• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    H∞Tracking Control for Switched LPV Systems With an Application to Aero-Engines

    2018-08-11 07:48:38KongweiZhuJunZhaoSeniorMemberIEEEandGeorgiDimirovskiSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年3期

    Kongwei Zhu,Jun Zhao,Senior Member,IEEE,and Georgi M.Dimirovski,Senior Member,IEEE

    Abstract—This paper focuses on the H∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine.The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H∞tracking performance.A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.

    I.INTRODUCTION

    AERO-engines are fairly complex multi-variable nonlinear systems with a large variation in the system dynamics.Since an accurate analytical engine model is almost impossible to be obtained,the system analysis and synthesis have to be conducted using an approximate analytical model[1].Many techniques for aero-engine control have been presented in literatures(see,[2]?[5]and the references therein).Nonlinear approaches are often hard to apply to a multi-dimensional control system.Approximate linearization techniques of nonlinear systems only ensure the performance around specific operating points,while exact input-output feedback linearization methods lack robustness.Zhao et al.proposed an approximate nonlinear engine model and a feedback linearization control strategy for local linear input-output performance[3].A widely applied nonlinear control technique is the gain scheduling[6],[7],however it has no stability or performance guarantee for off-design points[8].Linear parameter varying(LPV)control methods can provide a systematic gainscheduling method with guaranteed stability performance[8].Analysis and synthesis of LPV systems for aero-engines have been studied widely[4],[9].A model matching problem in the H∞and LPV framework is also investigated for an LPV turbofan engine model[9].Polynomial LPV synthesis and fixed-order controller scheme was discussed for reduced complexity gain-scheduled control laws for a class of aircraft turbofan engines[4].

    An alternative method is switching control where a family of controllers are designed at different operating points and the system performs controller switching based on the switching logic.The applications of this strategy are stimulated by the recent development of switched systems.A switched system consists of a finite number of subsystems and a switching law which usually depends on time,states,or both that determines switching between these subsystems[10].Stability analysis and synthesis methods for switched systems have been widely studied in many literatures[11]?[16].References[11],[13]studied the stability for linear and nonlinear switched systems in lower triangular form under an arbitrary switching law.As shown in[14],multiple Lyapunov functions technique was used to deal with a hybrid nonlinear control problem of switched systems.Besides that,the average dwell-time approach was also employed to investigate the stability and stabilization of switched systems[15].The global robust stabilization problem for a class of uncertain switched nonlinear systems in lower triangular form was considered by[16]under any switching signal with dwell time specifications.

    An LPV system is characterized as a smooth linear system with time-varying parameters.Modern aero-engines usually work in a large parameter variation range.Similar to the control of aircraft,the control of aero-engines is different in different parameter sub-regions[17],nevertheless these are more complicated than the control of aircrafts.The aircraft systems have been constructed as switched LPV models in some papers,such as[18],[19],therefore a single LPV model may not give sufficient approximation to nonlinear engine dynamics over the entire operating range.A reasonable and natural idea is to adopt several LPV models and corresponding controllers,each suitable for a specific parameter sub-region,and switching among them[17],such LPV systems then become switched LPV systems.The switching LPV control approach can obtain a better approximation of the nonlinear dynamics and better performance than a single LPV control method[20].Switched LPV systems have received considerable attention in the recent literatures[19],[21].A complete overview of the stability results for LPV and switched LPV systems was given in[21].Based on multiple parameter dependent Lyapunov functions,a switching LPV control technique was presented for an F-16 aircraft via controller state reset using hysteresis and average dwell time switching law in[18].Switching control for LPV systems in aero-engines is still an open and interesting issue.

    On the other hand,due to the emergence of switching control in robotic systems and many other manufacturing processes,tracking control research on switched systems has received increasing attention.Based on the state-dependent switching method,sufficient conditions for the solvability of the state tracking control problem were given in[22].l1-l∞output tracking control problem was researched resorting to the average dwell time approach[23].The abovementioned results on the tracking control problem are only about general switched systems.A few results on the tracking control problem for LPV systems are also available.In[24]a model reference controller was designed using singular value decomposition to obtain the coefficient matrices.Based on poly-topic LPV models an LPV switching tracking control scheme was proposed for a flexible air-breathing hypersonic vehicle[25].However,the switching LPV tracking control results for aero-engines are not found at present.

