• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems

    2017-12-22 06:12:26WeiLIUJieHUANG
    Control Theory and Technology 2017年4期

    Wei LIU,Jie HUANG

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    Adaptive leader-following rendezvous and flocking for a class of uncertain second-order nonlinear multi-agent systems

    Wei LIU,Jie HUANG?

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    In this paper,we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multiagent systems,which contain both external disturbances and plant uncertainties.What differs our problems from the conventional leader-following consensus problem is that we need to preserve the connectivity of the communication graph instead of assuming the connectivity of the communication graph.By integrating the adaptive control technique,the distributed observer method and the potential function method,the two problems are both solved.Finally,we apply our results to a group of van der Pol oscillators.

    Adaptive control,connectivity preservation,multi-agent systems,nonlinear systems

    1 Introduction

    Over the past few years,the study of cooperative control problems for multi-agent systems has attracted extensive attention.In many cooperative control problems such as the consensus problem,the communication graph is predefined and has to satisfy certain connectivity assumption[1–5].However,in some real applications such as rendezvous problem and flocking problem,the communication graph is defined by the distance of various agents,and is thus state-dependent.It is more practical to enable a control law to not only achieve consensus but also preserve the connectivity of the graph instead of assuming the connectivity of the graph.Such a problem is called rendezvous with connectivity preservation problem.If the objective of collision avoidance is also imposed,then the problem can be further called flocking.

    Depending on whether or not a multi-agent system has a leader,the rendezvous/flocking problem can be further divided into two classes:leaderless and leader-following.The leaderless rendezvous/flocking problem aims to make the state(or partial state)of all agents approach a same location,while the leader-following rendezvous/flocking problem further requires the state(or partial state)of all agents to track a desired trajectory generated by some leader system.The leaderless rendezvous/flocking problem has been studied for single-integrator multi-agent systems in[6–8]and double-integrator multi-agent systems in[9–11]while the leader-following rendezvous/flocking problem has also been studied for single-integrator multi-agent systems in[12,13]and double-integrator multi-agent systems in[10,13–16].

    More recently,the leader-following rendezvous/flocking problem has been further studied for some second-order nonlinear multi-agent systems under various assumptions in [17–20].Specifically,in[17],the connectivity preserving leader-following consensus problem for uncertain Euler-Lagrange multi-agent systems is studied.In[18],the differences between the nonlinear functions of all agents are assumed to be bounded for all time.In[19,20],the nonlinear functions are assumed to satisfy global Lipschitz-like condition and all followers know the information of the virtual leader.

    In this paper,we will study both the leader-following rendezvous problem and the leader-following flocking problem for a class of second-order nonlinear multiagent systems by a distributed state feedback control law with different potential functions.Our problems differ from existing works in at least two aspects.First,our system as given in next section is subject to not only external disturbances but also plant uncertainties.Second,the nonlinear functions in our system do not have to satisfy some bounded condition or global Lipschitz-like condition.To overcome these difficulties,we need to combine the adaptive control technique,the distributed observer method and the potential function method to solve our problems.

    The rest of this paper is organized as follows.In Section 2,we give two problem formulations and some preliminaries.In Sections 3 and 4,we give the main results.In Section 5,we provide an example to illustrate our design.Finally,in Section 6,we conclude the paper with some remarks.It is noted that the preliminary version of this paper without any proof was presented in[21].

    NotationFor any column vectors ai,i=1,...,s,denote col(a1,...,as)=[aT1,...,aTs]T.?denotes the Kronecker product of matrices.?x?denotes the Euclidean norm of vector x.?A?denotes the induced norm of matrix A by the Euclidean norm.For any real symmetric matrix A, λmin(A)and λmax(A)denote the minimum and maximum eigenvalues of A,respectively.For any two symmetric matrices A and B,the symbol A≥B means the matrix A?B is positive semi-definite.

    2 Problem formulation

    Consider a class of second-order nonlinear multiagent systems as follows:

    where qi,pi∈Rnare the states,ui∈Rnis the input,fi(qi,pi)∈ Rm×nis a known matrix with every element being continuous function,θi∈ Rmis an unknown constant parameter vector,di(w)∈Rndenotes the disturbance with di(·)being some C1function,and w is generated by the linear exosystem as follows:

    with w ∈ Rnwand Sb∈ Rnw×nw.It is assumed that the reference signal is generated by the following linear exosystem

    The plant(1)and the exosystem(4)together can be viewed as a multi-agent system of(N+1)agents with(4)as the leader and the N subsystems of(1)as N followers.As in[15,17],define a time-varying graph(t)=(V,E(t))with respect to(1)and(4),whereV={0,1,...,N}with 0 associated with the leader system and with i=1,...,N associated with the N followers,respectively,andE(t)?V×V is defined by different rules for rendezvous and flocking problem.The graphis said to be connected at time t if there is a directed path from node 0 to every other node.

