• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method

    2018-08-11 07:48:46NourallahGhaeminezhadandShuangCongSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年3期

    Nourallah Ghaeminezhad and Shuang Cong,Senior Member,IEEE

    Abstract—In this paper,the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate,which is an important basic gate for the quantum computers.First,the density matrix interested in quantum system is transferred to vector formation.Then,in order to obtain a controller with higher accuracy and faster convergence rate,a Lyapunov function based on the matrix logarithm function is designed.After that,a procedure for the controller design is derived based on the Lyapunov stability theorem.Finally,the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate.The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.

    I.INTRODUCTION

    DURING recent years much work has been done to develop the quantum computers.In a quantum computer,the data is loaded as a string of quantum bits(qubits)[1].Quantum gates perform very simple operations on these qubits such as flipping their values.By combining many quantum gates,complex operations can be realized and these operations can be used to manipulate the qubits.The preparation of quantum basic gates is one of the most important research topics in quantum control field[2].The main objective is to prepare stable and high- fidelity quantum gates within a possible short time and prevent them from decoherence as long as possible[3].A quantum control process can be divided into coherent and decoherent parts,corresponding to the unitary and non-unitary operations,respectively[4],[5].Up to now,many different quantum control methods have been developed to generate higher fidelity quantum gates in a short time.One of the common methods is the quantum optimal control method,which has been extensively studied[6]?[11].Dynamical decoupling method is also an effective control way for the quantum gate preparation.In 2013,Piltz et al.protected conditional quantum gates by robust dynamical decoupling[12].In 2011,Grace et al.combined dynamical decoupling pulses with the optimal control method for improving preparation of quantum gates[13].However,in the methods mentioned above the control laws are not analytic and the designing procedure is a time-consuming task.The design of control laws based on the quantum Lyapunov method greatly simplifies the mathematic calculation and its analytical type of control laws make the control system be easily adjusted[14],[15].

    The Hadamard gate is one of the most basic and important gates in quantum computers[16].Any unitary operation can be approximated with arbitrary accuracy by means of special gates set in which the Hadamard gate must be included.Many quantum algorithms use the Hadamard transformation as the first step to initialize the state with random information.In quantum information processing,the Hadamard transformation acts as a one-qubit operator that maps the qubit basis states to different superposition states[17].

    In our previous work[18]we prepared a Not gate for one qubit open quantum system.In this paper,we will design a Lyapunov control method to prepare the Hadamard gate using unitary time-evolution operator whose dynamics are transferred to the Bloch vector space.We construct a matrix logarithm function as the Lyapunov function.The design of control laws is based on the Lyapunov stability theorem.The purpose of the control is to drive the unitary evolution operator from any initial quantum gate as close as possible to the desired quantum gate in the shortest possible time.Two performance indices of the system under environment uncertainties are analyzed by means of the simulation experiments.

    The rest of this paper is arranged as follows:in Section II,the descriptions of the control system and the model of the system are studied.In Section III,the Lyapunov function and the design of control laws are investigated.In Section IV,the Hadamard gate based on designed control laws is prepared in numerical experiments,the performances of control laws are analysed,and the comparisons with other control methods are done.Finally,the conclusion is given in Section V.

    II.DESCRIPTIONS OF THE CONTROL SYSTEM AND THE MODEL OF THESYSTEM

    For a two-level Markovian open quantum system,the dynamics of state ρtcan be described as the following Lindblad equation[17]

    where[H(t),ρt]=[H(t)·ρt?ρt·H(t)]is the commutator of H(t)and ρt[19].H(t)is the Hamiltonian of the system

    where H0is a free Hamiltonian which is a Hermitian diagonal matrix,and Hcis the control Hamiltonian of the system

    where fx(t),fy(t)and fz(t)are control fields;σk,k=x,y,z are the Pauli matrices

    In(1),L(ρt)turns out to cause decoherence of the system and is called the dissipation part which describes the correlation between the system and the environment[17],[20],[21]

    In our work,the studied model of the Markovian open quantum system is amplitude damping(AD).The related GKS matrix for the AD system is[22],[23]

    where σi?= σx?iσy,σi+= σx+iσy,and γ is the coupling strength of the system with the environment.

    The preparation of quantum gates is more comprehensible if they can be considered as a kind of operators.Under this consideration,the dynamics of the operators must be obtained.Since the density matrix dynamics of(1)is a bilinear equation with dissipation part,it is not easy to use to manipulate the gates.Fortunately for a two-level quantum system,the state of the quantum system can also be described by the state vector.