    Motivated by the above discussions,this technical note studies the problem of switching H∞tracking control for an aero-engine model via multiple parameter-dependent Lyapunov functions technique.Compared with the existing results,the main contributions of our study can be summarized as follows:1)This paper generalizes model reference H∞tracking problem to the switched LPV systems.We present a control design scheme to solve the H∞tracking control problem,and simulation result shows the effectiveness of the proposed control design method.2)The LPV model does not fully exhibit the desired levels of reliability and flexibility with dramatic parameter variations and a large flight range.In order to overcome the aforesaid problem and to improve design accuracy,we introduce a switched LPV model for an aeroengine.The parameter region is divided into several subregions and LPV controllers are designed for each parameter sub-region to satisfy specified performance criterion.

    The technical note is organized as follows.Section II gives the problem formulation and preliminaries.Section III gives a tracking control design technique.In Section IV we apply the designed method to a switched LPV aero-engine model.Finally,the conclusion is given in Section V.

    The notations used in this paper are fairly standard.For a matrix X,XTdenotes its transpose.He{X}is a shorthand notation of X+XT.X>0(X≥0)and X<0(X≤0)denote positive definite(positive semi-definite)and negative definite(negative semi-definite),respectively.Rn,Rn×mand Snrespectively denote sets of n-dimensional real vectors,n×mdimensional real matrices and n×n-dimensional symmetric real matrices,?denotes an abbreviated off-diagonal block in a symmetric matrix,and diag{X1,...,Xk}denotes a blockdiagonal matrix composed of X1,...,Xk.

    II.PROBLEM FORMULATION AND PRELIMINARIES

    In this section,the problem will be formulated,and some preliminaries about the switched LPV systems will be given.

    A.Problem Formulation

    Consider the following switched LPV system:

    where x(t)∈Rn,u(t)∈Rnu,andω(t)∈Rnωare the state,the control input,and the disturbance input,respectively.

    Suppose that the parameterρis in a compact set P?Rswith its parameter variation rate bounded by≤,k=1,2,...,s.The set P is partitioned into a finite number of closed subsets{Pi}i∈ZNby means of a family of switching surfaces SSSij(i,j∈ZN■),the adjacent parameter subsets are overlapped and P=Pi,where ZN={1,2,...,N}is the index set.The switching signal is defined asσ:R+=[0,∞)→ZNwhich is assumed to be a piecewise continuous(from the right)function depending on time or the parameter.The switching sequence is∑={x;(i0,t0),(i1,t1),...,(ij,tj),...|ij∈ZN,j=0,1,...}.σ(t)=i means the ith subsystem is activated at time instant t.The system matrices Ai(ρ),Bi(ρ),Ci(ρ)are of appropriate dimensions and all of the state-space data are continuous functions of the parameterρ.The parameterρ is exogenous variable and independent of the state x.

    The reference state xr(t)is given by the reference model

    where xr(t)∈Rnris the reference state,r(t)∈Rnris the bounded reference input,Aris known Hurwitz matrix with compatible dimensions.

    Remark 1:The reference signal can also be given by a parameter-dependent model.For this case we can replace(2)by˙xr(t)=A(ρ)rxr(t)+r(t),the designed process for the parameter-dependent model is similar to the model(2).Without loss of generality,we consider the reference model as(2).

    Combining the system(1)with the system(2),one can get the augmented system

    Give the following performance index:

    where er(t)=x(t)?xr(t)denotes the state error,tfis the control termination time,ˉω(t)=(ωT(t),rT(t))T,γ>0 is the disturbance attenuation level.

    The H∞tracking control performance of the switched system(3)can be stated as follows:

    1)the system(3)is asymptotically stable,when theˉω(t)=0;

    2)under the zero-initial condition,the inequality(4)holds for allˉω(t)/=0,whereγis a constant number.

    Our objective is to design both controller u(t)and a switching lawσto enforce x(t)of the system(1)to track the reference state xr(t)of the system(2).

    B.Preliminaries

    The following assumptions are adopted which are useful in our later development.

    Assumption 1[17]:The matrix function triple(Ai(ρ),Bi(ρ),Ci(ρ))is parameter-dependent stabilizable and detectable for the parameterρ.

    Assumption 2[12]:The switching signalσhas finite number of switchings occurring in any finite time interval.The subsystems and controllers are synchronously switching.

    Lemma 1[26]:Let D,E be real matrices of appropriate dimensions with‖F(xiàn)‖≤1.Then for any scalarγ>0,the following inequality holds

    III.MAIN RESULTS

    In this section,we will design the state feedback parameter dependent controller and a switching lawσ(t)to solve the H∞tracking control problem via multiple Lyapunov functions approach.

