• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Hadamard Gate for Open Quantum Systems by the Lyapunov Control Method

    2018-08-11 07:48:46NourallahGhaeminezhadandShuangCongSeniorMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年3期

    Nourallah Ghaeminezhad and Shuang Cong,Senior Member,IEEE

    Abstract—In this paper,the control laws based on the Lyapunov stability theorem are designed for a two-level open quantum system to prepare the Hadamard gate,which is an important basic gate for the quantum computers.First,the density matrix interested in quantum system is transferred to vector formation.Then,in order to obtain a controller with higher accuracy and faster convergence rate,a Lyapunov function based on the matrix logarithm function is designed.After that,a procedure for the controller design is derived based on the Lyapunov stability theorem.Finally,the numerical simulation experiments for an amplitude damping Markovian open quantum system are performed to prepare the desired quantum gate.The simulation results show that the preparation of Hadamard gate based on the proposed control laws can achieve the fidelity up to 0.9985 for the different coupling strengths.

    I.INTRODUCTION

    DURING recent years much work has been done to develop the quantum computers.In a quantum computer,the data is loaded as a string of quantum bits(qubits)[1].Quantum gates perform very simple operations on these qubits such as flipping their values.By combining many quantum gates,complex operations can be realized and these operations can be used to manipulate the qubits.The preparation of quantum basic gates is one of the most important research topics in quantum control field[2].The main objective is to prepare stable and high- fidelity quantum gates within a possible short time and prevent them from decoherence as long as possible[3].A quantum control process can be divided into coherent and decoherent parts,corresponding to the unitary and non-unitary operations,respectively[4],[5].Up to now,many different quantum control methods have been developed to generate higher fidelity quantum gates in a short time.One of the common methods is the quantum optimal control method,which has been extensively studied[6]?[11].Dynamical decoupling method is also an effective control way for the quantum gate preparation.In 2013,Piltz et al.protected conditional quantum gates by robust dynamical decoupling[12].In 2011,Grace et al.combined dynamical decoupling pulses with the optimal control method for improving preparation of quantum gates[13].However,in the methods mentioned above the control laws are not analytic and the designing procedure is a time-consuming task.The design of control laws based on the quantum Lyapunov method greatly simplifies the mathematic calculation and its analytical type of control laws make the control system be easily adjusted[14],[15].

    The Hadamard gate is one of the most basic and important gates in quantum computers[16].Any unitary operation can be approximated with arbitrary accuracy by means of special gates set in which the Hadamard gate must be included.Many quantum algorithms use the Hadamard transformation as the first step to initialize the state with random information.In quantum information processing,the Hadamard transformation acts as a one-qubit operator that maps the qubit basis states to different superposition states[17].

    In our previous work[18]we prepared a Not gate for one qubit open quantum system.In this paper,we will design a Lyapunov control method to prepare the Hadamard gate using unitary time-evolution operator whose dynamics are transferred to the Bloch vector space.We construct a matrix logarithm function as the Lyapunov function.The design of control laws is based on the Lyapunov stability theorem.The purpose of the control is to drive the unitary evolution operator from any initial quantum gate as close as possible to the desired quantum gate in the shortest possible time.Two performance indices of the system under environment uncertainties are analyzed by means of the simulation experiments.

    The rest of this paper is arranged as follows:in Section II,the descriptions of the control system and the model of the system are studied.In Section III,the Lyapunov function and the design of control laws are investigated.In Section IV,the Hadamard gate based on designed control laws is prepared in numerical experiments,the performances of control laws are analysed,and the comparisons with other control methods are done.Finally,the conclusion is given in Section V.

    II.DESCRIPTIONS OF THE CONTROL SYSTEM AND THE MODEL OF THESYSTEM

    For a two-level Markovian open quantum system,the dynamics of state ρtcan be described as the following Lindblad equation[17]

    where[H(t),ρt]=[H(t)·ρt?ρt·H(t)]is the commutator of H(t)and ρt[19].H(t)is the Hamiltonian of the system

    where H0is a free Hamiltonian which is a Hermitian diagonal matrix,and Hcis the control Hamiltonian of the system

    where fx(t),fy(t)and fz(t)are control fields;σk,k=x,y,z are the Pauli matrices

    In(1),L(ρt)turns out to cause decoherence of the system and is called the dissipation part which describes the correlation between the system and the environment[17],[20],[21]

    In our work,the studied model of the Markovian open quantum system is amplitude damping(AD).The related GKS matrix for the AD system is[22],[23]

    where σi?= σx?iσy,σi+= σx+iσy,and γ is the coupling strength of the system with the environment.