    As{I,σx,σy,σz}makes a basis for 2 × 2 Hermitian matrices,the density matrix ρtin(1)can be rewritten in Bloch vector rtas

    Moreover,the dissipation part of the AD system is[23]

    in this way ρtis represented by the vector rt=(rxt,ryt,

    We define U(t)as a unitary time-evolution operator on density matrix ρt;accordingly the time-evolution of ρtcan be written as

    According to(1),(9)and(10),we can obtain the following dynamics equation

    in which A(t)is the adjoint representation of?iH(t)in group of SO(3)which is derived from converting unitary part?i[H(t),ρt]of(1)to the Bloch vector representation and has the following form

    where Ax=andB is extracted from converting the dissipation part L(ρt)of(1)to the Bloch vector representation and can be written as

    Based on(6)and(7),for the AD system we set γxx= γyy= γ,γxy= γi,γyx= ?γi and γxz= γyz= γzx= γzy=γzz=0.In this case,one has

    From(9)and(10),the time-evolution of vector rtin the Bloch vector space can be written as

    Accordingly,based on(11)we can obtain

    Now for preparing the quantum gate,the control task becomes to design the control fields in A(t)in order to drive the initial gate towards the desired one.

    By substituting the Pauli matrices(4)into the density matrix given by(9),the relationship between ρtand rtbecomes

    where G?refers to the conjugate transpose of matrix G,and u?stands for the conjugate of element u.

    Let the final state vector be rf= (rxf,ryf,rzf)T,by comparing(17)with(18),rxf,ryfand rzfcan be obtained as

    Considering(15),(19),(20),and(21),the time-evolution operator U(t),which drives the initial vector r0to the final vector rtin the Bloch vector space,can be derived as(22)(see the bottom of this page).

    In this paper,the desired gate is a Hadamard gate GH,which is a unitary operator that implies on a single qubit,and transfers each basis stateto the superposition of both states,i.e.,it transfers the basis stateand the basis state The GHcan be written as[1]

    To obtain the Hadamard gate GHby the vector dynamics,the matrix GHwill be realized in the form of U(t)in(22)as the unitary time-evolution operator in the Bloch vector space.According toand(23),the final parameters of the Hadamard matrix in GH,i.e.,are substituted into(22);then the representation of the desired Hadamard gate in the Bloch vector space is expressed as

    III.DESIGN OF CONTROL LAWS

    In Section II,density matrix dynamics and desired quantum gate have been derived in the Bloch vector space,and we have obtained the dynamics of time-evolution operator U(t)in the same space.Now we design a proper Lyapunov function and Lyapunov-based control laws.A suitable Lyapunov function is first constructed and evaluated,then the control laws based on the Lyapunov stability theorem are designed.

    The Lyapunov stability theorem is used to determine the stability of a control system without need of solving the partial differential equations.It can also be used to design the control laws in order to obtain a stable control system.According to the Lyapunov stability theorem the dynamical system in(11),is stable if there is a scalar function V(t)that satisfies the following conditions:a)V(t)is positive semi-definite,i.e.,V(t)≥0 at any time;b)the first order time derivative of the Lyapunov function is negative semi-definite,i.e.,˙V(t)≤0 at any amount of time[17].

    The Lyapunov function V constructed in this paper is based on the matrix logarithm log(Uf?U(t))[25].Let’s define Uf?U(t)=W(t).As long as the spectral radius is less than one,the Mercator series of log(W(t))is[26]

    where I is the identity matrix.

    The first two terms of Mercator series in(25)are chosen,and the Lyapunov function in this paper is constructed by taking the square norm of two terms as

    Equation(26)asserts that,V(t0)=32 when U(t)=U0=I,and V(tf)=0 as long as U(t)=Uf.The constructed Lyapunov function satisfies V(t)≥0 at any time.

    To design the control laws,the first order time derivation of V(t)must satisfy˙V(t)≤0 at any amount of time,and˙V(t)=0 while U(t)=Uf.According to(26),˙V(t)is derived as follows:

    where the first and second terms of the trace function are the conjugate transpose of each other.Moreover,all elements of the trace function are real matrices,so the trace of these two terms are equal,and(29)can be rewritten as

    Substituting the conjugate transpose of˙U(t)in(11),i.e.,˙U?(t)=U?(t)(A(t)+B)?into(30),one has

    Substituting A(t)in(12)into(31),we can obtain

    where B is defined in(14),and fx(t),fy(t),and fz(t)are real valued functions which are pulled out from the trace function to divide(32)into 4 parts as shown in(33)

    From(33)it is obvious that,˙V(t)is composed of 4 parts with the similar structure as

    then these similar functions are defined as S(X,t)

    in which X is Ax,Ay,Azor B,in the first,second,third,or fourth term of(33)respectively.By substituting(34)into(33),we have

    while Ax,Ay,Az,and B are defined in(12)and(14),respectively.