    The state feedback controller is given as

    From augmented system(3)with controller(6)we have the following closed-loop system:

    where

    Now we deal with the issue of parameter-dependent switching lawσ(t)to achieve H∞tracking performance with the help of parameter-dependent state feedback controller given in(6).

    Firstly,we choose multiple parameter-dependent Lyapunov function candidate for the system(1)with the system(2)as

    where Xi(ρ)> 0,i∈ ZN.

    Hysteresis Switching Law:As previously mentioned,the set P is partitioned into number of subsets{Pi}i∈ZNby SSSij(i,j∈ZN).Suppose that SSSijdenotes the trajectory ofρmoving unidirectional from subset Pito Pj,and it is contrary to the switching surface SSSji.The switching signalσis described as When t=0, σ(0)=i, ifρ(0)∈Pi

    For the switched closed-loop system(7),if on the switching surfacesij,the matrix Xi(ρ)of(8)is satisfying:Xi(ρ) ≥Xj(ρ),we have the Lyapunov function of(8)is non-increasing when switching from Pito Pj.For the switching surface SSSji,we have a similar result when switching from Pjto Pi,where i,j∈ZN.

    Remark 2:The parameter subsets are partitioned by switching surfaces and the switching law is parameter-dependent in[17].In[27],[28]the switching law is not parameter dependent but rather is mode-dependent for dealing with the switching LPV control problem.In this paper,we studied the tracking problem for aero-engines,considering the character of practical problem,we choose the parameter-dependent switching law.

    Remark 3:For the switching surface SSSij,when the partition way for P is decided,the specific valueρcorresponding to SSijis given such asρ?.The matrix inequality Xi(ρ)≥Xj(ρ)holds only on the surface SSSijthat isρ=ρ?.

    For the closed-loop switched LPV system(7),we state the synthesis condition of switching LPV control in the following theorem.

    Theorem 1:Consider the augmented closed-loop system(7)with the parameter set P and its overlapped covering{Pi}i∈ZN.If there exist positive definite matrix functions Xi(ρ):Rs→ S2n,and matrix functions Ki(ρ):Rs→ Rn×m,such that for?ρ∈Pi,

    and

    Proof:For the multiple parameter-dependent Lyapunov functions candidate(8),computing time derivative along the state variables trajectory of the system(7),we have

    The matrix inequality(10)implies

    Because Q≥0,that is

    Now we show the performance index(4)under the zero initial condition with(t)/=0.

    From(12),applying Lemma 1,we have

    Then,

    From the inequality(10)and with Schur complement,we have

    that is

    since

    it follows from(14)that

    Integrating both sides of(15)from zero to tfwe get

    According to the zero initial condition and V((t),ρ)>0,it is easy to derive

    Therefore,under the switching law(9),the H∞tracking controller(6)solves the H∞tracking control problem for the switched LPV system(1). ■

    Remark 4:The appearance of matrix Q in the inequality(10)is because of the er(t).To show the relation between er(t)and the states x(t),xr(t),we just rewrite eTr(t)er(t)into a compact form using matrix Q=[I,?I;?I,I]and connect them together,then we introduce er(t)into the inequality(10).

    Since the matrix inequalities condition(10)of Theorem 1 are non-convex in Ki(ρ)and parameter matrix variable Xi(ρ),we convert these conditions into solvable linear matrix inequalities(LMIs).

    Theorem 2:Consider the system(7)with the parameter set P and its overlapped covering{Pi}i∈ZN.If there exist positive definite matrix functions Yi(ρ):Rs→ Sn,matrix functions Wi(ρ):Rs→Rn×mand a constantγ> 0,such that for anyρ∈Pi,the following LMI holds

    where

    Then,under the switching law(9),the controller(6)with controller gain given bysolves the H∞tracking control problem for the system(1).

    Then,we have

    Finally we can obtain

    With Schur complement,

    Defining Wi(ρ)=Ki(ρ)Yi(ρ)and using Schur complement,we have solved LMIs(16).For anyρ∈the switching condition(11)is equivalent to

    consequently,the matrix inequality(17)can be obtained.■

    Remark 5:The diagonal structure of Xi(ρ)may bring about some conservativeness,but based on this form we can give the solvable parameter-dependent LMIs.For this kind of LMIs,we cannot directly solve them.By forming a grid method for parameter values,we can approximately convert(16)and(17)to a finite collection of solvable LMIs.Then the continuous matrix function(6)can be formed by interpolation[8].

