3卡4更新| 一本久久精品| 亚洲不卡免费看| 免费看光身美女| 免费看a级黄色片| 舔av片在线| 国产黄色视频一区二区在线观看 | 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 久久久久久久久久黄片| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验 | 99热全是精品| 波多野结衣巨乳人妻| 欧美精品一区二区大全| 国产一区二区三区在线臀色熟女| 国产视频内射| 国产精品乱码一区二三区的特点| 欧美bdsm另类| 能在线免费看毛片的网站| 直男gayav资源| 网址你懂的国产日韩在线| 少妇人妻一区二区三区视频| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜 | 有码 亚洲区| 日本一二三区视频观看| 级片在线观看| 一区二区三区高清视频在线| 麻豆国产97在线/欧美| 久久久色成人| 中文字幕久久专区| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 女的被弄到高潮叫床怎么办| 国产亚洲精品久久久久久毛片| 亚洲综合色惰| 精品一区二区三区视频在线| 国产成人精品一,二区 | 校园春色视频在线观看| 中文亚洲av片在线观看爽| 高清日韩中文字幕在线| 一本久久精品| 亚洲在线自拍视频| 欧美+亚洲+日韩+国产| 久久久精品欧美日韩精品| 一级黄片播放器| 久久久久久久久中文| 欧美又色又爽又黄视频| 日韩av在线大香蕉| 级片在线观看| 国产爱豆传媒在线观看| a级毛片a级免费在线| 久久精品夜色国产| 中国美白少妇内射xxxbb| 2022亚洲国产成人精品| 亚洲欧美日韩卡通动漫| 一本精品99久久精品77| 成人毛片60女人毛片免费| 天堂√8在线中文| 国产真实乱freesex| 99热精品在线国产| 久久人人精品亚洲av| 国产黄色小视频在线观看| 国产精品久久久久久久久免| 小说图片视频综合网站| 成年女人永久免费观看视频| 一级av片app| 人妻制服诱惑在线中文字幕| 亚洲欧美成人综合另类久久久 | 国内久久婷婷六月综合欲色啪| 欧美区成人在线视频| 在线免费观看的www视频| 久久久色成人| 欧美人与善性xxx| 免费观看a级毛片全部| av视频在线观看入口| 成人亚洲精品av一区二区| 国产精品.久久久| 丰满的人妻完整版| 亚洲人与动物交配视频| 看免费成人av毛片| av又黄又爽大尺度在线免费看 | 久久久国产成人精品二区| 日韩国内少妇激情av| 国内揄拍国产精品人妻在线| 国产老妇伦熟女老妇高清| 波多野结衣巨乳人妻| 久久人人精品亚洲av| 欧美激情在线99| 国产在视频线在精品| 精品一区二区三区人妻视频| 一级毛片电影观看 | 日本在线视频免费播放| 22中文网久久字幕| 欧美在线一区亚洲| 成人综合一区亚洲| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 亚洲在线自拍视频| 91av网一区二区| 男女视频在线观看网站免费| 又黄又爽又刺激的免费视频.| 一区二区三区高清视频在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲不卡免费看| 成年女人看的毛片在线观看| 青春草亚洲视频在线观看| 女的被弄到高潮叫床怎么办| 中文亚洲av片在线观看爽| 少妇的逼好多水| 国产精品一二三区在线看| 黄色配什么色好看| 亚洲18禁久久av| 一进一出抽搐动态| 在线a可以看的网站| 亚洲国产欧洲综合997久久,| 久久人人爽人人片av| 天天一区二区日本电影三级| 久久中文看片网| 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 成人国产麻豆网| 亚洲欧美清纯卡通| 国产午夜精品论理片| 久久精品久久久久久噜噜老黄 | 久久久久久久亚洲中文字幕| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放| 秋霞在线观看毛片| 久久久国产成人精品二区| 国产成人aa在线观看| 极品教师在线视频| 日本黄色片子视频| 亚洲不卡免费看| 亚洲一区二区三区色噜噜| 久久久久久大精品| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 伦精品一区二区三区| 久久这里只有精品中国| 久久精品国产亚洲网站| 欧美日韩一区二区视频在线观看视频在线 | 国产精品女同一区二区软件| 亚洲在线自拍视频| 久久精品久久久久久噜噜老黄 | 