    Remark 1Compared with the second-order nonlinear systems studied in[18–20],our system contains not only the external disturbances but also the parameter uncertainties,and the boundaries of the uncertainties are allowed to be arbitrarily large,while the systems in[18,20]contain neither external disturbances nor plant uncertainties,and the system in[19]contains only plant uncertainties but no external disturbances.Moreover,the nonlinear function fiin(1)does not need to be bounded as assumed in[18],or satisfy the global Lipschitz-like condition as assumed in[19,20].

    2.1 Leader-Following Rendezvous Problem

    For leader-following rendezvous problem,E(t)is defined by the following rules:Given any r>0 and∈∈(0,r),for any t≥0,E(t)={(i,j)|i,j∈V,i≠j}is defined such that

    1)E(0)={(i,j)|?qi(0)?qj(0)?<r?∈,i=0,1,...,N,j=1,...,N};

    2)for i=0,1,...,N,j=1,...,N,if?qi(t)?qj(t)?≥ r,then(i,j)?E(t);

    3)for i=0,1,...,N,(i,0)?E(t);

    4)for i=0,1,...,N,j=1,...,N,if(i,j)?E(t?)and?qi(t)?qj(t)?<r?∈,then(i,j)∈(t);

    5)for i=0,1,...,N,j=1,...,N,if(i,j)∈E(t?)and?qi(t)?qj(t)?<r,then(i,j)∈(t).

    Note that the above rules are similar to those in[15].We denote the neighbor set of the ith agent at time t byi(t)={j|(j,i)∈(t)}.Then,we consider a control law of the following form:

    where hiand liare some nonlinear functions,and ζi∈ Rnζiwith nζito be defined later.A control law of the form(5)is called a dynamic distributed state feedback control law,since uionly depends on the state information of its neighbors and itself.Then,we define the leader-following rendezvous problem for system(1)as follows.

    Problem 1Given the plant(1),the exosystem(4),any r>0 and∈∈(0,r),find a distributed control law of the form(5),such that,for any w∈W with W being some compact subset of Rnwand any initial condition qi(0),i=0,1,...,N,making(0)connected,theclosedloop system composed of(1)and(5)has the following properties:

    2.2 Leader-following f l ocking problem

    For leader-following flocking problem,E(t)is defined by the following rules:Given any r> 0,∈∈(0,r)and R∈[0,r?∈),for any t≥0,E(t)={(i,j)|i,j∈V,i≠j}is defined such that

    2)for i=0,1,...,N,j=1,...,N,if?qi(t)?qj(t)?≥r,then(i,j)?E(t);

    4)for i=0,1,...,N,j=1,...,N,if(i,j)?and R<?qi(t)?qj(t)?<r?∈,then(i,j)∈E(t);

    5)for i=0,1,...,N,j=1,...,N,if(i,j)∈and R<?qi(t)?qj(t)?<r,then(i,j)∈(t).

    Note that the above rules are similar to those in Section IV of[17].Then,we define the leader-following flocking problem for system(1)as follows.

    Problem 2Given the plant(1),the exosystem(4),any r> 0,∈∈(0,r)and R ∈[0,r? ∈),find a distributed control law of the form(5),such that,for any w∈W with W being some compact subset of Rnwand any initial condition qi(0),i=0,1,...,N,satisfying?qi(0)?qj(0)?> R for i≠ j,i,j=0,1,...,N,and making(0)connected,the closed-loop system composed of(1)and(5)has the following properties:

    3)Collision can be avoided among all agents,that is?qi(t)?qj(t)?> R for i,j=0,1,...,N,i≠ j and all t≥ 0.

    2.3 One assumption

    To solve the above two problems,we need one assumption as follows.

    Assumption 1The exosystem(4)is neutrally stable,i.e.,all the eigenvalues of S are semi-simple with zero real parts.

    Remark 2Under Assumption 1,the exosystem(4)can generate some fundamental types of reference signals and disturbance signals such as step signals,sinusoidal signals and their finite combinations.Moreover,under Assumption 1,given any compact set V0,there exists a compact set V such that,for any v(0)∈V0,the trajectory v(t)of the exosystem(4)remains in V for all t≥0.

    3 Leader-following rendezvous

    In this section,we will consider the leader-following rendezvous problem.We first recall the concept of the distributed observer for the leader system(4)proposed in[22]as follows:

    By Theorem 1 and Remark 4 of[22],under Assumption 1 and the condition that the graph(t)is fixed and connected,we haveexponentially.That is why(6)is called the distributed observer for(4).