    IV.SIMULATION EXAMPLE

    We will apply the designed method to a turbofan engine model to show the effectiveness of the designed scheme.

    A.The Switched LPV Model of Aero-Engines

    The turbofan engine model is corresponding to a large,high bypass ratio two-spool turbofan engine similar to the GE90.It is based on the data from GE-90K engine of commercial modular aero-propulsion system simulation(CMAPSS)[29].The input is WF(fuel flow rate),the states are Nf(fan speed)and Nc(core speed).The altitude means the distance of the engine from the sea-level,the Mach number means the number determining the relative speed between the air flow and the aero-engine divided by the sound velocity.

    A switched LPV model is established with the method of curve- fitting and small deviation linearization.A turbofan model is modeled by two different scheduling parameter sets as a switched LPV system.The turbofan engine model data is from[29].The altitude and the fan speed are normalized by 10000 and 3000,respectively.Then according to the curveiftting method,based on a family of local linearized models,a switched LPV model of turbofan engine is given as

    where x(t)=[?Nf,?Nc]T,u(t)= ?WF. ?Nf=Nf?Nfeis the fan speed increment,?Nc=Nc?Nceis the core speed increment and?WF=WF?WFeis the fuel flow rate increment,respectively.Here Nfe=2324/3000 and Nce=8719/3000.ω(t)is given by the health parameter input which can represent the disturbances or the effects of engine components aging[29].

    For simplicity we only consider the Mach number as the gain scheduling parameter and let the altitude as 0.The variation range of the parameterρis[0.20,0.9].To divide the parameter P into two sub-regions of P1=[0.20,0.65]and P2=[0.55,0.9],where P1■P2=P and the overlapping region is[0.55,0.65].Here,we can divide the parameter set into smaller intervals and establish more subsystems for aeroengine to get better accuracy.Without loss of generality,we partition the parameter set into two subsets.Ai(ρ),Bi(ρ),i=1,2 are parameterized inρby means of curve fitting,which are given as

    The reference model is given as

    where xr(t)=[?Nf,?Nc]T,and the state space data of Aris

    B.H∞Model Reference Tracking Control Problem of the Switched LPV Model

    We conduct simulation for the turbofan engine model with a varying parameter.The time-varying Mach number trajectory is shown in Fig.1.Choosing disturbanceω(t)=[e?2t,e?2t]Tand the reference input r(t)=[0.01sin(0.01t),0.01sin(0.01t)]T.In addition,the initial value of the switched LPV system(1)is assumed to be x(t0)=[?Nf,?Nc]T=[0.2,0.25]T.

    To solve the optimization problem(16)and(17)in Theorem 2,we obtain

    According to Theorem 2,we solve the H∞tracking control optimization problem for the switched system(1),and the H∞disturbance attenuation index isγ=0.4672 over the entire parameter set.Compared with the method of[9]for single LPV model,we getγ=0.4810.The switched LPV H∞tracking scheme has a smaller disturbance attenuation level and a better performance than general LPV control method.

    The H∞tracking control problem for the switched system(1)is solved.The switching signal is shown in Fig.2.The tracking control error is depicted in Fig.3.The fan speed increment and fuel flow increment are shown in Figs.4 and 5,respectively.The simulation result shows the effectiveness of the designed scheme.

    V.CONCLUSION

    In this paper,we have studied the H∞model reference tracking control problem for the switched LPV systems.A switched LPV turbofan engine model for different parameter regions has been constructed from a family of linearized engine models.Sufficient conditions have been developed to guarantee the H∞model tracking performance using the multiple parameter dependent Lyapunov functions method.The desired tracking controller gain has been obtained by a set of LMIs.The tracking control under a hysteresis switching law was applied to the obtained switched LPV engine model,and promising simulation result is obtained.

    Fig.1.The gain scheduling parameter.

    Fig.2. The switching signal.

    Fig.3.The tracking control error.

    Fig.4. The fan speed increment.

    Fig.5. The fuel flow increment.

