• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Refined Jensen-Based Multiple Integral Inequality and Its Application to Stability of Time-Delay Systems

    2018-08-11 07:48:52JidongWangZhanshanWangSeniorMemberIEEESanboDingandHuaguangZhangFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年3期

    Jidong Wang,Zhanshan Wang,Senior Member,IEEE,Sanbo Ding,and Huaguang Zhang,Fellow,IEEE

    Abstract—This paper investigates the stability of time-delay systems via a multiple integral approach.Based on the refined Jensen-based inequality,a novel multiple integral inequality is proposed.Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF)with multiple integral terms,a novel stability condition is formulated for the linear time-delay systems.Two numerical examples are employed to demonstrate the improvements of our results.

    I.INTRODUCTION

    TIME-DELAY is inevitably encountered in practical systems including inferred grinding models,automatic control systems and so on[1]?[7].It may degrade the system performance or destabilize the systems under consideration.Therefore,the stability analysis of time-delay systems has received an increasing interest[8]?[13].

    Lyapunov stability theory is a favorable tool to study the stability of time-delay systems.Not only the choice of the Lyapunov-Krasovskii functional(LKF)but also the estimation of the derivative of LKF shows their comprehensive influence on the stability criteria[14]?[18].Very recently,many powerful inequalities have been proposed,and their applications to stability[19]?[22]have shown an impressive improvement,such as the Wirtinger-based integral inequality[23],free-matrix-based integral inequality[24],refined Jensen based inequality[25],and Bessel-Legendre inequality[26].It is noteworthy that almost all of the mentioned inequalities deal with only a single integral termuT(s)Qu(s)ds(u is the state vector or the derivative of state vector).

    It is well-known that the choice of the LKF plays a crucial role in deriving less conservative stability criteria.Up to now,two classes of LKFs are usually considered to study the stability analysis of time-delay systems:the augmented LKF and the delay-partitioning-based LKF.A common feature of the two classes of LKFs is that they include several double or triple integral terms.Looking at the literatures on the subject[27]?[29],one can find that the stability criteria derived by choosing triple integral forms of LKF are universally superior to those derived by choosing double integral forms of LKF.This phenomenon seems to reveal an interesting law:increasing the multiplicity of the integral terms in LKF helps to yield less conservative stability results.In fact,this law has been shown in[30]?[33]where the multiple integralhas been taken as an element of LKF.Specially,in[32],this law has been theoretically proved by using matrix analytical technique.However,in[9],[30]?[32],the derivative of LKF is manipulated by the free-weighting matrix technique,Jensenor Wirtinger-based multiple integral inequality,respectively,which leaves much room for improvement.With this observation,one of the goals of the present brief is then to develop a new multiple integral inequality.Whereafter,it is employed to develop an improved stability criterion of time-delay systems.

    In this paper,we are further concerned with the stability analysis of time-delay systems via the multiple integral approach.Firstly,a novel multiple integral inequality,named refined Jensen-based multiple integral inequality(RJMII),is proposed.We show that the proposed inequality encompasses some existing ones.To proceed with,the inequality is applied to estimate the derivative of LKF with multiple integral terms,a new delay-dependent sufficient condition is then formulated to warrant that the considered time-delay system is globally asymptotically stable.Finally,our result is verified by two comparison examples.

    Throughout this paper,Rndenotes the n-dimensional Euclidean space,Rn×mis the set of all n × m real matrices.For real symmetric matrix X,X>0(X≥0)means that X is positive definite(respectively,semidefinite).Indenotes a n-dimensional identity matrix.0n×mdenotes a n × mdimensional zero matrix.The superscripts “?1”and “T”represent the inverse and transpose of a matrix,respectively.“?”is used to denote a matrix that can be inferred by symmetry.“?”stands for the Kronecker product.

    II.REFINED JENSEN-BASED MULTIPLEINTEGRAL INEQUALITY

    In this section,we present the RJMII based on the refined Jensen-based inequality in[25].

    Lemma 1(Refined Jensen-Based Inequality[25]):For any positive definite symmetric matrix M ∈Rn×n,and continuous vector function x:[a,b]→Rn,the following inequality holds

    Based on Lemma 1,we can obtain the following lemma.