    The preparation of quantum gates is more comprehensible if they can be considered as a kind of operators.Under this consideration,the dynamics of the operators must be obtained.Since the density matrix dynamics of(1)is a bilinear equation with dissipation part,it is not easy to use to manipulate the gates.Fortunately for a two-level quantum system,the state of the quantum system can also be described by the state vector.

    As{I,σx,σy,σz}makes a basis for 2 × 2 Hermitian matrices,the density matrix ρtin(1)can be rewritten in Bloch vector rtas

    Moreover,the dissipation part of the AD system is[23]

    in this way ρtis represented by the vector rt=(rxt,ryt,

    We define U(t)as a unitary time-evolution operator on density matrix ρt;accordingly the time-evolution of ρtcan be written as

    According to(1),(9)and(10),we can obtain the following dynamics equation

    in which A(t)is the adjoint representation of?iH(t)in group of SO(3)which is derived from converting unitary part?i[H(t),ρt]of(1)to the Bloch vector representation and has the following form

    where Ax=andB is extracted from converting the dissipation part L(ρt)of(1)to the Bloch vector representation and can be written as

    Based on(6)and(7),for the AD system we set γxx= γyy= γ,γxy= γi,γyx= ?γi and γxz= γyz= γzx= γzy=γzz=0.In this case,one has

    From(9)and(10),the time-evolution of vector rtin the Bloch vector space can be written as

    Accordingly,based on(11)we can obtain

    Now for preparing the quantum gate,the control task becomes to design the control fields in A(t)in order to drive the initial gate towards the desired one.

    By substituting the Pauli matrices(4)into the density matrix given by(9),the relationship between ρtand rtbecomes

    where G?refers to the conjugate transpose of matrix G,and u?stands for the conjugate of element u.

    Let the final state vector be rf= (rxf,ryf,rzf)T,by comparing(17)with(18),rxf,ryfand rzfcan be obtained as

    Considering(15),(19),(20),and(21),the time-evolution operator U(t),which drives the initial vector r0to the final vector rtin the Bloch vector space,can be derived as(22)(see the bottom of this page).

    In this paper,the desired gate is a Hadamard gate GH,which is a unitary operator that implies on a single qubit,and transfers each basis stateto the superposition of both states,i.e.,it transfers the basis stateand the basis state The GHcan be written as[1]

    To obtain the Hadamard gate GHby the vector dynamics,the matrix GHwill be realized in the form of U(t)in(22)as the unitary time-evolution operator in the Bloch vector space.According toand(23),the final parameters of the Hadamard matrix in GH,i.e.,are substituted into(22);then the representation of the desired Hadamard gate in the Bloch vector space is expressed as

    III.DESIGN OF CONTROL LAWS

    In Section II,density matrix dynamics and desired quantum gate have been derived in the Bloch vector space,and we have obtained the dynamics of time-evolution operator U(t)in the same space.Now we design a proper Lyapunov function and Lyapunov-based control laws.A suitable Lyapunov function is first constructed and evaluated,then the control laws based on the Lyapunov stability theorem are designed.

    The Lyapunov stability theorem is used to determine the stability of a control system without need of solving the partial differential equations.It can also be used to design the control laws in order to obtain a stable control system.According to the Lyapunov stability theorem the dynamical system in(11),is stable if there is a scalar function V(t)that satisfies the following conditions:a)V(t)is positive semi-definite,i.e.,V(t)≥0 at any time;b)the first order time derivative of the Lyapunov function is negative semi-definite,i.e.,˙V(t)≤0 at any amount of time[17].

    The Lyapunov function V constructed in this paper is based on the matrix logarithm log(Uf?U(t))[25].Let’s define Uf?U(t)=W(t).As long as the spectral radius is less than one,the Mercator series of log(W(t))is[26]

    where I is the identity matrix.

    The first two terms of Mercator series in(25)are chosen,and the Lyapunov function in this paper is constructed by taking the square norm of two terms as

    Equation(26)asserts that,V(t0)=32 when U(t)=U0=I,and V(tf)=0 as long as U(t)=Uf.The constructed Lyapunov function satisfies V(t)≥0 at any time.