    伦理电影大哥的女人| 免费看日本二区| 久久精品人妻少妇| 美女高潮的动态| 床上黄色一级片| 精品国产一区二区三区久久久樱花 | 看黄色毛片网站| 69av精品久久久久久| 午夜福利网站1000一区二区三区| 乱码一卡2卡4卡精品| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 久久99热这里只频精品6学生| 日日撸夜夜添| 网址你懂的国产日韩在线| 直男gayav资源| 插阴视频在线观看视频| 亚洲av中文av极速乱| 人妻制服诱惑在线中文字幕| 精品国内亚洲2022精品成人| 丝瓜视频免费看黄片| 国产精品女同一区二区软件| 亚洲美女视频黄频| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品成人久久小说| 2018国产大陆天天弄谢| 久久热精品热| 欧美一级a爱片免费观看看| 嫩草影院入口| 亚洲av男天堂| 亚洲第一区二区三区不卡| 尾随美女入室| 精品亚洲乱码少妇综合久久| 毛片女人毛片| 免费观看a级毛片全部| 18+在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产一区亚洲一区在线观看| 人体艺术视频欧美日本| 在线播放无遮挡| 中文乱码字字幕精品一区二区三区 | 久久久久久九九精品二区国产| 十八禁国产超污无遮挡网站| 日韩成人av中文字幕在线观看| 国产成人精品久久久久久| 国产大屁股一区二区在线视频| 午夜福利视频精品| 国产精品国产三级专区第一集| 亚洲国产成人一精品久久久| 久久久久精品久久久久真实原创| 九草在线视频观看| 亚洲精品国产av蜜桃| 一级毛片久久久久久久久女| 精品熟女少妇av免费看| 欧美人与善性xxx| 久久精品夜色国产| 18禁在线无遮挡免费观看视频| av播播在线观看一区| 国产白丝娇喘喷水9色精品| 欧美极品一区二区三区四区| 国产在视频线精品| 日本猛色少妇xxxxx猛交久久| 国产三级在线视频| 大香蕉久久网| 亚洲精品第二区| or卡值多少钱| 欧美三级亚洲精品| 联通29元200g的流量卡| 成人二区视频| 国产亚洲av嫩草精品影院| 汤姆久久久久久久影院中文字幕 | 丝袜喷水一区| 亚洲四区av| 麻豆国产97在线/欧美| 黄片无遮挡物在线观看| 亚洲人成网站在线观看播放| 一级黄片播放器| 久久6这里有精品| freevideosex欧美| 精品国内亚洲2022精品成人| 欧美xxxx性猛交bbbb| 久久久久久久久久黄片| 婷婷色麻豆天堂久久| 人人妻人人澡人人爽人人夜夜 | 一本久久精品| 男人舔女人下体高潮全视频| 91久久精品电影网| 国产精品精品国产色婷婷| 内射极品少妇av片p| av播播在线观看一区| 成人高潮视频无遮挡免费网站| 非洲黑人性xxxx精品又粗又长| 床上黄色一级片| 日韩av免费高清视频| 国产亚洲午夜精品一区二区久久 | 一级爰片在线观看| 国产亚洲一区二区精品| 视频中文字幕在线观看| 国产亚洲午夜精品一区二区久久 | av免费观看日本| av国产免费在线观看| 七月丁香在线播放| 亚洲国产av新网站| 男女边吃奶边做爰视频| 一夜夜www| 一本一本综合久久| 又爽又黄无遮挡网站| 亚洲天堂国产精品一区在线| 欧美+日韩+精品| 免费观看在线日韩| av国产免费在线观看| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 人妻少妇偷人精品九色| 九九爱精品视频在线观看| 国产午夜精品论理片| 精品国产一区二区三区久久久樱花 | 亚洲图色成人| 人妻夜夜爽99麻豆av| 欧美另类一区| 干丝袜人妻中文字幕| 久久鲁丝午夜福利片| av国产免费在线观看| 性插视频无遮挡在线免费观看| 丝瓜视频免费看黄片| 插逼视频在线观看| 一级a做视频免费观看| 51国产日韩欧美| 国产午夜精品论理片| av国产免费在线观看| 亚洲精品影视一区二区三区av| 直男gayav资源| 亚洲第一区二区三区不卡| 精品久久久久久久久av| 成人二区视频| 亚洲第一区二区三区不卡| 久久精品综合一区二区三区| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| av一本久久久久| 亚洲欧美一区二区三区国产| 国产视频内射| 又黄又爽又刺激的免费视频.