    Now the control task becomes to design the control functions fx(t),fy(t)and fz(t),to make V(t)decrease monotonically,i.e.,˙V(t)≤0.The main idea of design is to make the control laws consist of two terms,such that the first term is used to ensure˙V(t)≤0,and the second term is used to eliminate the dissipation part caused by B.For this purpose,the control functions are designed as

    where ax,ay,az,hx,hy,and hz,are tuning weights.In(36),the terms?ajS(Aj,t),aj≥ 0,j=x,y,z,are used for preparing the operator,while for terms?hjS(B,t)/S(Aj,t),j=x,y,z,by adjusting hj,hx+hy+hz=1,the dissipation part caused by B goes to be eliminated.

    Substituting(36)into(35),one gets

    This means the control laws given by(36)can ensure≤0,so these control laws satisfy the requirements of the Lyapunov stability theorem.

    IV.SIMULATION EXPERIMENTS AND RESULT ANALYSIS

    In this section,the control laws in(36)are used to prepare the Hadamard gate for a Markovian open quantum system,i.e.,to drive the time-evolution operator U(t)from the initial identity matrix gate(38)to the desired gate(39).

    Numerical simulations are conducted to investigate the performances of control laws and the dynamical behavior of the system.We mainly study the following three points:

    1)The dynamics and characteristics of the time-evolution operator under the Lyapunov-based control are investigated.Meanwhile,the accuracy of preparation of the Hadamard gate is analyzed based on two performance indices:the fidelity F and the distance D,for different coupling strength γ.Then,the performances of control laws are investigated by the experiments.

    2)The effects of control laws on the control system performances are studied by analyzing the state-transfer from ρ0to ρf.

    3)The comparisons between different control methods are discussed.

    A.Preparation of Hadamard Gate and Analysis of the Control Performance Indices

    In this subsection,the dynamics and characteristics of the time-evolution operator U(t)under the action of the control laws are studied.The Hadamard gate for the AD Markovian open quantum system is prepared,and two control performance indices are analyzed.

    In dynamical equation˙U(t)=(A(t)+B)U(t),the four thorder Runge-Kutta method is used to obtain the time-evolution operator U(t)as

    where

    in which

    In(40),h is the sampling time.The control time is divided into 100 steps from 0 to 0.1a.u.,so h=0.001.As the steps go ahead,according to(40),the first step starts from U0,and the U(t)is updated until Ufis prepared.The control laws are used to drive U(t)from U0to Uf,in which ax=70,ay=106,and az=66 are set.At the initial time,we set the initial values of control functions as fx(0)=10.28,fy(0)=10.73,and fz(0)=40.

    The fidelity and the distance are introduced to analyse the accuracy of quantum Hadamard gate preparation.The fidelity is defined as[27]

    where N is the system dimensions and for the two-level system,N=2.As long as the operator reaches completely the desired operator,the fidelity is equal to one.

    The distance is defined as

    Accordingly,the distance gives the perception whether U(t)achieves Ufand to what extent.When U(t)reaches Ufcompletely,the distance is equal to 0.Otherwise by considering the fault tolerant quantum computation,the distance should satisfy the following performance selected in our experiment which is the distance criterion for valid operator preparations.

    As the system is an open quantum system,when the coupling strength γ increases,there is a higher coupling strength with the environment.Fig.1 shows the experimental results of the fidelity,when preparing the Hadamard gate for the AD Markovian open quantum system under designed control laws with three coupling strength γ = 0.01, γ = 0.1,and γ = 0.18,respectively.

    Fig.1.The fidelity under control laws for the AD system when γ=0.01,γ=0.1,and γ=0.18.

    One can see from Fig.1 that,when γ=0.01,at t=0.0164a.u.,the fidelity reaches 0.9985.For larger parameters γ,i.e., γ =0.1 and γ =0.18,the fidelity becomes 0.981 and 0.962,respectively.This indicates that as γ increases,the dissipation part has more effect on the system,which makes the fidelity decrease.When γ=0.1 at time 0.091a.u.,the fidelity has a fluctuation,and when γ=0.18,the fluctuations happen again with larger deviation at times 0.0447a.u.and 0.092a.u.,which are caused by the dissipation L(ρt)of the open quantum system.The designed Lyapunov control laws can guarantee the system stability,and when the dissipation makes the system deviate from the desired result,the control laws can eliminate it in a very short time.