    To achieve connectivity preservation,we will adopt the same potential function used in[17]as follows:

    Now we propose our distributed dynamic control law as follows:

    where kiis some positive constant,and

    with C1=[0nw×2nInw]and C2=[0n×nIn0n×nw].

    Letqi=qi?q0andpi=pi?p0for i=0,1,...,N.Note thatqi?qj=qi?qjandpi?pj=pi?pj.Thus,for i=1,...,N,we have

    which implies

    The closed-loop system composed of(1)and(10)is as follows:

    Under Assumption 1,by Remark 2,w∈W for all t≥0 with W being some compact subset of Rnw.Together withwe can conclude that there exists some smooth function?d(?v)≥0 such that,for all w∈W,

    Now we give our result as follows.

    Theorem1Under Assumption1,the leaderfollowing rendezvous problem for the multi-agent system composed of(1)and(4)is solvable by the distributed state feedback control law(10)with the potential function(9).

    ProofBy the continuity of the solution of the closedloop system(14),there exists 0<t1≤+∞such that(t)=(0)for all 0≤t<t1.Thus,ij(t)=ij(0)and H(t)=H(0)for all 0≤t<t1.Let

    Then,from(15)and(16),along the trajectory of the closed-loop system(14),for 0≤t<t1,we have

    Since the number of agents is finite,the number of connected graphs associated with these N+1 agents is also finite.Denote all connected graphs by{1,...,n0}and denote the H matrix associated with these connected graphs by{H1,...,Hn0}which are all symmetric and positive definite.Let

    Then,along the trajectory of the distributed observer(8),for 0≤t<t1,we have

    where λ1= λmax(ST+S)and λ2=min{λmin(H1),...,λmin(Hn0)}.Choose(λ1+1).Then,for 0 ≤ t<t1,we have

    Choosesomesmoothfunctionρ(??v?2)≥?C2?2+?d(?v)+1.Let

    Then,from(23)and(24),for 0≤t<t1,we have

    Finally,let

    Then,it can be seen that for all initial condition qi(0),i=0,1,...,N,that makes(0)connected,

    If t1=+∞,thenfor all t≥0,and thus(28)holds for all t≥0.

    for any t∈[ti,ti+1)with i=0,1,...,k,t0=0 and tk+1=+∞.

    Since V(t)≥0 is lower bounded,by(30),exists and for i=1,...,N,j∈i(tk)are bounded.Since the graphis connected for all t≥tk,qi?qjwith j∈are bounded and q0is bounded by Remark 2,we can easily obtain that qiis bounded for i=0,1,...,N.By Remark 2,v is bounded,thus?vi=v+?viis also bounded.From the second equation of(11),priis bounded for i=0,1,...,N.Then,fromthethirdequationof(11),piisalsobounded.By Remark 2,p0is bounded and thuspi=pi?p0is bounded.

    Next,we will show that¨V is bounded for all t≥tkwhich implies that˙V is uniformly continuous for all t≥ tk.Note that,for t≥ tk

    Now,for i=1,2,...,N,j=0,1,...,N and j≠i,and t≥0,let

    which can be further put into the following form:

    4 Leader-following f l ocking

    In this section,we will consider the leader-following flocking problem.The technique is similar to that used in Section 3.However,what makes the flocking problem different from rendezvous problem is that we need to avoid collision among agents.For this purpose,we need to use a different potential function as follows:

    which is similar to that in[9].Then,we give the result as follows.

    Theorem2Under Assumption1,the leaderfollowing flocking problem for the multi-agent system composed of(1)and(4)is solvable by the distributed state feedback control law(10)with the potential function(40).

    ProofThe proof is similar to the proof of Theorem1,the only difference is that we need to show that the collision can be avoided in the sense that?qi(t)?qj(t)?>R,i,j=0,1,...,N and i≠ j for all t≥ 0.

    If the collision happens at a finite time tl,which impliesV(t)=+∞.However,by(30),we have V(t)≤V(0)<+∞ for all t≥0,which makes the contradiction.Thus the collision can be avoided in the sense that?qi(t)?qj(t)?>R,i,j=0,1,...,N and i≠ j for all t≥ 0.

    Thus the proof is completed.

    5 An example

    In this section,we will apply our results to the leaderfollowing rendezvous/flocking problem for a group of van der Pol systems as follows:

    where qi=[q1i,q2i]T∈R2and pi=[p1i,p2i]T∈R2for i=1,...,4,w=[w1,w2]T,and

    Clearly,system(41)is in the form(1)with

    The exosystem is in the form(4)with

    Clearly,Assumption 1 is satisfied.

    The initial communication graph(0)is described by Fig.1 where node 0 is associated with the leader and other nodes are associated with the followers.

    Fig.1 The initial communication graph.