    To design the control laws,the first order time derivation of V(t)must satisfy˙V(t)≤0 at any amount of time,and˙V(t)=0 while U(t)=Uf.According to(26),˙V(t)is derived as follows:

    where the first and second terms of the trace function are the conjugate transpose of each other.Moreover,all elements of the trace function are real matrices,so the trace of these two terms are equal,and(29)can be rewritten as

    Substituting the conjugate transpose of˙U(t)in(11),i.e.,˙U?(t)=U?(t)(A(t)+B)?into(30),one has

    Substituting A(t)in(12)into(31),we can obtain

    where B is defined in(14),and fx(t),fy(t),and fz(t)are real valued functions which are pulled out from the trace function to divide(32)into 4 parts as shown in(33)

    From(33)it is obvious that,˙V(t)is composed of 4 parts with the similar structure as

    then these similar functions are defined as S(X,t)

    in which X is Ax,Ay,Azor B,in the first,second,third,or fourth term of(33)respectively.By substituting(34)into(33),we have

    while Ax,Ay,Az,and B are defined in(12)and(14),respectively.

    Now the control task becomes to design the control functions fx(t),fy(t)and fz(t),to make V(t)decrease monotonically,i.e.,˙V(t)≤0.The main idea of design is to make the control laws consist of two terms,such that the first term is used to ensure˙V(t)≤0,and the second term is used to eliminate the dissipation part caused by B.For this purpose,the control functions are designed as

    where ax,ay,az,hx,hy,and hz,are tuning weights.In(36),the terms?ajS(Aj,t),aj≥ 0,j=x,y,z,are used for preparing the operator,while for terms?hjS(B,t)/S(Aj,t),j=x,y,z,by adjusting hj,hx+hy+hz=1,the dissipation part caused by B goes to be eliminated.

    Substituting(36)into(35),one gets

    This means the control laws given by(36)can ensure≤0,so these control laws satisfy the requirements of the Lyapunov stability theorem.

    IV.SIMULATION EXPERIMENTS AND RESULT ANALYSIS

    In this section,the control laws in(36)are used to prepare the Hadamard gate for a Markovian open quantum system,i.e.,to drive the time-evolution operator U(t)from the initial identity matrix gate(38)to the desired gate(39).

    Numerical simulations are conducted to investigate the performances of control laws and the dynamical behavior of the system.We mainly study the following three points:

    1)The dynamics and characteristics of the time-evolution operator under the Lyapunov-based control are investigated.Meanwhile,the accuracy of preparation of the Hadamard gate is analyzed based on two performance indices:the fidelity F and the distance D,for different coupling strength γ.Then,the performances of control laws are investigated by the experiments.

    2)The effects of control laws on the control system performances are studied by analyzing the state-transfer from ρ0to ρf.

    3)The comparisons between different control methods are discussed.

    A.Preparation of Hadamard Gate and Analysis of the Control Performance Indices

    In this subsection,the dynamics and characteristics of the time-evolution operator U(t)under the action of the control laws are studied.The Hadamard gate for the AD Markovian open quantum system is prepared,and two control performance indices are analyzed.

    In dynamical equation˙U(t)=(A(t)+B)U(t),the four thorder Runge-Kutta method is used to obtain the time-evolution operator U(t)as

    where

    in which

    In(40),h is the sampling time.The control time is divided into 100 steps from 0 to 0.1a.u.,so h=0.001.As the steps go ahead,according to(40),the first step starts from U0,and the U(t)is updated until Ufis prepared.The control laws are used to drive U(t)from U0to Uf,in which ax=70,ay=106,and az=66 are set.At the initial time,we set the initial values of control functions as fx(0)=10.28,fy(0)=10.73,and fz(0)=40.

    The fidelity and the distance are introduced to analyse the accuracy of quantum Hadamard gate preparation.The fidelity is defined as[27]

    where N is the system dimensions and for the two-level system,N=2.As long as the operator reaches completely the desired operator,the fidelity is equal to one.

    The distance is defined as

    Accordingly,the distance gives the perception whether U(t)achieves Ufand to what extent.When U(t)reaches Ufcompletely,the distance is equal to 0.Otherwise by considering the fault tolerant quantum computation,the distance should satisfy the following performance selected in our experiment which is the distance criterion for valid operator preparations.

    As the system is an open quantum system,when the coupling strength γ increases,there is a higher coupling strength with the environment.Fig.1 shows the experimental results of the fidelity,when preparing the Hadamard gate for the AD Markovian open quantum system under designed control laws with three coupling strength γ = 0.01, γ = 0.1,and γ = 0.18,respectively.