    Fig.2 is the result of the distance when preparing the Hadamard gate for the AD Markovian open quantum system with γ =0.01, γ =0.1,and γ =0.18.For all parameters γ,at t=0.0164a.u.,the distance reaches less than 10?4,and it remains in this criterion for the rest of time.For γ=0.1,at t=0.092a.u.,the distance becomes 4× 10?3,but after a short time the controller brings it under 10?4again.When γ=0.18,at times 0.047 and 0.093a.u.,there are also some peaks that values are 3.1× 10?2and 5 ×10?3,respectively,but these fluctuations are rectified by the controller.These fluctuations are caused by the dissipation of the system coupled to environments.As the γ increases the fluctuations also increase,which are eliminated by the control laws in a very short time.

    The function of control laws consists of two parts:the first is the preparation,and the second is the preservation.During the preparation part,the desired gate is prepared,and two control performance in dices,i.e.,density and fidelity,tend to reach the minimum and maximum values,respectively.In the preservation part,the desired gate remains stable under the action of the control laws.The effects of control laws in the preservation part eliminate the dissipation of the system which emerges as the fluctuations.

    Table I is the parameters in(36)selected in experiments in order to have the maximum fidelity and the minimum distance in the shortest possible time.The control laws as the function of time with γ=0.1 are shown in Fig.3.From which one can see that at t=0.0164a.u.the control laws tend to zero,then there appear some fluctuations.This time is the preparation time and during 0≤t≤0.0164a.u.,the control laws work in the preparation part.After t=0.016a.u.and till the end of simulation time t=0.1a.u.,the control laws work in the preservation part.

    B.State-Transfer Under Designed Control Laws

    In this subsection,in order to study the relation between the density matrix and the gate,the numerical simulation of corresponding state-transfer from the arbitrary identity matrix U0to desired gate Ufis fulfilled to verify the effect of designed control laws.From(15)and(17),one can see that the density

    Fig.2.The distance under control laws for the AD system when(a)γ=0.01,(b)γ=0.1,and(c)γ=0.18.

    matrix ρtis an implicit function of U(t)by means of vector rt.

    Let the initial vector be r0=(1,0,0),which is regarded to be the superposition of basis states,i.e.,According to(15)and(24),the desired final vector,which is correlated to the state■■0〉,can be derived as

    TABLE IMINIMUM VALUES OF D AND MAXIMUM VALUES OFF

    Fig.3.Control laws as the function of the time when γ=0.1.

    To find out the corresponding density matrix,the initial vector r0=(1,0,0)and the final desired vector rf=(0,0,1)are substituted into(17),we can obtain

    Fig.4 illustrates the trajectory of the time-evolution density matrix as a function of time for the AD Markovian open quantum system under the designed control laws.

    Fig.4. State-transfer from ρ0to ρfunder control laws for the AD system when γ=0.1.

    Based on the principle of Von Neumann,the diagonal elements of a density matrix can be interpreted as the probability.The trace of a density matrix must be normalized,which means the sum of the diagonal elements of time-evolution density matrix,i.e.,ρ11+ ρ22,must be equal to one at each moment of time-evolution[28].The numerical simulation results in Fig.4 show that,at t=0.012a.u., ρ11and ρ22attain 0.999 and 0.001,respectively,whose sum is one.For the rest of simulation time,the loss of stability in Hamiltonian makes ρ11decrease and fluctuate very little away from the desired amount.Under the action of control laws,ρ11remains stable close to 1[29].When ρ11decreases a bit,the other diagonal element,i.e.,ρ22slightly increases,in which the sum of ρ11and ρ22is always equal to one.Other elements,i.e.,ρ12and ρ21attain to 4 × 10?4at t=0.012a.u..From Fig.4 one can see that,at times t=0.015a.u.and t=0.091a.u.,there are some fluctuations in the trajectories of ρ12and ρ21,which can be eliminated by the control laws designed.The numerical simulation results verify that the desired state in(47)is achieved.

    C.Comparison and Discussion

    In[30],the optimal control theory is applied to a two level open quantum system to prepare the Hadamard gate by minimizing an energy-type cost functional.25a.u.time was used and the performance of F ≈ 1?10?16was achieved for a closed-loop system.In our paper,when the experimental simulations are done in the same conditions,i.e.,γ=0,and the maximum amplitude of control laws is no larger than 2,the performance of our experimental results is F =1 at t=2.025a.u.which indicates that the control method proposed in this paper can obtain higher fidelity in a shorter time compared to that of the optimal control method in[30].