    5.1 Leader-following rendezvous

    By Theorem 1,we design a distributed state feedback control law of the form(10)with the potential function given by(9),r=3,∈=0.2,μ0=10 and ki=4 for i=1,2,3,4.

    Simulation is performed with

    and the following initial conditions:

    It is easy to see that the initial diagraph(0)is connected under the first five rules defined in Section 2.

    Figs.2,3 and 4 show that all followers approach the position of the leader asymptotically with the same velocity of the leader while preserving the connectivity,that is to say,the leader-following rendezvous problem for system(41)is solved by the distributed state feedback control law of the form(10)with the potential function given by(9).

    Fig.2 Distances between leader and all followers.

    Fig.3 Distances between all followers.

    Fig.4 Velocity errors between leader and all followers.

    5.2 Leader-following f l ocking

    By Theorem 2,we design a distributed state feedback control law of the form(10)with the potential function given by(40),r=3,R=1,∈=0.2,μ0=10 and ki=4 for i=1,2,3,4.

    Simulation is performed with the same θi,i=1,2,3,4,and initial conditions as given in the simulation for the leader-following rendezvous problem.It is also easy to see that the initial diagraph(0)is connected under the second five rules defined in Section2.

    Figs.5 and 6 show that the connectivity is preserved and the collision is avoided.Fig.7 further shows that the velocities of all followers approach the velocity of the leader asymptotically.That is to say,the leader-following flocking problem for system(41)is solved by the distributed state feedback control law of the form(10)with the potential function given by(40).

    Fig.5 Distances between leader and all followers.

    Fig.6 Distances between all followers.

    Fig.7 Velocity errors between leader and all followers.

    6 Conclusions

    In this paper,we have studied both the leaderfollowing rendezvous problem and flocking problem for a class of second-order nonlinear multi-agent systems.Compared with the existing results,our systems contain not only external disturbances but also parameter uncertainties,and the parameter uncertainties are allowed to be arbitrarily large.By combining the adaptive control technique,the distributed observer method and the potential function method,we have solved the two problems by the distributed state feedback control law.

    [1]A.Jadbabaie,J.Lin,A.S.Morse.Coordination of groups of mobile agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):988–1001.

    [2]R.Olfati-Saber,R.M.Murray.Consensus problems in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520–1533.

    [3]J.Hu,Y.Hong.Leader-following coordination of multi-agent systems with coupling time delays.Physica A:Statistical Mechanics and its Applications,2007,374(2):853–863.

    [4]W.Ren.On consensus algorithms for double-integrator dynamics.IEEE Transactions on Automatic Control,2008,53(6):1503–1509.

    [5]W.Liu,J.Huang.Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks.Automatica,2017,79:84–92.

    [6]M.Ji,M.Egerstedt.Distributed coordination control of multiagent systems while preserving connectedness.IEEE Transactions on Robotics,2007,23(4):693–703.

    [7]D.V.Dimarogonas,S.G.Loizou,K.J.Kyriakopoulos,et al.A feedback stabilization and collision avoidance scheme for multipleindependentnon-pointagents.Automatica,2006,42(2):229–243.

    [8]M.M.Zavlanos,G.J.Pappas.Potential fields for maintaining connectivity of mobile networks.IEEE Transactions on Robotics,2007,23(4):812–816.

    [9]M.M.Zavlanos,A.Jadbabaie,G.J.Pappas.Flocking while preserving network connectivity.Proceedings of the 46th IEEE Conference on Decision and Control,New Orleans:IEEE,2007:2919–2924.

    [10]H.Su,X.Wang,G.Chen.Rendezvous of multiple mobile agents with preserved network connectivity.Systems&Control Letters,2010,59(5):313–322.

    [11]Y.Dong,J.Huang.Flocking with connectivity preservation of multiple double integrator systems subject to external disturbances by a distributed control law.Automatica,2015,55:197–203.

    [12]T.Gustavi,D.V.Dimarogonas,M.Egerstedt,et al.Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks.Automatica,2010,46(1):133-139.

    [13]Y.Cao,W.Ren.Distributed coordinated tracking with reduced interaction via a variable structure approach.IEEE Transactions on Automatic Control,2012,57(1):33–48.

    [14]H.Su,X.Wang,Z.Lin.Flocking of multi-agents with a virtual leader.IEEE Transactions on Automatic Control,2009,54(2):293–307.

    [15]Y.Dong,J.Huang.A leader-following rendezvous problem of double integrator multi-agent systems.Automatica,2013,49(5):1386–1391.

    [16]Y.Su.Leader-following rendezvous with connectivity preservation and disturbance rejection via internal model approach.Automatica,2015,57:203–212.

    [17]Y.Dong,J.Huang.Leader-following consensus with connectivity preservation of uncertain Euler-lagrange multi-agent systems.Proceedings of the 53rd IEEE Conference on Decision and Control,Los Angeles:IEEE,2014:3011–3016.