大又大粗又爽又黄少妇毛片口| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕| 国产不卡一卡二| 免费观看的影片在线观看| 小蜜桃在线观看免费完整版高清| 色吧在线观看| 婷婷色av中文字幕| 亚洲成人久久性| a级毛片a级免费在线| 蜜桃久久精品国产亚洲av| 边亲边吃奶的免费视频| 国产美女午夜福利| 看十八女毛片水多多多| 欧美性感艳星| 尤物成人国产欧美一区二区三区| 久久99蜜桃精品久久| 六月丁香七月| 天堂av国产一区二区熟女人妻| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 欧美日本视频| 99久久中文字幕三级久久日本| 非洲黑人性xxxx精品又粗又长| 亚洲最大成人中文| 久久精品国产自在天天线| 精品久久久久久久末码| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品久久久久久毛片| 亚洲精品粉嫩美女一区| 级片在线观看| av免费观看日本| 禁无遮挡网站| 久久久久久久久久成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 伦理电影大哥的女人| 久久精品影院6| 久久精品久久久久久久性| 免费无遮挡裸体视频| 色综合站精品国产| 精品久久久久久久久久免费视频| avwww免费| 人妻少妇偷人精品九色| 99视频精品全部免费 在线| 亚洲精品国产成人久久av| 亚洲人成网站在线播| 日韩人妻高清精品专区| 亚洲欧美清纯卡通| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 亚洲精品久久国产高清桃花| 97超碰精品成人国产| 99热网站在线观看| 亚洲精品456在线播放app| 成人特级黄色片久久久久久久| 最近视频中文字幕2019在线8| 欧美高清性xxxxhd video| 1000部很黄的大片| 在线观看午夜福利视频| 成人永久免费在线观看视频| 国产一区亚洲一区在线观看| 人妻久久中文字幕网| 一进一出抽搐gif免费好疼| 六月丁香七月| 国产成人freesex在线| 哪里可以看免费的av片| 级片在线观看| 亚洲美女视频黄频| 欧美色欧美亚洲另类二区| 亚洲国产高清在线一区二区三| 青春草亚洲视频在线观看| 老女人水多毛片| 国产 一区精品| 好男人在线观看高清免费视频| 日本熟妇午夜| 久久久久久久午夜电影| 日本一本二区三区精品| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 亚洲熟妇中文字幕五十中出| 色播亚洲综合网| 国产精品综合久久久久久久免费| 国产一区二区在线av高清观看| 亚洲精品影视一区二区三区av| 一本精品99久久精品77| 国产女主播在线喷水免费视频网站 | 国产精品三级大全| 亚洲国产精品国产精品| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 天堂影院成人在线观看| 看免费成人av毛片| 精品国产三级普通话版| 国产人妻一区二区三区在| 一个人看的www免费观看视频| 中文字幕熟女人妻在线| 久久久a久久爽久久v久久| av国产免费在线观看| av女优亚洲男人天堂| 一个人看的www免费观看视频| 最近视频中文字幕2019在线8| 国产成人a区在线观看| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 精品人妻视频免费看| 午夜爱爱视频在线播放| 免费观看在线日韩| 一区二区三区四区激情视频 | 中国国产av一级| 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲| 国产精品一区www在线观看| 中文亚洲av片在线观看爽| 日本av手机在线免费观看| 欧美潮喷喷水| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 欧美日韩精品成人综合77777| 日韩亚洲欧美综合| 欧美三级亚洲精品| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久人妻蜜臀av| 亚洲精品色激情综合| 欧美高清性xxxxhd video| 国产 一区精品| 一进一出抽搐动态| 国产精品综合久久久久久久免费| 国产精品久久久久久精品电影小说 | 网址你懂的国产日韩在线| or卡值多少钱| 人人妻人人看人人澡| 日韩三级伦理在线观看| 最近最新中文字幕大全电影3| 91av网一区二区| 热99re8久久精品国产| 亚洲中文字幕日韩| 