    In[18],the Lyapunov control method is used to prepare a Not gate for a two-level open quantum system.The performance of F=0.9976 at t=0.0194a.u.is obtained with γ=0.01,and the maximum amplitude of control laws is less than 400.Under the same conditions the fidelity performance in our paper is F=0.9985 at t=0.0165a.u.,which demonstrates the preparation in this paper has higher fidelity with a faster convergence rate.

    V.CONCLUSION

    This paper has prepared a Hadamard gate for the two level AD Markovian open quantum system based on the Lyapunov stability theorem.The controlled system dynamics are obtained in the Bloch vector representation.Two control performance indices,i.e,the fidelity and the distance are investigated,and numerical simulations are implemented under the MATLAB environment with different coupling strength γ.The control laws which are designed based on a novel Lyapunov function ensure high fidelity and low distance with a very short preparation time.The performances of the gate preparation and the state-transferring illustrate the effectiveness of designed control laws to eliminate the dissipation caused by coupling with environment.

    午夜福利在线观看免费完整高清在| 大片电影免费在线观看免费| 中文字幕人妻熟女乱码| 精品国产乱码久久久久久小说| 哪个播放器可以免费观看大片| 男女边摸边吃奶| 只有这里有精品99| 26uuu在线亚洲综合色| 欧美日韩视频精品一区| 日韩不卡一区二区三区视频在线| 搡女人真爽免费视频火全软件| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片 在线播放| www.色视频.com| 久久久久视频综合| 久久午夜综合久久蜜桃| 美女福利国产在线| 久久久久久久国产电影| 精品一区二区三卡| 久久毛片免费看一区二区三区| 国产精品蜜桃在线观看| 天堂俺去俺来也www色官网| 久久99热6这里只有精品| 国产老妇伦熟女老妇高清| 一区二区三区四区激情视频| 美女内射精品一级片tv| 一边摸一边做爽爽视频免费| 久久精品国产a三级三级三级| 国产精品久久久av美女十八| 亚洲,欧美精品.| 免费在线观看完整版高清| 亚洲成色77777| 成人毛片a级毛片在线播放| 亚洲色图 男人天堂 中文字幕 | 精品熟女少妇av免费看| 一级片免费观看大全| 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看| av又黄又爽大尺度在线免费看| 国产精品国产三级国产av玫瑰| 日本爱情动作片www.在线观看| 老司机影院成人| 秋霞在线观看毛片| 丝袜喷水一区| 精品亚洲乱码少妇综合久久| 在线观看一区二区三区激情| 亚洲,欧美精品.| 久久久久精品人妻al黑| 大话2 男鬼变身卡| 亚洲综合色惰| 国产视频首页在线观看| 国产在视频线精品| 国产精品久久久久久久久免| 国产av一区二区精品久久| 国产在线视频一区二区| 只有这里有精品99| 一级片'在线观看视频| 中国国产av一级| 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 成年女人在线观看亚洲视频| 亚洲精品美女久久av网站| 成年美女黄网站色视频大全免费| 亚洲色图 男人天堂 中文字幕 | 国产精品熟女久久久久浪| 秋霞在线观看毛片| 美女中出高潮动态图| 久久久久精品人妻al黑| 亚洲精品自拍成人| av又黄又爽大尺度在线免费看| 久久99热这里只频精品6学生| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精| 人妻 亚洲 视频| 日韩熟女老妇一区二区性免费视频| 伊人亚洲综合成人网| 久久精品久久久久久噜噜老黄| 欧美精品国产亚洲| 久久午夜福利片| 亚洲精品第二区| 97在线人人人人妻| 深夜精品福利| 日韩av在线免费看完整版不卡| 日韩不卡一区二区三区视频在线| 观看美女的网站| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 精品人妻熟女毛片av久久网站| 天天操日日干夜夜撸| 五月伊人婷婷丁香| 丰满迷人的少妇在线观看| 美国免费a级毛片| 免费黄色在线免费观看| 一个人免费看片子| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区| 狂野欧美激情性xxxx在线观看| 人妻人人澡人人爽人人| 欧美 日韩 精品 国产| 免费人成在线观看视频色| 国产精品.