    [18]M.Wang,H.Su,M.Zhao,et al.Flocking of multiple autonomous agents with preserved network connectivity and heterogeneous nonlinear dynamics.Neurocomputing,2013,115:169–177.

    [19]Q.Zhang,P.Li,Z.Yang,et al.Adaptive flocking of non-linear multi-agents systems with uncertain parameters.IET Control Theory and Applications,2015,9(3):351–357.

    [20]P.Yu,L.Ding,Z.Liu,et al.Leader-follower flocking based on distributed envent-triggered hybrid control.International Journal of Robust and Nonlinear Control,2016,26(1):143–153.

    [21]W.Liu,J.Huang.Leader-following rendezvous and flocking for second-order nonlinear multi-agent systems.The4th International Conference on Control,Decision and Information Technologies,Barcelona,Spain,2017.

    [22]Y.Su,J.Huang.Cooperative output regulation of linear multiagent systems.IEEE Transactions on Automatic Control,2012,57(4):1062–1066.

    [23]Z.Chen,J.Huang.Stabilization and Regulation of Nonlinear Systems:A Robust and Adaptive Approach.Switzerland:Springer,2015.

    27 June 2017;revised 1 September 2017;accepted 1 September 2017

    DOIhttps://doi.org/10.1007/s11768-017-7083-0

    ?Corresponding author.

    E-mail:jhuang@mae.cuhk.edu.hk.Tel.:+852-39438473;fax:+852-26036002.

    This paper is dedicated to Professor T.J.Tarn on the occasion of his 80th birthday.

    This work was supported by the Research Grants Council of the Hong Kong Special Administration Region(No.14200515).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag GmbH Germany

    Wei LIUreceived the B.Eng.degree in 2009 from Southeast University,Nanjing,China,the M.Eng.degree in 2012 from University of Science and Technology of China,Hefei,China,and the Ph.D.degree in 2016 from The Chinese University of Hong Kong,Hong Kong,China.He is currently a Postdoctoral Fellow at The Chinese University of Hong Kong.His research interests include output regulation,event-triggered control,nonlinear control,multi-agent systems,and switched systems.E-mail:wliu@mae.cuhk.edu.hk.

    Jie HUANGis Choh-Ming Li professor and chairman of the Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Hong Kong,China.His research interests include nonlinear control theory and applications,multi-agent systems,and flight guidance and control.Dr.Huang is a Fellow of IEEE,IFAC,CAA,and HKIE.E-mail:jhuang@mae.cuhk.edu.hk.