    Lemma 2(RJMII): For any positive definite symmetric matrix M ∈ Rn×n,non-negative integer r,and continuous vector function x:[a,b]→Rn,the following inequality holds for a ≤ θ1≤ θ2≤ ···≤ θr≤ b:

    Proof:Based on Lemma 1 with the facts

    the following inequality holds for any a<θr<b:

    We can verify that ?(θr)is invertible since matrix M is positive definite.Thus,by Schur complement[34],(5)is equivalent to the following inequality:

    We can obtain from(6)that

    By Schur complement[34],one has from(7)that

    where

    Rearranging(8)yields(2).

    Remark 1:By the refined Jensen-based inequality(i.e.,Lemma 1),several stability criteria for linear time-delay systems have been developed in[25].Since the refined Jensen based inequality is superior to the Jensen-and Writinger-based inequalities,the approach in[25]leads to improved conditions in comparison to some existing results,such as the results in[23],[24],[27].However,this inequality is merely applied to the LKF with double integral terms.In Lemma 2,the refined Jensen-based inequality has been extended to the multiple integral version which can be utilized to estimate the derivative of LKF with multiple integral terms.Particularly,we can verify that the RJMII(2)includes the refined Jensen-based inequality(1)as a special case with r=0.

    Remark 2:If the last two terms in(2)are removed,Lemma 2 is reduced to Lemma 1 in[30],i.e.,the Jensen-based multiple integral inequality.Clearly,Lemma 2 offers a more precise lower bound for the integral term on the left of inequality(2)than the Lemma 1 in[30]since χTaMχa> 0,χTbMχb> 0 for χa/=0,χb/=0.Similarly,one can verify that Lemma 2 is also an improvement of the Lemma 1 in[31],i.e.,the Wirtinger-based multiple integral inequality.

    It is well-known that the LKF usually takes into account the integral quadratic terms of variable˙x(·).Thus,by the factx[r?1],we present the following lemma which is also an instrumental tool in the derivation of stability criterion.

    Lemma 3:For any positive definite symmetric matrix M ∈ Rn×n,non-negative integer r,and differentiable vector function x:[a,b]→Rn,the following inequality holds for a ≤ θ1≤ θ2≤ ···≤ θr≤ b:

    III.MAIN RESULT

    Applying the RJMII,this section presents a novel delaydependent stability criterion for the following linear time-delay systems:

    where x(t)∈Rnis the state vector,A,Ad,and AD∈Rn×nare constant matrices;φ(t)is the initial condition defined over[?τ,0],and the delay τ> 0 is a constant.

    Theorem 1:For a given positive integer m and a scalar τ>0,the system(10)is asymptotically stable,if there exist symmetric matrix Pm∈ R(m+2)n×(m+2)n,positive definite symmetric matrices Qi∈ Rn×n(i=0,1,...,m ? 1)and Rj∈ Rn×n(j=1,2,...,m)such that the following linear matrix inequalities(LMIs)hold:

    Proof:For simplifying the expression of the proof,we first define the following variables:

    Let us consider the following LKF candidate with multiple integral terms:

    Because Qi>0(i=0,1,...,m?1),Lemma 3 ensures the following inequalities hold:

    According to(14)and(15),it can be verified that V1(t)+V2(t)≥ XT(t)ΓX(t).Then,from(11),the positive definiteness of V(t)is ensured.

    Calculating the derivative of V1(t)along the solution of(10),it yields

    Based on Lemma 2 and Lemma 3,the estimations of the derivative of V2(t)and V3(t)are shown at the bottom of this page,respectively.

    Obviously,we have from(16)?(18)((17)and(18)are shown at the bottom of this page)that˙V(t)≤ηTΞη(t).Then,based on Lyapunov stability theory,if(12)is satisfied for the given integer m and τ> 0,the system(10)is asymptotically stable. ■

    Remark 3:By using the RJMII to estimate the derivative of LKF(13),a novel stability criterion has been shown in Theorem 1.An inevitable problem is that a larger m results in more decision variables in the stability conditions.While the research of LMI-based optimization is a very active area in the applied mathematics,optimization and the operations research communities,the calculating speed of computer is also increasing rapidly,thus calculation of complex LMIs is becoming more and more simple.Then,the verification of the LMIs is not a trouble.It is also a typical tradeoff between better stability criteria and computational complexity.On the other hand,one can see that the larger m uses more information of system(10).It is thus expected that better results can be provided by our approach.