    Fig.1.The fidelity under control laws for the AD system when γ=0.01,γ=0.1,and γ=0.18.

    One can see from Fig.1 that,when γ=0.01,at t=0.0164a.u.,the fidelity reaches 0.9985.For larger parameters γ,i.e., γ =0.1 and γ =0.18,the fidelity becomes 0.981 and 0.962,respectively.This indicates that as γ increases,the dissipation part has more effect on the system,which makes the fidelity decrease.When γ=0.1 at time 0.091a.u.,the fidelity has a fluctuation,and when γ=0.18,the fluctuations happen again with larger deviation at times 0.0447a.u.and 0.092a.u.,which are caused by the dissipation L(ρt)of the open quantum system.The designed Lyapunov control laws can guarantee the system stability,and when the dissipation makes the system deviate from the desired result,the control laws can eliminate it in a very short time.

    Fig.2 is the result of the distance when preparing the Hadamard gate for the AD Markovian open quantum system with γ =0.01, γ =0.1,and γ =0.18.For all parameters γ,at t=0.0164a.u.,the distance reaches less than 10?4,and it remains in this criterion for the rest of time.For γ=0.1,at t=0.092a.u.,the distance becomes 4× 10?3,but after a short time the controller brings it under 10?4again.When γ=0.18,at times 0.047 and 0.093a.u.,there are also some peaks that values are 3.1× 10?2and 5 ×10?3,respectively,but these fluctuations are rectified by the controller.These fluctuations are caused by the dissipation of the system coupled to environments.As the γ increases the fluctuations also increase,which are eliminated by the control laws in a very short time.

    The function of control laws consists of two parts:the first is the preparation,and the second is the preservation.During the preparation part,the desired gate is prepared,and two control performance in dices,i.e.,density and fidelity,tend to reach the minimum and maximum values,respectively.In the preservation part,the desired gate remains stable under the action of the control laws.The effects of control laws in the preservation part eliminate the dissipation of the system which emerges as the fluctuations.

    Table I is the parameters in(36)selected in experiments in order to have the maximum fidelity and the minimum distance in the shortest possible time.The control laws as the function of time with γ=0.1 are shown in Fig.3.From which one can see that at t=0.0164a.u.the control laws tend to zero,then there appear some fluctuations.This time is the preparation time and during 0≤t≤0.0164a.u.,the control laws work in the preparation part.After t=0.016a.u.and till the end of simulation time t=0.1a.u.,the control laws work in the preservation part.

    B.State-Transfer Under Designed Control Laws

    In this subsection,in order to study the relation between the density matrix and the gate,the numerical simulation of corresponding state-transfer from the arbitrary identity matrix U0to desired gate Ufis fulfilled to verify the effect of designed control laws.From(15)and(17),one can see that the density

    Fig.2.The distance under control laws for the AD system when(a)γ=0.01,(b)γ=0.1,and(c)γ=0.18.

    matrix ρtis an implicit function of U(t)by means of vector rt.

    Let the initial vector be r0=(1,0,0),which is regarded to be the superposition of basis states,i.e.,According to(15)and(24),the desired final vector,which is correlated to the state■■0〉,can be derived as

    TABLE IMINIMUM VALUES OF D AND MAXIMUM VALUES OFF

    Fig.3.Control laws as the function of the time when γ=0.1.

    To find out the corresponding density matrix,the initial vector r0=(1,0,0)and the final desired vector rf=(0,0,1)are substituted into(17),we can obtain

    Fig.4 illustrates the trajectory of the time-evolution density matrix as a function of time for the AD Markovian open quantum system under the designed control laws.

    Fig.4. State-transfer from ρ0to ρfunder control laws for the AD system when γ=0.1.

    Based on the principle of Von Neumann,the diagonal elements of a density matrix can be interpreted as the probability.The trace of a density matrix must be normalized,which means the sum of the diagonal elements of time-evolution density matrix,i.e.,ρ11+ ρ22,must be equal to one at each moment of time-evolution[28].The numerical simulation results in Fig.4 show that,at t=0.012a.u., ρ11and ρ22attain 0.999 and 0.001,respectively,whose sum is one.For the rest of simulation time,the loss of stability in Hamiltonian makes ρ11decrease and fluctuate very little away from the desired amount.Under the action of control laws,ρ11remains stable close to 1[29].When ρ11decreases a bit,the other diagonal element,i.e.,ρ22slightly increases,in which the sum of ρ11and ρ22is always equal to one.Other elements,i.e.,ρ12and ρ21attain to 4 × 10?4at t=0.012a.u..From Fig.4 one can see that,at times t=0.015a.u.and t=0.091a.u.,there are some fluctuations in the trajectories of ρ12and ρ21,which can be eliminated by the control laws designed.The numerical simulation results verify that the desired state in(47)is achieved.