久久久| 免费人妻精品一区二区三区视频| 又粗又硬又长又爽又黄的视频| 天美传媒精品一区二区| 国产乱来视频区| 一级爰片在线观看| 女人久久www免费人成看片| 亚洲精品日韩在线中文字幕| 大片电影免费在线观看免费| 欧美国产精品va在线观看不卡| 18禁动态无遮挡网站| 97超碰精品成人国产| 免费播放大片免费观看视频在线观看| 天堂8中文在线网| 2021少妇久久久久久久久久久| 中文字幕亚洲精品专区| 亚洲精品一二三| 狠狠婷婷综合久久久久久88av| 中文字幕人妻熟女乱码| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说| 国产又爽黄色视频| 免费女性裸体啪啪无遮挡网站| 国产免费一级a男人的天堂| 视频区图区小说| 欧美精品av麻豆av| 国产乱来视频区| 一个人免费看片子| 国产av精品麻豆| 99香蕉大伊视频| 久久午夜综合久久蜜桃| 美女视频免费永久观看网站| 熟女电影av网| 中文字幕最新亚洲高清| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 亚洲一区二区三区欧美精品| 少妇猛男粗大的猛烈进出视频| 亚洲欧美日韩另类电影网站| 伦精品一区二区三区| 亚洲av日韩在线播放| www.色视频.com| 久久韩国三级中文字幕| 欧美日韩亚洲高清精品| 久久久久久久久久久免费av| 国产 一区精品| 欧美性感艳星| 久久久久国产精品人妻一区二区| 国产一区有黄有色的免费视频| www.av在线官网国产| 只有这里有精品99| 最近中文字幕高清免费大全6| 日韩一区二区三区影片| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 亚洲精品久久成人aⅴ小说| 中文字幕人妻丝袜制服| av片东京热男人的天堂| 91精品国产国语对白视频| 啦啦啦啦在线视频资源| 国产在线视频一区二区| 制服丝袜香蕉在线| 亚洲精品乱久久久久久| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 少妇高潮的动态图| 视频区图区小说| 久久青草综合色| 国产亚洲一区二区精品| 欧美日本中文国产一区发布| 美女主播在线视频| 丝袜美足系列| 中文字幕亚洲精品专区| 成人免费观看视频高清| 女人精品久久久久毛片| 国语对白做爰xxxⅹ性视频网站| 亚洲国产欧美日韩在线播放| av有码第一页| 26uuu在线亚洲综合色| 免费观看性生交大片5| 成人二区视频| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 婷婷色综合www| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 少妇的丰满在线观看| 午夜91福利影院| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 日本vs欧美在线观看视频| 99久久综合免费| 久久久久久人人人人人| 夫妻性生交免费视频一级片| xxx大片免费视频| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 18禁在线无遮挡免费观看视频| 亚洲精品国产av蜜桃| 色5月婷婷丁香| 在线看a的网站| 婷婷色麻豆天堂久久| 在线看a的网站| 国产成人精品无人区| 视频在线观看一区二区三区| 看非洲黑人一级黄片| 寂寞人妻少妇视频99o| 天天操日日干夜夜撸| 我的女老师完整版在线观看| 五月天丁香电影| 久久狼人影院| 精品福利永久在线观看| 男女国产视频网站| 国产精品久久久久久久久免| 久久精品人人爽人人爽视色| 一级a做视频免费观看| 熟女人妻精品中文字幕| 99re6热这里在线精品视频| 男人操女人黄网站| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 精品人妻偷拍中文字幕| 亚洲av电影在线观看一区二区三区| 狂野欧美激情性bbbbbb| 欧美+日韩+精品| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 蜜桃国产av成人99| 日本-黄色视频高清免费观看| 国产成人精品婷婷| a 毛片基地| 少妇的逼水好多| 视频在线观看一区二区三区| 在线观看免费高清a一片| 免费黄网站久久成人精品| 90打野战视频偷拍视频| av片东京热男人的天堂| 下体分泌物呈黄色| 熟女av电影| 99国产综合亚洲精品| 日日撸夜夜添| 咕卡用的链子| 欧美 日韩 精品 国产| 青春草国产在线视频| 午夜免费观看性视频| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 久久精品久久久久久久性| 午夜福利乱码中文字幕| 亚洲精品日韩在线中文字幕| 人人澡人人妻人| 欧美 日韩 精品 国产| 免费看光身美女| 久久这里只有精品19| 侵犯人妻中文字幕一二三四区| 老熟女久久久| 满18在线观看网站| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 国产高清不卡午夜福利| 