    免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 国产精品国产三级国产专区5o| 欧美激情高清一区二区三区| 国产免费一区二区三区四区乱码| 捣出白浆h1v1| 国产一区二区 视频在线| kizo精华| 搡老乐熟女国产| 精品人妻在线不人妻| 人妻久久中文字幕网| 久久狼人影院| 亚洲伊人色综图| av网站在线播放免费| 日韩视频在线欧美| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 美女视频免费永久观看网站| tocl精华| 不卡一级毛片| 日本一区二区免费在线视频| 婷婷成人精品国产| 国产av又大| 亚洲全国av大片| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 婷婷丁香在线五月| 国产主播在线观看一区二区| 欧美中文综合在线视频| 日本vs欧美在线观看视频| 欧美另类一区| 久久久精品国产亚洲av高清涩受| 亚洲精华国产精华精| 在线天堂中文资源库| 精品亚洲乱码少妇综合久久| 99九九在线精品视频| av网站免费在线观看视频| 亚洲精品中文字幕在线视频| 久久久精品国产亚洲av高清涩受| 国产xxxxx性猛交| 中国国产av一级| 国产精品.久久久| 超碰成人久久| 国产成人影院久久av| 亚洲国产欧美日韩在线播放| 狠狠精品人妻久久久久久综合| 老司机在亚洲福利影院| 久久青草综合色| 大码成人一级视频| 欧美成狂野欧美在线观看| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站| 操出白浆在线播放| 中文字幕色久视频| 国产激情久久老熟女| 亚洲av电影在线进入| 9热在线视频观看99| 如日韩欧美国产精品一区二区三区| 99国产极品粉嫩在线观看| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区综合在线观看| 人妻人人澡人人爽人人| 亚洲激情五月婷婷啪啪| 成人av一区二区三区在线看 | 久久久久网色| 国产一区二区三区av在线| 97在线人人人人妻| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 欧美性长视频在线观看| 十八禁人妻一区二区| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 久久精品亚洲av国产电影网| 嫩草影视91久久| 男女国产视频网站| 午夜福利免费观看在线| 久久久久国产精品人妻一区二区| 欧美日韩福利视频一区二区| 亚洲第一av免费看| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| av在线播放精品| 亚洲精品中文字幕一二三四区 | 中文字幕高清在线视频| 久久天躁狠狠躁夜夜2o2o| 嫩草影视91久久| 国产人伦9x9x在线观看| 俄罗斯特黄特色一大片| 天堂俺去俺来也www色官网| 亚洲av男天堂| 亚洲av美国av| 男女之事视频高清在线观看| 啦啦啦啦在线视频资源| 777米奇影视久久| 亚洲精品国产精品久久久不卡| 老司机在亚洲福利影院| e午夜精品久久久久久久| 国产伦理片在线播放av一区| av不卡在线播放| 亚洲人成电影免费在线| 91麻豆精品激情在线观看国产 | 人人妻人人澡人人看| 国产精品国产av在线观看| 国产在视频线精品| 久9热在线精品视频| 国产av一区二区精品久久| 一本综合久久免费| 久久久国产成人免费| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区久久| 成人手机av| 精品人妻在线不人妻| 国产精品久久久久成人av| 久久久国产成人免费| 欧美变态另类bdsm刘玥| 一区二区三区乱码不卡18| 夫妻午夜视频| 久久国产精品大桥未久av| 日韩一区二区三区影片| 国产精品秋霞免费鲁丝片| 精品乱码久久久久久99久播| 欧美国产精品va在线观看不卡| bbb黄色大片| 在线精品无人区一区二区三| 精品福利观看| 在线十欧美十亚洲十日本专区| 成年av动漫网址| 亚洲精品国产av蜜桃| 不卡一级毛片| 99热全是精品| 亚洲五月色婷婷综合| 亚洲精品在线美女| 欧美久久黑人一区二区| 嫁个100分男人电影在线观看| 蜜桃在线观看..| 亚洲成人免费电影在线观看| 欧美国产精品一级二级三级| 最近最新中文字幕大全免费视频| 精品亚洲成a人片在线观看| 亚洲成人手机| 一区二区av电影网| 女人久久www免费人成看片| 一区二区日韩欧美中文字幕| 99精国产麻豆久久婷婷| 99热网站在线观看| 亚洲av成人一区二区三| 黄色 视频免费看| h视频一区二区三区| 交换朋友夫妻互换小说| 一级片'在线观看视频| 免费日韩欧美在线观看| 国产成人系列免费观看| 俄罗斯特黄特色一大片| 亚洲国产av影院在线观看| 黑人操中国人逼视频| 日韩中文字幕欧美一区二区| 午夜免费观看性视频| 日本a在线网址| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| 国产精品国产三级国产专区5o| 女性生殖器流出的白浆| 久久天躁狠狠躁夜夜2o2o| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 免费黄频网站在线观看国产| 五月开心婷婷网| 两性夫妻黄色片| 欧美精品av麻豆av| 在线观看舔阴道视频| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| 午夜激情久久久久久久| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 大型av网站在线播放| 操出白浆在线播放| 美女福利国产在线| 又紧又爽又黄一区二区| 亚洲av成人不卡在线观看播放网 | 在线av久久热| 高清欧美精品videossex| 国产精品1区2区在线观看. | 天天操日日干夜夜撸| 国产黄频视频在线观看| 人人妻人人添人人爽欧美一区卜| 又紧又爽又黄一区二区| 国产一区二区三区综合在线观看| 久久性视频一级片| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美| 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频 | 午夜免费观看性视频| 日韩大码丰满熟妇| 黄色怎么调成土黄色| 99久久人妻综合| 午夜福利免费观看在线| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 亚洲第一av免费看| 一级片免费观看大全| 青青草视频在线视频观看| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 