    C.Comparison and Discussion

    In[30],the optimal control theory is applied to a two level open quantum system to prepare the Hadamard gate by minimizing an energy-type cost functional.25a.u.time was used and the performance of F ≈ 1?10?16was achieved for a closed-loop system.In our paper,when the experimental simulations are done in the same conditions,i.e.,γ=0,and the maximum amplitude of control laws is no larger than 2,the performance of our experimental results is F =1 at t=2.025a.u.which indicates that the control method proposed in this paper can obtain higher fidelity in a shorter time compared to that of the optimal control method in[30].

    In[18],the Lyapunov control method is used to prepare a Not gate for a two-level open quantum system.The performance of F=0.9976 at t=0.0194a.u.is obtained with γ=0.01,and the maximum amplitude of control laws is less than 400.Under the same conditions the fidelity performance in our paper is F=0.9985 at t=0.0165a.u.,which demonstrates the preparation in this paper has higher fidelity with a faster convergence rate.

    V.CONCLUSION

    This paper has prepared a Hadamard gate for the two level AD Markovian open quantum system based on the Lyapunov stability theorem.The controlled system dynamics are obtained in the Bloch vector representation.Two control performance indices,i.e,the fidelity and the distance are investigated,and numerical simulations are implemented under the MATLAB environment with different coupling strength γ.The control laws which are designed based on a novel Lyapunov function ensure high fidelity and low distance with a very short preparation time.The performances of the gate preparation and the state-transferring illustrate the effectiveness of designed control laws to eliminate the dissipation caused by coupling with environment.