日韩av在线大香蕉| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 国产高清三级在线| 国产私拍福利视频在线观看| 内地一区二区视频在线| 少妇丰满av| 免费看av在线观看网站| 欧美+亚洲+日韩+国产| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| av在线播放精品| 国产精品不卡视频一区二区| 波多野结衣高清作品| 直男gayav资源| 3wmmmm亚洲av在线观看| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 国产黄色视频一区二区在线观看 | 日韩欧美三级三区| 亚洲在线自拍视频| 日韩欧美三级三区| 国产高清三级在线| 国产精品,欧美在线| 能在线免费观看的黄片| 免费av不卡在线播放| 色播亚洲综合网| 精品少妇黑人巨大在线播放 | 人妻系列 视频| 大型黄色视频在线免费观看| 热99re8久久精品国产| 亚洲电影在线观看av| 噜噜噜噜噜久久久久久91| 国产亚洲91精品色在线| 亚洲综合色惰| 日日干狠狠操夜夜爽| 99热这里只有是精品在线观看| 国产在线男女| 亚洲精品日韩av片在线观看| 亚洲婷婷狠狠爱综合网| 天堂网av新在线| 国产极品天堂在线| 欧美在线一区亚洲| 成人综合一区亚洲| 日本色播在线视频| 精品一区二区三区视频在线| 日韩成人伦理影院| 在线观看一区二区三区| 老司机影院成人| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产麻豆网| 久久久国产成人免费| 搞女人的毛片| 久久精品影院6| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 亚洲乱码一区二区免费版| 国产老妇伦熟女老妇高清| 美女被艹到高潮喷水动态| 国产v大片淫在线免费观看| 国产成人freesex在线| 看非洲黑人一级黄片| 99久久无色码亚洲精品果冻| 成人鲁丝片一二三区免费| 中文字幕av在线有码专区| 国产精品无大码| 99久久精品国产国产毛片| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 免费在线观看成人毛片| 国产精品一区二区在线观看99 | 国产亚洲精品久久久com| 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 欧美成人精品欧美一级黄| 国产乱人视频| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 亚洲国产欧美在线一区| 国产探花在线观看一区二区| 久久久精品94久久精品| 尾随美女入室| 校园人妻丝袜中文字幕| 亚洲最大成人中文| 国产精品久久久久久av不卡| 全区人妻精品视频| 一本一本综合久久| 男人舔奶头视频| 亚洲人与动物交配视频| 久久99蜜桃精品久久| 欧美成人精品欧美一级黄| 久久精品夜夜夜夜夜久久蜜豆| 国产v大片淫在线免费观看| 国产三级中文精品| 丰满的人妻完整版| 久久久久久伊人网av| 亚洲欧美中文字幕日韩二区| 免费无遮挡裸体视频| 亚洲无线在线观看| 日本三级黄在线观看| 日韩人妻高清精品专区| 精品久久久久久久末码| 日韩成人伦理影院| 亚洲内射少妇av| 99久久成人亚洲精品观看| 亚洲精品久久久久久婷婷小说 | 3wmmmm亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 欧美激情在线99| 国产成人一区二区在线| 天堂√8在线中文| 国产精品永久免费网站| 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 亚洲电影在线观看av| 嫩草影院入口| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 成年版毛片免费区| 亚洲精华国产精华液的使用体验 | 简卡轻食公司| 成人永久免费在线观看视频| 99热网站在线观看| 久久久国产成人免费| 国产精品99久久久久久久久| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| 亚洲av中文av极速乱| 亚洲欧美清纯卡通| 黄色一级大片看看| 美女xxoo啪啪120秒动态图| 中文字幕久久专区| 久久久久久久久大av| 99久国产av精品| 日韩一本色道免费dvd| 青春草国产在线视频 | 插阴视频在线观看视频| av在线蜜桃| 久久久色成人| 欧美又色又爽又黄视频| 国产一级毛片在线| 