中文字幕av电影在线播放| 涩涩av久久男人的天堂| 黄频高清免费视频| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 性少妇av在线| 又黄又粗又硬又大视频| 国产又爽黄色视频| 日本a在线网址| 国产成人啪精品午夜网站| 9热在线视频观看99| 男女无遮挡免费网站观看| 久久免费观看电影| 国产高清国产精品国产三级| 9热在线视频观看99| 亚洲国产看品久久| 男女下面插进去视频免费观看| 中文精品一卡2卡3卡4更新| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 欧美xxⅹ黑人| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看 | 1024视频免费在线观看| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 日本av手机在线免费观看| 国产高清视频在线播放一区 | 午夜91福利影院| 久久久欧美国产精品| 精品久久久久久电影网| 国产欧美日韩一区二区三区在线| 嫁个100分男人电影在线观看| 无限看片的www在线观看| 深夜精品福利| 国产精品 欧美亚洲| 午夜免费成人在线视频| 女警被强在线播放| 精品国产超薄肉色丝袜足j| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 国产精品九九99| 午夜成年电影在线免费观看| 日韩制服丝袜自拍偷拍| 亚洲天堂av无毛| 国产精品一区二区精品视频观看| 免费女性裸体啪啪无遮挡网站| 脱女人内裤的视频| 亚洲av美国av| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 少妇粗大呻吟视频| 国产一区二区三区av在线| 欧美日韩av久久| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区免费| 久久久久精品人妻al黑| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区| 成年女人毛片免费观看观看9 | 国精品久久久久久国模美| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| 午夜影院在线不卡| 亚洲免费av在线视频| 国产一级毛片在线| 两性夫妻黄色片| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 精品少妇久久久久久888优播| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 蜜桃国产av成人99| 久久九九热精品免费| 欧美日韩av久久| 黑丝袜美女国产一区| 高潮久久久久久久久久久不卡| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 久久人人97超碰香蕉20202| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 日本a在线网址| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 国产精品 欧美亚洲| 国产成人系列免费观看| 各种免费的搞黄视频| 亚洲精品国产av蜜桃| 国产一区二区三区av在线| 亚洲欧美日韩另类电影网站| 久久免费观看电影| 国产精品1区2区在线观看. | 亚洲伊人色综图| 中文字幕人妻熟女乱码| 亚洲国产成人一精品久久久| 69精品国产乱码久久久| 国产精品久久久久久精品古装| 久久免费观看电影| 狂野欧美激情性bbbbbb| 欧美在线一区亚洲| 岛国在线观看网站| 大型av网站在线播放| 夜夜骑夜夜射夜夜干| 一个人免费在线观看的高清视频 | 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 精品少妇久久久久久888优播| 精品人妻1区二区| 桃红色精品国产亚洲av| 99热全是精品| 一区二区三区精品91| 亚洲专区国产一区二区| 亚洲av国产av综合av卡| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 热99国产精品久久久久久7| 大陆偷拍与自拍| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品一区三区| 人妻一区二区av| av天堂久久9| 久热这里只有精品99| 亚洲综合色网址| 亚洲国产毛片av蜜桃av| 成年女人毛片免费观看观看9 | 又黄又粗又硬又大视频| 日本a在线网址| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 日日摸夜夜添夜夜添小说| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 国产在线视频一区二区| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 色播在线永久视频| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 91成年电影在线观看| 中文字幕av电影在线播放| 日韩三级视频一区二区三区| 日日夜夜操网爽| 精品少妇黑人巨大在线播放| 窝窝影院91人妻| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 18禁国产床啪视频网站| 久久ye,这里只有精品| 久久天堂一区二区三区四区| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美 | 91九色精品人成在线观看| 久久精品人人爽人人爽视色| 大片免费播放器 马上看| 一个人免费在线观看的高清视频 | 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 国精品久久久久久国模美| 岛国毛片在线播放| 久久精品国产综合久久久| 人人妻人人澡人人爽人人夜夜| 亚洲av成人一区二区三| 免费女性裸体啪啪无遮挡网站| 亚洲自偷自拍图片 自拍| 成年美女黄网站色视频大全免费| 色老头精品视频在线观看| 人成视频在线观看免费观看| 久热爱精品视频在线9| 亚洲精华国产精华精| 亚洲精品第二区| √禁漫天堂资源中文www| 成人国产一区最新在线观看| 久久久欧美国产精品| 久久毛片免费看一区二区三区| 婷婷丁香在线五月| 亚洲成人免费av在线播放| 国产一区二区在线观看av| 不卡一级毛片| 亚洲国产欧美一区二区综合| 久久中文字幕一级| 一级毛片女人18水好多| 国产精品麻豆人妻色哟哟久久| 桃红色精品国产亚洲av| netflix在线观看网站| 久久天堂一区二区三区四区| 