    国产野战对白在线观看| 成人精品一区二区免费| 夜夜躁狠狠躁天天躁| 看片在线看免费视频| 亚洲av片天天在线观看| 精品久久久精品久久久| 老司机深夜福利视频在线观看| 国产伦一二天堂av在线观看| 搡老熟女国产l中国老女人| 免费日韩欧美在线观看| 一二三四在线观看免费中文在| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成网站在线播放欧美日韩| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 久久精品91蜜桃| 一进一出好大好爽视频| 国产色视频综合| 级片在线观看| 又紧又爽又黄一区二区| 国产高清激情床上av| 中文字幕人妻丝袜制服| 久久久久久亚洲精品国产蜜桃av| 亚洲一区中文字幕在线| 国产成人系列免费观看| 久久亚洲真实| 国产精品一区二区在线不卡| 欧美日韩黄片免| 久久天堂一区二区三区四区| 男人操女人黄网站| 99精品在免费线老司机午夜| www.自偷自拍.com| 精品国产乱码久久久久久男人| 日本wwww免费看| 一级毛片高清免费大全| 国产男靠女视频免费网站| videosex国产| 久久久精品国产亚洲av高清涩受| 高清欧美精品videossex| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区| 亚洲精品国产一区二区精华液| 欧美国产精品va在线观看不卡| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 无人区码免费观看不卡| 91在线观看av| 好男人电影高清在线观看| 欧美激情极品国产一区二区三区| 在线观看免费午夜福利视频| 国产1区2区3区精品| 午夜视频精品福利| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 无限看片的www在线观看| 国产野战对白在线观看| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区三| 久久精品成人免费网站| 久久青草综合色| 亚洲精品国产区一区二| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 久久国产精品影院| 午夜影院日韩av| 视频区欧美日本亚洲| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合久久99| a级毛片黄视频| 日韩精品免费视频一区二区三区| 日韩av在线大香蕉| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩另类电影网站| 1024香蕉在线观看| 久久性视频一级片| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播| 免费高清在线观看日韩| 欧美成人免费av一区二区三区| 女性被躁到高潮视频| 亚洲国产看品久久| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 欧美成人午夜精品| 亚洲精品国产精品久久久不卡| 日本一区二区免费在线视频| 色婷婷久久久亚洲欧美| 日本 av在线| 一边摸一边抽搐一进一小说| 国产99久久九九免费精品| 国产高清视频在线播放一区| 欧美日韩亚洲综合一区二区三区_| 首页视频小说图片口味搜索| 国产乱人伦免费视频| 80岁老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 国产又爽黄色视频| 欧美乱妇无乱码| xxxhd国产人妻xxx| 国产三级在线视频| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 夜夜看夜夜爽夜夜摸 | 国产精品 国内视频| 男女高潮啪啪啪动态图| 亚洲中文字幕日韩| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 在线观看66精品国产| 人人妻人人爽人人添夜夜欢视频| 99精品久久久久人妻精品| 一级毛片高清免费大全| 男女下面进入的视频免费午夜 | 国产av一区二区精品久久| 在线观看午夜福利视频| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 看免费av毛片| 午夜影院日韩av| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 亚洲美女黄片视频| 国产色视频综合| 热re99久久国产66热| 亚洲成人精品中文字幕电影 | 亚洲中文日韩欧美视频| 不卡一级毛片| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产亚洲精品| 午夜免费鲁丝| 国产免费男女视频| 欧美日韩亚洲高清精品| 少妇被粗大的猛进出69影院| 国产三级黄色录像| 欧美色视频一区免费| 成人18禁高潮啪啪吃奶动态图| 一本大道久久a久久精品| 97碰自拍视频| 人人妻人人爽人人添夜夜欢视频| 亚洲黑人精品在线| 亚洲成国产人片在线观看| 亚洲av成人一区二区三| 悠悠久久av| 久久中文看片网| 中国美女看黄片| 老司机福利观看| 日韩免费高清中文字幕av| 午夜视频精品福利| 欧美激情 高清一区二区三区| 日韩av在线大香蕉| 精品久久蜜臀av无| 韩国av一区二区三区四区| 丝袜在线中文字幕| 欧美午夜高清在线| 亚洲aⅴ乱码一区二区在线播放 | www.精华液| 亚洲专区字幕在线| 欧美一区二区精品小视频在线| 国产精品免费一区二区三区在线| 日本免费a在线| 久久这里只有精品19| 9色porny在线观看| 亚洲五月色婷婷综合| 一a级毛片在线观看| 国产av精品麻豆| 久99久视频精品免费| 最新美女视频免费是黄的| 久热爱精品视频在线9| 国产精品影院久久| 亚洲av成人av| 91国产中文字幕| 亚洲在线自拍视频| 黑人巨大精品欧美一区二区mp4| 国产一区在线观看成人免费| 90打野战视频偷拍视频| tocl精华| 国产av一区在线观看免费| 日韩国内少妇激情av| 国产av在哪里看| 一二三四社区在线视频社区8| 又大又爽又粗| 高清av免费在线| 成人永久免费在线观看视频| 韩国精品一区二区三区| 成人免费观看视频高清| 亚洲五月婷婷丁香| 精品欧美一区二区三区在线| 午夜福利影视在线免费观看| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 母亲3免费完整高清在线观看| 欧美丝袜亚洲另类 | 波多野结衣av一区二区av| 啦啦啦 在线观看视频| 一区二区三区精品91| 国产激情久久老熟女| 欧美精品啪啪一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费在线观看的高清视频| 