| 久久久精品免费免费高清| 国产探花在线观看一区二区| 国产91av在线免费观看| 久久久久性生活片| 久久精品国产亚洲网站| 国产人妻一区二区三区在| 欧美xxxx黑人xx丫x性爽| 天天躁日日操中文字幕| 97热精品久久久久久| 男人和女人高潮做爰伦理| 国精品久久久久久国模美| 五月伊人婷婷丁香| 日韩av不卡免费在线播放| 亚洲电影在线观看av| ponron亚洲| 男女啪啪激烈高潮av片| 午夜福利在线观看免费完整高清在| 人人妻人人澡人人爽人人夜夜 | 精品国内亚洲2022精品成人| 秋霞伦理黄片| 国产精品麻豆人妻色哟哟久久 | 久久久久国产网址| 欧美潮喷喷水| 中文字幕人妻熟人妻熟丝袜美| 国产精品伦人一区二区| 麻豆成人午夜福利视频| 插阴视频在线观看视频| 欧美一区二区亚洲| 国产 亚洲一区二区三区 | 边亲边吃奶的免费视频| 精品酒店卫生间| 十八禁网站网址无遮挡 | 久久久久精品性色| 成人鲁丝片一二三区免费| 亚洲国产精品国产精品| 天堂av国产一区二区熟女人妻| 成人美女网站在线观看视频| 乱码一卡2卡4卡精品| 亚洲图色成人| 天堂影院成人在线观看| 极品少妇高潮喷水抽搐| 亚洲国产精品国产精品| 欧美高清性xxxxhd video| 久久草成人影院| 色视频www国产| 男人狂女人下面高潮的视频| 水蜜桃什么品种好| 最近2019中文字幕mv第一页| 日韩一区二区三区影片| 欧美丝袜亚洲另类| 国产成人aa在线观看| 男插女下体视频免费在线播放| 成人无遮挡网站| 在线观看免费高清a一片| 两个人视频免费观看高清| 最近中文字幕高清免费大全6| 免费看美女性在线毛片视频| 色综合站精品国产| 麻豆国产97在线/欧美| 在线免费观看的www视频| 婷婷六月久久综合丁香| 精品一区二区免费观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩制服骚丝袜av| 久久久久久久久大av| 精品一区二区免费观看| 美女国产视频在线观看| 国产伦精品一区二区三区视频9| 亚洲欧美成人综合另类久久久| 成人国产麻豆网| 国产一区亚洲一区在线观看| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区久久| 一级a做视频免费观看| 激情 狠狠 欧美| 亚洲18禁久久av| 亚洲av.av天堂| 免费av毛片视频| 日本wwww免费看| 亚洲伊人久久精品综合| 精品一区二区免费观看| 美女大奶头视频| 日韩精品有码人妻一区| 又大又黄又爽视频免费| 午夜福利网站1000一区二区三区| 日本与韩国留学比较| 日韩av不卡免费在线播放| 天天躁夜夜躁狠狠久久av| 欧美不卡视频在线免费观看| 亚洲经典国产精华液单| 日韩视频在线欧美| 亚洲在线自拍视频| 内地一区二区视频在线| 亚洲四区av| 国产精品国产三级国产专区5o| 欧美极品一区二区三区四区| 蜜桃久久精品国产亚洲av| 看黄色毛片网站| 免费无遮挡裸体视频| 国产精品一区二区三区四区免费观看| 一夜夜www| 最近最新中文字幕免费大全7| 亚洲伊人久久精品综合| 3wmmmm亚洲av在线观看| 搡女人真爽免费视频火全软件| 日韩制服骚丝袜av| av免费在线看不卡| 一级毛片 在线播放| 爱豆传媒免费全集在线观看| 亚洲18禁久久av| 少妇的逼好多水| 一级片'在线观看视频| 日韩欧美三级三区| 高清av免费在线| 国产黄a三级三级三级人| 日韩强制内射视频| 最近中文字幕高清免费大全6| 美女xxoo啪啪120秒动态图| 国产精品精品国产色婷婷| 天天躁日日操中文字幕| 乱系列少妇在线播放| 午夜激情欧美在线| 国产精品一二三区在线看| 国产乱来视频区| 国产精品国产三级国产专区5o| 久久草成人影院| 日本三级黄在线观看| 久久久a久久爽久久v久久| 一级爰片在线观看| 国产伦一二天堂av在线观看| 女人久久www免费人成看片| 日本免费在线观看一区| 在线a可以看的网站| 日本-黄色视频高清免费观看| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 一边亲一边摸免费视频| 91久久精品国产一区二区三区| 国国产精品蜜臀av免费| 啦啦啦中文免费视频观看日本| 国产精品熟女久久久久浪| 日韩亚洲欧美综合| 好男人在线观看高清免费视频| 午夜激情欧美在线| 精品99又大又爽又粗少妇毛片| 十八禁国产超污无遮挡网站| 亚洲人成网站在线观看播放| 久久久久久久久久成人| 免费无遮挡裸体视频| 成人综合一区亚洲| 国产探花极品一区二区| 国产成人freesex在线| 中国美白少妇内射xxxbb| 欧美人与善性xxx| 大陆偷拍与自拍| 边亲边吃奶的免费视频| 国产黄频视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲伊人久久精品综合| 校园人妻丝袜中文字幕| av国产久精品久网站免费入址| 国产人妻一区二区三区在| a级毛色黄片| 五月天丁香电影| 欧美丝袜亚洲另类| 九九爱精品视频在线观看| 天堂网av新在线| 一级毛片aaaaaa免费看小| av在线亚洲专区| 国产av码专区亚洲av| 亚洲欧美一区二区三区黑人 | 97人妻精品一区二区三区麻豆| 久久99精品国语久久久| 亚洲国产av新网站| 男女边吃奶边做爰视频| 成人午夜高清在线视频| 午夜激情福利司机影院| 