免费观看a级毛片全部| 亚洲精品av麻豆狂野| 亚洲精品一区蜜桃| 亚洲一码二码三码区别大吗| 国产精品成人在线| 国产精品女同一区二区软件| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕 | 亚洲av免费高清在线观看| 成人综合一区亚洲| 日产精品乱码卡一卡2卡三| av国产精品久久久久影院| 日韩制服丝袜自拍偷拍| 大话2 男鬼变身卡| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀 | 亚洲三级黄色毛片| 亚洲精品乱码久久久久久按摩| 在线观看国产h片| 999精品在线视频| 你懂的网址亚洲精品在线观看| 高清av免费在线| 国产精品一区www在线观看| 人妻 亚洲 视频| 国产黄色免费在线视频| 人人澡人人妻人| 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| av一本久久久久| 久久久a久久爽久久v久久| av播播在线观看一区| 最近手机中文字幕大全| 亚洲中文av在线| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 十分钟在线观看高清视频www| 建设人人有责人人尽责人人享有的| 免费观看在线日韩| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 少妇的逼好多水| av黄色大香蕉| 国产麻豆69| a级毛色黄片| 人成视频在线观看免费观看| 最后的刺客免费高清国语| 在线天堂中文资源库| 91久久精品国产一区二区三区| 日本色播在线视频| 久久精品夜色国产| 国产永久视频网站| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 亚洲国产色片| 久久99一区二区三区| 日韩免费高清中文字幕av| 国产白丝娇喘喷水9色精品| 综合色丁香网| 国产在线视频一区二区| 天美传媒精品一区二区| 亚洲精品美女久久av网站| 在线观看国产h片| 久久久精品免费免费高清| 一本色道久久久久久精品综合| 韩国精品一区二区三区 | 女的被弄到高潮叫床怎么办| 国产精品无大码| 国产精品99久久99久久久不卡 | 免费高清在线观看日韩| 丝袜美足系列| 波野结衣二区三区在线| 精品国产国语对白av| 日本黄色日本黄色录像| 日本av手机在线免费观看| 国产成人午夜福利电影在线观看| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 亚洲精品色激情综合| av在线app专区| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 伊人亚洲综合成人网| 亚洲综合精品二区| 十八禁网站网址无遮挡| 各种免费的搞黄视频| 日日啪夜夜爽| 看十八女毛片水多多多| 亚洲国产精品专区欧美| 久久精品夜色国产| 全区人妻精品视频| 日本爱情动作片www.在线观看| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 麻豆精品久久久久久蜜桃| 色网站视频免费| 91久久精品国产一区二区三区| 亚洲精品国产av蜜桃| 永久网站在线| 亚洲成人手机| 看十八女毛片水多多多| 最后的刺客免费高清国语| 国产成人精品在线电影| 嫩草影院入口| 大陆偷拍与自拍| 国产免费视频播放在线视频| 黑丝袜美女国产一区| 99久久综合免费| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 免费av不卡在线播放| 亚洲成人手机| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区三区| 精品一品国产午夜福利视频| av片东京热男人的天堂| 乱码一卡2卡4卡精品| 香蕉国产在线看| 久久久久精品性色| 最近中文字幕2019免费版| 国产激情久久老熟女| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看 | 成年人免费黄色播放视频| 亚洲av福利一区| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 成人影院久久| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 新久久久久国产一级毛片| 黑丝袜美女国产一区| 日韩大片免费观看网站| 久久午夜福利片| 国产高清三级在线| 香蕉丝袜av| 亚洲精品色激情综合| av女优亚洲男人天堂| 久久毛片免费看一区二区三区| 最新的欧美精品一区二区| 中国国产av一级| 丝袜在线中文字幕| 成人免费观看视频高清| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 欧美xxxx性猛交bbbb| 成年美女黄网站色视频大全免费| 曰老女人黄片| 亚洲第一区二区三区不卡| 日本av手机在线免费观看| 成年动漫av网址| 菩萨蛮人人尽说江南好唐韦庄| 国产精品99久久99久久久不卡 | 高清欧美精品videossex| 尾随美女入室| 七月丁香在线播放| 九色亚洲精品在线播放| 久久av网站| 午夜av观看不卡| 精品久久久精品久久久| 免费人成在线观看视频色| 交换朋友夫妻互换小说| 最近中文字幕高清免费大全6| 韩国精品一区二区三区 | 亚洲色图 男人天堂 中文字幕 | 亚洲国产精品专区欧美| www日本在线高清视频| 男女午夜视频在线观看 | 