一区在线观看完整版| 国产精品一区二区在线不卡| 国产乱人伦免费视频| 国产一区在线观看成人免费| 大陆偷拍与自拍| 日本wwww免费看| 成人精品一区二区免费| 午夜视频精品福利| 国产黄a三级三级三级人| 黄片大片在线免费观看| 久久午夜综合久久蜜桃| 九色亚洲精品在线播放| 国产xxxxx性猛交| 精品国产乱码久久久久久男人| 黄色片一级片一级黄色片| 黄色怎么调成土黄色| 亚洲精品在线美女| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 成人影院久久| 久久国产精品影院| 国产av一区二区精品久久| 亚洲黑人精品在线| 免费久久久久久久精品成人欧美视频| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 久久人妻熟女aⅴ| 欧美中文日本在线观看视频| 国产精品野战在线观看 | 成人黄色视频免费在线看| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼 | 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 91精品三级在线观看| 在线观看午夜福利视频| 亚洲情色 制服丝袜| 制服人妻中文乱码| 精品国产亚洲在线| 久久久水蜜桃国产精品网| 欧美精品一区二区免费开放| 啦啦啦在线免费观看视频4| ponron亚洲| 欧美激情极品国产一区二区三区| 日韩有码中文字幕| 麻豆一二三区av精品| 嫩草影视91久久| 一夜夜www| 国产精品永久免费网站| 亚洲精品在线美女| 91成年电影在线观看| 日本vs欧美在线观看视频| 亚洲自偷自拍图片 自拍| 午夜福利欧美成人| 亚洲欧美一区二区三区黑人| 一级片'在线观看视频| 9热在线视频观看99| avwww免费| 18美女黄网站色大片免费观看| 黑人猛操日本美女一级片| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 国产精华一区二区三区| 人人澡人人妻人| 丰满饥渴人妻一区二区三| 久久久水蜜桃国产精品网| 麻豆国产av国片精品| 久久 成人 亚洲| 午夜免费成人在线视频| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区四区第35| 大型av网站在线播放| 高清在线国产一区| 激情视频va一区二区三区| 国产精品一区二区三区四区久久 | 一级a爱视频在线免费观看| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片 | 丁香欧美五月| 99精国产麻豆久久婷婷| 国产成人欧美在线观看| 欧美精品亚洲一区二区| 1024香蕉在线观看| 波多野结衣一区麻豆| 怎么达到女性高潮| 老熟妇仑乱视频hdxx| 久久精品人人爽人人爽视色| 亚洲成国产人片在线观看| 777久久人妻少妇嫩草av网站| 80岁老熟妇乱子伦牲交| 男人的好看免费观看在线视频 | 水蜜桃什么品种好| 午夜福利,免费看| 久99久视频精品免费| 超碰成人久久| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 看免费av毛片| 18禁观看日本| 欧美激情高清一区二区三区| 免费久久久久久久精品成人欧美视频| 精品国产亚洲在线| 久久久国产精品麻豆| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女 | 天堂√8在线中文| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| av视频免费观看在线观看| 成年人黄色毛片网站| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 夫妻午夜视频| 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9| 色老头精品视频在线观看| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 亚洲午夜理论影院| av在线播放免费不卡| 99riav亚洲国产免费| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 青草久久国产| 91在线观看av| 国产高清激情床上av| 中文欧美无线码| 午夜91福利影院| 久久天堂一区二区三区四区| 久久久精品国产亚洲av高清涩受| 色婷婷久久久亚洲欧美| 午夜福利,免费看| 日韩有码中文字幕| 岛国在线观看网站| 十八禁网站免费在线| 女人被狂操c到高潮| 侵犯人妻中文字幕一二三四区| 国产黄a三级三级三级人| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 国产精品日韩av在线免费观看 | 91麻豆av在线| 麻豆久久精品国产亚洲av | 好看av亚洲va欧美ⅴa在| 黄色女人牲交| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频| 亚洲中文字幕日韩| 天天添夜夜摸| 午夜成年电影在线免费观看| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站 | 国产成人系列免费观看| 在线观看免费日韩欧美大片| 在线观看舔阴道视频| 国产成人系列免费观看| 精品久久久久久久毛片微露脸| 色婷婷av一区二区三区视频| av免费在线观看网站| 99国产精品免费福利视频| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 色哟哟哟哟哟哟| 亚洲一码二码三码区别大吗| 国产99久久九九免费精品| 在线观看免费视频网站a站| 免费在线观看黄色视频的| www日本在线高清视频| 十八禁网站免费在线| 狂野欧美激情性xxxx| 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 久久精品亚洲熟妇少妇任你| 岛国视频午夜一区免费看| 久久久久久亚洲精品国产蜜桃av| 中文亚洲av片在线观看爽| 国产有黄有色有爽视频| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美精品永久| 成人av一区二区三区在线看| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| av视频免费观看在线观看| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av高清一级| 可以在线观看毛片的网站| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 丝袜在线中文字幕| 母亲3免费完整高清在线观看| 国产亚洲精品综合一区在线观看 | 亚洲人成77777在线视频| 国产在线精品亚洲第一网站| 久久国产精品男人的天堂亚洲| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 国内毛片毛片毛片毛片毛片| 我的亚洲天堂| 久久精品国产亚洲av香蕉五月| 操美女的视频在线观看| 在线观看www视频免费| 欧美成人性av电影在线观看| 男男h啪啪无遮挡| 99热只有精品国产| 熟女少妇亚洲综合色aaa.