桃花免费在线播放| 久久久久久久久免费视频了| 波多野结衣av一区二区av| 久久精品成人免费网站| 一区二区三区四区激情视频| 日韩电影二区| 三级毛片av免费| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免| 十分钟在线观看高清视频www| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| 天天躁日日躁夜夜躁夜夜| 国产欧美日韩精品亚洲av| 高清在线国产一区| 午夜影院在线不卡| 日本wwww免费看| 欧美亚洲日本最大视频资源| 中亚洲国语对白在线视频| 啦啦啦啦在线视频资源| 成年美女黄网站色视频大全免费| 久热爱精品视频在线9| 嫁个100分男人电影在线观看| 婷婷成人精品国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 99精品欧美一区二区三区四区| xxxhd国产人妻xxx| 99国产综合亚洲精品| 热99国产精品久久久久久7| a级毛片在线看网站| 韩国高清视频一区二区三区| 亚洲人成电影免费在线| tube8黄色片| 欧美中文综合在线视频| 99精品欧美一区二区三区四区| 黄色毛片三级朝国网站| 男人添女人高潮全过程视频| 精品国产一区二区久久| 国产又爽黄色视频| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 女人爽到高潮嗷嗷叫在线视频| 国产福利在线免费观看视频| 国产视频一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av片在线观看秒播厂| 国产男女内射视频| www.999成人在线观看| 大片免费播放器 马上看| 51午夜福利影视在线观看| 97人妻天天添夜夜摸| 欧美日韩成人在线一区二区| 自线自在国产av| 老司机午夜福利在线观看视频 | 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 又大又爽又粗| 亚洲专区中文字幕在线| 人妻久久中文字幕网| 久久中文看片网| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 99热全是精品| 精品一区二区三区四区五区乱码| 一区福利在线观看| 免费在线观看日本一区| 欧美日韩亚洲综合一区二区三区_| 欧美日韩精品网址| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 成人影院久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产熟女午夜一区二区三区| 97在线人人人人妻| 高清在线国产一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩高清在线视频 | 日韩视频一区二区在线观看| 91av网站免费观看| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| 日日夜夜操网爽| 十八禁网站免费在线| 久久久久久久精品精品| 一二三四社区在线视频社区8| 精品少妇久久久久久888优播| 国产精品九九99| 精品少妇内射三级| 亚洲性夜色夜夜综合| 91精品国产国语对白视频| 日本黄色日本黄色录像| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区二区三区在线观看 | 国产精品99久久99久久久不卡| 男女下面插进去视频免费观看| 老司机亚洲免费影院| 男女免费视频国产| 老司机深夜福利视频在线观看 | 又黄又粗又硬又大视频| 日韩欧美免费精品| 高清欧美精品videossex| 久久中文字幕一级| 日韩免费高清中文字幕av| 中文字幕人妻丝袜制服| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 俄罗斯特黄特色一大片| 曰老女人黄片| 别揉我奶头~嗯~啊~动态视频 | 日本av手机在线免费观看| 性色av乱码一区二区三区2| 一边摸一边做爽爽视频免费| 极品人妻少妇av视频| 国产又色又爽无遮挡免| 在线观看舔阴道视频| 这个男人来自地球电影免费观看| 日本五十路高清| 国产精品一区二区在线不卡| 久久中文字幕一级| 妹子高潮喷水视频| 各种免费的搞黄视频| 中文字幕人妻丝袜一区二区| 一本大道久久a久久精品| 两性夫妻黄色片| 无遮挡黄片免费观看| 欧美久久黑人一区二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美精品综合一区二区三区| 亚洲国产av影院在线观看| 热99久久久久精品小说推荐| 大片免费播放器 马上看| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 久久久精品94久久精品| 最近中文字幕2019免费版| 一区二区三区激情视频| 欧美黄色淫秽网站| 一二三四社区在线视频社区8| 在线 av 中文字幕| bbb黄色大片| 热99久久久久精品小说推荐| 美国免费a级毛片| 大香蕉久久成人网| 巨乳人妻的诱惑在线观看| 国精品久久久久久国模美| 一级片免费观看大全| av线在线观看网站| 中文字幕最新亚洲高清| 免费女性裸体啪啪无遮挡网站| 999精品在线视频| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 亚洲欧美精品综合一区二区三区| 操美女的视频在线观看| 午夜福利,免费看| 老司机影院成人| 视频区图区小说| 91麻豆精品激情在线观看国产 | 欧美日韩成人在线一区二区| 亚洲欧美色中文字幕在线| 精品少妇久久久久久888优播| 国产精品久久久久久人妻精品电影 | 好男人电影高清在线观看| 精品一区在线观看国产| 电影成人av| av在线app专区| 久久热在线av| 在线看a的网站| 成人国产一区最新在线观看| 中国国产av一级| 久久精品国产亚洲av高清一级| 午夜精品国产一区二区电影| 日本猛色少妇xxxxx猛交久久| 精品久久久久久久毛片微露脸 | av超薄肉色丝袜交足视频| 亚洲av成人不卡在线观看播放网 | 91成年电影在线观看| 一级黄色大片毛片| 狂野欧美激情性xxxx| 日韩,欧美,国产一区二区三区| 国产精品1区2区在线观看. | 丝袜美腿诱惑在线| 老司机靠b影院| 亚洲欧洲日产国产| 国产精品自产拍在线观看55亚洲 | 亚洲精品一卡2卡三卡4卡5卡 | 91字幕亚洲| 久久国产精品人妻蜜桃| 亚洲av日韩在线播放| 日韩欧美国产一区二区入口| 亚洲av电影在线观看一区二区三区| 狠狠狠狠99中文字幕| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 91av网站免费观看| 又紧又爽又黄一区二区|