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 国产男人的电影天堂91| 久久精品夜色国产| 宅男免费午夜| 色吧在线观看| 成人无遮挡网站| 最近的中文字幕免费完整| 国产日韩欧美亚洲二区| 亚洲av欧美aⅴ国产| 在线观看国产h片| 亚洲精品一区蜜桃| 精品熟女少妇av免费看| 母亲3免费完整高清在线观看 | 99视频精品全部免费 在线| 一区二区三区四区激情视频| 精品少妇黑人巨大在线播放| 18禁在线无遮挡免费观看视频| 美女脱内裤让男人舔精品视频| 欧美国产精品va在线观看不卡| 男女啪啪激烈高潮av片| 国产一级毛片在线| 欧美精品一区二区免费开放| 在线免费观看不下载黄p国产| 免费女性裸体啪啪无遮挡网站| 一区二区三区四区激情视频| 宅男免费午夜| 久久这里只有精品19| 欧美xxxx性猛交bbbb| 久久人妻熟女aⅴ| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91成人精品电影| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 久久久久久伊人网av| 如何舔出高潮| 久久99精品国语久久久| 亚洲四区av| 美女脱内裤让男人舔精品视频| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 久久久久人妻精品一区果冻| av视频免费观看在线观看| 777米奇影视久久| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 日韩 亚洲 欧美在线| 99精国产麻豆久久婷婷| 99久久精品国产国产毛片| 少妇高潮的动态图| 一边亲一边摸免费视频| 美女中出高潮动态图| 色吧在线观看| 国产乱人偷精品视频| av福利片在线| 成年av动漫网址| 午夜av观看不卡| 国产精品国产三级国产专区5o| 亚洲第一区二区三区不卡| 一区二区三区乱码不卡18| 免费av不卡在线播放| 久久韩国三级中文字幕| 国产成人精品福利久久| 国产男女内射视频| 欧美成人午夜免费资源| 少妇的逼好多水| 午夜视频国产福利| 久久青草综合色| 久久国产精品大桥未久av| 曰老女人黄片| 国产一区二区三区av在线| 欧美成人午夜免费资源| 欧美国产精品一级二级三级| 久久久久精品人妻al黑| 又黄又粗又硬又大视频| av播播在线观看一区| 韩国精品一区二区三区 | 亚洲丝袜综合中文字幕| 9色porny在线观看| 久久国产精品大桥未久av| 51国产日韩欧美| 亚洲熟女精品中文字幕| 精品亚洲成a人片在线观看| 狂野欧美激情性xxxx在线观看| 伦理电影大哥的女人| 2021少妇久久久久久久久久久| 国产黄频视频在线观看| 国产在线一区二区三区精| 大片电影免费在线观看免费| 欧美激情国产日韩精品一区| 99久国产av精品国产电影| 亚洲精品久久久久久婷婷小说| 九九爱精品视频在线观看| 国产成人精品婷婷| 欧美激情国产日韩精品一区| 又黄又粗又硬又大视频| 国产一区二区三区av在线| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 亚洲美女视频黄频| 日韩一区二区视频免费看| 亚洲精品av麻豆狂野| 欧美精品一区二区大全| 美女视频免费永久观看网站| 精品久久蜜臀av无| 看免费成人av毛片| 午夜福利影视在线免费观看| 午夜日本视频在线| 国产亚洲精品第一综合不卡 | 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 国产精品成人在线| av黄色大香蕉| 黄片播放在线免费| 在线天堂最新版资源| 秋霞在线观看毛片| 啦啦啦视频在线资源免费观看| videosex国产| 在线免费观看不下载黄p国产| 日本vs欧美在线观看视频| 午夜免费男女啪啪视频观看| 久久精品国产综合久久久 | 免费看av在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产日韩一区二区| 欧美国产精品va在线观看不卡| 美女主播在线视频| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 天天操日日干夜夜撸| 欧美 日韩 精品 国产| 亚洲国产欧美在线一区| 伦理电影大哥的女人| 下体分泌物呈黄色| 亚洲美女视频黄频| 欧美国产精品一级二级三级| 久久久久国产网址| 免费黄色在线免费观看| 国产麻豆69| 久久av网站| 国产在视频线精品| 欧美人与性动交α欧美精品济南到 | 国产精品秋霞免费鲁丝片| 热99久久久久精品小说推荐| 好男人视频免费观看在线| 欧美日韩成人在线一区二区| 国产色爽女视频免费观看| av天堂久久9| av.在线天堂| 如何舔出高潮| 日韩av免费高清视频| 免费av不卡在线播放| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 不卡视频在线观看欧美| 国产老妇伦熟女老妇高清| 99热国产这里只有精品6| 国产不卡av网站在线观看| 好男人视频免费观看在线| 亚洲美女黄色视频免费看| 一级爰片在线观看| 日日爽夜夜爽网站| 2022亚洲国产成人精品| 日日啪夜夜爽| 最近中文字幕高清免费大全6| 男女下面插进去视频免费观看 | 日韩av免费高清视频| 精品酒店卫生间| 99热6这里只有精品| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 国产成人aa在线观看| 精品一区二区免费观看| 欧美+日韩+精品| 亚洲欧美一区二区三区国产|