国产伦精品一区二区三区视频9| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 成人高潮视频无遮挡免费网站| 嫩草影院入口| 欧美一区二区精品小视频在线| 国产黄色视频一区二区在线观看 | 最近视频中文字幕2019在线8| 亚洲在久久综合| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 久久精品久久久久久久性| 草草在线视频免费看| 十八禁国产超污无遮挡网站| 国国产精品蜜臀av免费| 亚洲最大成人中文| 男插女下体视频免费在线播放| 又粗又爽又猛毛片免费看| 久久精品国产99精品国产亚洲性色| 少妇丰满av| 亚洲在线观看片| 一级毛片电影观看 | 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看 | 久久6这里有精品| 插逼视频在线观看| 美女 人体艺术 gogo| 91av网一区二区| 国产高清三级在线| 国产视频首页在线观看| 国产精品.久久久| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 一级av片app| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 免费观看人在逋| 欧美日韩综合久久久久久| 春色校园在线视频观看| 午夜福利在线在线| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区久久| 久久久久免费精品人妻一区二区| 插阴视频在线观看视频| 国产精品久久久久久亚洲av鲁大| 直男gayav资源| 色综合站精品国产| 99久久九九国产精品国产免费| 精品一区二区三区视频在线| 国产精品无大码| 亚洲美女搞黄在线观看| 亚洲av免费在线观看| 亚洲在线观看片| 波多野结衣高清作品| 亚洲性久久影院| 精品久久久久久久末码| 日本黄色视频三级网站网址| 久久午夜亚洲精品久久| 亚洲精品自拍成人| 国产精品蜜桃在线观看 | 国产视频内射| 精品一区二区免费观看| 久久久欧美国产精品| 久久6这里有精品| 天堂中文最新版在线下载 | 麻豆久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 日日撸夜夜添| 看黄色毛片网站| 亚洲高清免费不卡视频| 国产精品久久久久久亚洲av鲁大| 亚洲人成网站在线播| 国产成人福利小说| 伊人久久精品亚洲午夜| 午夜精品在线福利| 国产精品无大码| 真实男女啪啪啪动态图| 欧美日韩乱码在线| 日本-黄色视频高清免费观看| 青春草国产在线视频 | 国产精品久久久久久久久免| 精品午夜福利在线看| 成人高潮视频无遮挡免费网站| 一本一本综合久久| 少妇被粗大猛烈的视频| 看片在线看免费视频| 色播亚洲综合网| 久久精品人妻少妇| 直男gayav资源| 我要看日韩黄色一级片| 中文亚洲av片在线观看爽| 成人鲁丝片一二三区免费| 国产高清视频在线观看网站| 国产探花极品一区二区| 国产真实乱freesex| 久久精品国产自在天天线| 天堂av国产一区二区熟女人妻| 免费搜索国产男女视频| 欧美又色又爽又黄视频| av在线老鸭窝| 日韩成人av中文字幕在线观看| 天堂中文最新版在线下载 | 国产爱豆传媒在线观看| 亚洲美女搞黄在线观看| 嫩草影院精品99| 熟女电影av网| 91精品国产九色| 国产成人精品婷婷| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 美女国产视频在线观看| 久久久久久久久久成人| 精品欧美国产一区二区三| 26uuu在线亚洲综合色| 欧美最黄视频在线播放免费| 日日摸夜夜添夜夜爱| 精品熟女少妇av免费看| 99久国产av精品| 国产精品日韩av在线免费观看| 黄色日韩在线| 欧美丝袜亚洲另类| 在线免费观看的www视频| 少妇熟女aⅴ在线视频| av女优亚洲男人天堂| 菩萨蛮人人尽说江南好唐韦庄 | 久久鲁丝午夜福利片| 国产片特级美女逼逼视频| 日韩精品有码人妻一区| 中国美白少妇内射xxxbb| 国内精品宾馆在线| 亚洲欧洲国产日韩| 亚洲精华国产精华液的使用体验 | 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| 一本精品99久久精品77| 国产成人91sexporn| 国产av一区在线观看免费| 免费无遮挡裸体视频| 日韩强制内射视频| 三级经典国产精品| 简卡轻食公司| 日本色播在线视频| 久久久a久久爽久久v久久| 天堂√8在线中文| 日本熟妇午夜| 久久九九热精品免费| 国产午夜精品久久久久久一区二区三区|