内地一区二区视频在线| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 成人毛片60女人毛片免费| 久久国产乱子免费精品| 高清av免费在线| 天天躁日日操中文字幕| 99热全是精品| 国产日韩欧美在线精品| 国产成人freesex在线| 国产午夜福利久久久久久| 精品酒店卫生间| 国产午夜福利久久久久久| 亚洲成人中文字幕在线播放| 亚洲av免费在线观看| 听说在线观看完整版免费高清| 亚洲综合精品二区| 色视频www国产| 国产色婷婷99| 九草在线视频观看| 男女边摸边吃奶| 亚洲国产精品sss在线观看| 美女cb高潮喷水在线观看| 国产久久久一区二区三区| h日本视频在线播放| 搡女人真爽免费视频火全软件| 国产视频首页在线观看| 午夜老司机福利剧场| 久久精品国产亚洲网站| 国产亚洲av片在线观看秒播厂 | 久久这里有精品视频免费| 精品酒店卫生间| 男女啪啪激烈高潮av片| 在线观看一区二区三区| 精品久久国产蜜桃| 色播亚洲综合网| 建设人人有责人人尽责人人享有的 | 日本猛色少妇xxxxx猛交久久| 性插视频无遮挡在线免费观看| 如何舔出高潮| 十八禁网站网址无遮挡 | 少妇的逼水好多| 黄色日韩在线| 最新中文字幕久久久久| 听说在线观看完整版免费高清| 最近手机中文字幕大全| 亚洲不卡免费看| 亚洲最大成人中文| av在线观看视频网站免费| 97超视频在线观看视频| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 自拍偷自拍亚洲精品老妇| 又粗又硬又长又爽又黄的视频| 六月丁香七月| a级毛色黄片| 免费观看精品视频网站| 精品熟女少妇av免费看| 又大又黄又爽视频免费| 偷拍熟女少妇极品色| 青春草国产在线视频| 亚洲人成网站在线观看播放| 亚洲精品aⅴ在线观看| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| 中文在线观看免费www的网站| 久久久久免费精品人妻一区二区| 纵有疾风起免费观看全集完整版 | 爱豆传媒免费全集在线观看| 免费观看无遮挡的男女| 91精品国产九色| av在线亚洲专区| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 麻豆成人午夜福利视频| 国产亚洲av片在线观看秒播厂 | 日韩一本色道免费dvd| 欧美精品国产亚洲| 男人爽女人下面视频在线观看| 久久久久久久亚洲中文字幕| 精品国产一区二区三区久久久樱花 | 国产亚洲精品av在线| 国内精品美女久久久久久| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 天堂网av新在线| 久久热精品热| 日韩三级伦理在线观看| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 免费看不卡的av| 国产永久视频网站| 久久久久久伊人网av| 大片免费播放器 马上看| 青春草国产在线视频| 日韩欧美一区视频在线观看 | 丝瓜视频免费看黄片| 看免费成人av毛片| 黄片无遮挡物在线观看| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 中文字幕久久专区| 日本免费在线观看一区| 亚洲欧洲国产日韩| 久久久久久国产a免费观看| 丰满乱子伦码专区| 国产精品久久视频播放| 老司机影院成人| 80岁老熟妇乱子伦牲交| 深夜a级毛片| 国产黄色小视频在线观看| 国产中年淑女户外野战色| 免费观看精品视频网站| 人妻夜夜爽99麻豆av| 国产精品人妻久久久影院| 禁无遮挡网站| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 国产伦精品一区二区三区视频9| 欧美zozozo另类| 女的被弄到高潮叫床怎么办| 十八禁网站网址无遮挡 | 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 又爽又黄无遮挡网站| 欧美不卡视频在线免费观看| 亚洲av成人精品一二三区| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 街头女战士在线观看网站| 一本一本综合久久| 国产精品不卡视频一区二区| 中文字幕av成人在线电影| 九色成人免费人妻av| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 亚洲成人精品中文字幕电影| 日韩成人av中文字幕在线观看| 亚洲熟妇中文字幕五十中出| 超碰av人人做人人爽久久| 男人狂女人下面高潮的视频| 国产精品.