| 伊人久久大香线蕉亚洲五| 久久精品成人免费网站| 国产成+人综合+亚洲专区| av有码第一页| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 真人一进一出gif抽搐免费| 亚洲精品成人av观看孕妇| 久久久久久久精品吃奶| 精品久久久精品久久久| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 国产xxxxx性猛交| 女警被强在线播放| 亚洲成人免费电影在线观看| 久久天堂一区二区三区四区| av有码第一页| 制服人妻中文乱码| 久久亚洲精品不卡| 性少妇av在线| ponron亚洲| 欧美乱妇无乱码| 成年版毛片免费区| 黑丝袜美女国产一区| 国产精品电影一区二区三区| 免费av毛片视频| 婷婷丁香在线五月| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 亚洲三区欧美一区| 午夜福利在线观看吧| 一边摸一边抽搐一进一出视频| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 久久久久亚洲av毛片大全| 真人一进一出gif抽搐免费| 九色亚洲精品在线播放| 国产伦人伦偷精品视频| 国产成人精品久久二区二区免费| 国产精品二区激情视频| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 十分钟在线观看高清视频www| 国产精品影院久久| 一进一出抽搐动态| 一进一出抽搐gif免费好疼 | 水蜜桃什么品种好| 天堂中文最新版在线下载| 黑人操中国人逼视频| 视频区欧美日本亚洲| 看免费av毛片| 99热只有精品国产| 亚洲精品国产色婷婷电影| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| 国产又爽黄色视频| 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 国产精品成人在线| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 欧美性长视频在线观看| 日韩视频一区二区在线观看| 色播在线永久视频| 国产三级黄色录像| 黄色毛片三级朝国网站| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 国产成年人精品一区二区 | av欧美777| 精品日产1卡2卡| 日韩精品免费视频一区二区三区| tocl精华| 国产精品98久久久久久宅男小说| 欧美成人性av电影在线观看| 国产亚洲精品一区二区www| 黄色视频不卡| 国产精品久久电影中文字幕| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区| 亚洲精品国产精品久久久不卡| 国产av一区在线观看免费| 亚洲第一av免费看| 国产麻豆69| 国产视频一区二区在线看| 亚洲av电影在线进入| 久久青草综合色| 18禁国产床啪视频网站| 精品久久久久久成人av| 亚洲全国av大片| 桃红色精品国产亚洲av| 757午夜福利合集在线观看| 久久久精品欧美日韩精品| 亚洲精品久久午夜乱码| 亚洲激情在线av| 免费久久久久久久精品成人欧美视频| 涩涩av久久男人的天堂| 日本撒尿小便嘘嘘汇集6| 乱人伦中国视频| 女人被狂操c到高潮| 色在线成人网| 精品日产1卡2卡| 国产真人三级小视频在线观看| 久久久国产成人精品二区 | 99精品久久久久人妻精品| 日韩免费av在线播放| 99久久国产精品久久久| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| 亚洲第一欧美日韩一区二区三区| 久久国产精品男人的天堂亚洲| 精品午夜福利视频在线观看一区| 在线观看一区二区三区激情| 女人被狂操c到高潮| 亚洲欧美日韩无卡精品| 少妇的丰满在线观看| 啦啦啦免费观看视频1| 久久久国产一区二区| 国产免费av片在线观看野外av| 正在播放国产对白刺激| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 黄片小视频在线播放| 黑人欧美特级aaaaaa片| 国产精品一区二区三区四区久久 | 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色 | 五月开心婷婷网| 在线国产一区二区在线| av在线天堂中文字幕 | 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色 | 国产精品永久免费网站| 1024香蕉在线观看| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 久久久久久久久中文| 精品国产乱码久久久久久男人| 欧美国产精品va在线观看不卡| 在线看a的网站| 777久久人妻少妇嫩草av网站| 大型av网站在线播放| 久久国产精品影院| 久久性视频一级片| 不卡一级毛片| 亚洲人成电影免费在线| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| av在线播放免费不卡| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 淫妇啪啪啪对白视频| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区三区四区第35| √禁漫天堂资源中文www| a级片在线免费高清观看视频| 人妻丰满熟妇av一区二区三区| 国产午夜精品久久久久久| 午夜91福利影院| 啪啪无遮挡十八禁网站| 精品国产超薄肉色丝袜足j| 一进一出抽搐动态| 亚洲欧美日韩无卡精品| 多毛熟女@视频| 亚洲av美国av| 淫妇啪啪啪对白视频| 黑丝袜美女国产一区| 一级a爱视频在线免费观看| 日韩高清综合在线| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 99re在线观看精品视频| 久久人妻av系列| 亚洲精品国产精品久久久不卡| 欧美乱码精品一区二区三区| 男女下面插进去视频免费观看| 黄网站色视频无遮挡免费观看|