久久久| 国产一区亚洲一区在线观看| 午夜激情欧美在线| 看免费成人av毛片| 亚洲综合色惰| 超碰97精品在线观看| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 高清在线视频一区二区三区| 国产精品国产三级专区第一集| 国产人妻一区二区三区在| 欧美日韩一区二区视频在线观看视频在线 | 欧美97在线视频| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| av.在线天堂| 性插视频无遮挡在线免费观看| kizo精华| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 免费看av在线观看网站| 国产乱人视频| 午夜福利在线观看吧| 久久久久久久久久成人| 国产成人精品婷婷| 如何舔出高潮| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 免费人成在线观看视频色| 91av网一区二区| 亚洲四区av| 亚洲性久久影院| 亚洲国产精品专区欧美| 成年免费大片在线观看| 九九在线视频观看精品| 久久综合国产亚洲精品| av在线老鸭窝| 中文欧美无线码| 18禁裸乳无遮挡免费网站照片| 97超碰精品成人国产| 国产一区亚洲一区在线观看| 欧美成人精品欧美一级黄| 国内少妇人妻偷人精品xxx网站| videossex国产| 97超碰精品成人国产| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| 欧美日韩视频高清一区二区三区二| 黄色欧美视频在线观看| 欧美bdsm另类| 亚洲精品第二区| 免费无遮挡裸体视频| 一级毛片电影观看| 观看免费一级毛片| 免费av毛片视频| 高清在线视频一区二区三区| 亚洲欧洲国产日韩| 免费看av在线观看网站| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| av在线观看视频网站免费| 秋霞在线观看毛片| 国产黄色免费在线视频| 久久久久性生活片| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 永久网站在线| 免费观看的影片在线观看| 插逼视频在线观看| 最近手机中文字幕大全| 熟女电影av网| 最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看| 午夜亚洲福利在线播放| 搞女人的毛片| 搡老妇女老女人老熟妇| 久久久欧美国产精品| 男女国产视频网站| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 最近最新中文字幕大全电影3| 亚洲国产精品专区欧美| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件| 99久国产av精品| 久久国产乱子免费精品| 99热全是精品| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 高清在线视频一区二区三区| 亚洲成人精品中文字幕电影| 五月天丁香电影| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 最后的刺客免费高清国语| 免费观看av网站的网址| 国产人妻一区二区三区在| 免费高清在线观看视频在线观看| 免费看日本二区| 国产精品av视频在线免费观看| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 亚洲天堂国产精品一区在线| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 免费播放大片免费观看视频在线观看| 欧美极品一区二区三区四区| 国产一区二区三区av在线| 成人二区视频| 26uuu在线亚洲综合色| 免费黄网站久久成人精品| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 免费高清在线观看视频在线观看| 午夜激情福利司机影院| 亚洲av中文av极速乱| 建设人人有责人人尽责人人享有的 | 大话2 男鬼变身卡| 性色avwww在线观看| 看十八女毛片水多多多| 日本爱情动作片www.在线观看| 欧美日本视频| 国产精品爽爽va在线观看网站| 国产精品不卡视频一区二区| 午夜亚洲福利在线播放| 国产成人一区二区在线| 午夜亚洲福利在线播放| 精品酒店卫生间| 久久久久九九精品影院| 国产一级毛片七仙女欲春2| 中文乱码字字幕精品一区二区三区 | 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 国产乱人视频| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影| 丝袜喷水一区| or卡值多少钱| 内射极品少妇av片p| 一区二区三区免费毛片| 国产免费一级a男人的天堂| 麻豆乱淫一区二区|