    Remark 4:By constructing an augmented LKF with multiple integral terms and establishing a multiple integral inequality to estimate the derivative of LKF,a stability criterion is derived in[30].When the same m is chosen,Theorem 1 in the present brief,compared with the stability conditions in[30],has three conspicuous advantages:

    1)The preferable inequalities(2)and(9)are employed to bound the multiple integral terms in the derivative of LKF,which helps us to obtain less conservative result than the one in[30].

    2)The Lyapunov matrix Pmin[30]is strictly assumed to be positive definite symmetric,while it is only required to be symmetric in Theorem 1,and the positive definiteness of LKF(13)is ensured by condition(11).

    3)The number of decision variables of the stability conditions in Theorem 1 is also less than that in[30](see the example in next section for details).

    Remark 5:When m=1,the chosen LKF(13)is reduced to the used versions in[7],[25]:

    Remark 6:The multiple integral approach and delay partitioning approach are two completely different ways on the stability analysis of delayed systems.The distance between them is much large:

    1)The partitioning approach divides the integral interval[t?τ,t]into[t?ρ1τ,t?ρ2τ],[t?ρ2τ,t?ρ3τ],...,[t?ρjτ,t](0 < ρ1< ρ2< ···< ρj< 1).For each subinterval,there is a corresponding integral term in LKF.While,when using the multiple integral approach,the integral interval is always fixed[t? τ,t]for each integral term in LKF.

    2)The delay partitioning approach reduces the conservatism of stability criteria by increasing the partitions of interval[t? τ,t].However,the multiple integral approach achieves its purpose by increasing the multiplicity of the integral terms in LKF.

    3)When using the delay partitioning approach,one usually chooses the LKF with double or triple integral terms.But the multiple integral approach focuses on the LKF with arbitrary multiple integral terms.

    In Theorem 1,the Lyapunov matrix Pmis merely assumed to satisfy condition(11)rather than to be positive definite symmetric.This technique provides more freedom for the choice of Lyapunov matrices and helps to reduce the conservatism of the stability criterion.To verify its merit by numerical examples,a criterion without such technique is provided as follows.

    Corollary 1:For a given positive integer m and a scalar τ>0,the system(10)is asymptotically stable,if there exist positive definite symmetric matrices Pm∈ R(m+2)n×(m+2)n,Qi∈ Rn×n(i= 0,1,...,m ? 1),and Rj∈ Rn×n(j=1,2,...,m)such that the LMI(12)holds.

    IV.NUMERICAL EXAMPLES

    In this section,we check our results by providing two time delay systems(10)which are listed in Table I.By verifying Theorem 1,we obtain Table II which displays the maximal allowable delays or delay ranges for the systems listed in Table I.From Table II,we can clearly see that Theorem 1 is superior to most of the existing results in terms of conservatism.For example,our results are superior to the result in[12]where the delay N-decomposition method is proposed.If the same integer m is chosen,our results are also better than those in[30].One of the main reasons lies in the use of RJMII.Moreover,we can also find that Theorem 1 provides more precise delay ranges than Corollary 1.Take System 2 for an example,Corollary 1 with m=8 reports that the maximal allowable delay of System 2 is 6.1690.but it is estimated as 6.1702 by Theorem 1.This means that the condition(11)is helpful to yield less conservative results.

    TABLE IUSED SYSTEMS FOR COMPARISON

    On the other hand,we can see from Table II that the results in the cases of m=l are better than those in the cases of m=l?1,l=9,10,...,13,and as m increases,the results approach to the analytical delay limit for stability.The numerical experiments verify our theoretical results.

    V.CONCLUSION

    Based on the refined Jensen integral inequality in[25],this brief has established a multiple integral inequality which was named RJMII.It is shown that the proposed RJMII improves some existing results,such as the Jensen-and Wirtinger-based multiple integral inequalities.The RJMII has been applied to the stability analysis of linear time-delay systems,and the associated stability criterion has been presented.By employing two typical numerical experiments,the effectiveness of our theoretical results has been fully demonstrated.

    TABLE IIMAXIMAL ALLOWABLE DELAYS OR DELAY RANGES FOR EACH SYSTEM LISTED IN TABLE I

    精品人妻熟女av久视频| 国国产精品蜜臀av免费| www日本黄色视频网| 日韩欧美 国产精品| 男人舔女人下体高潮全视频| av在线天堂中文字幕| 国产真实乱freesex| 丝袜喷水一区| 女同久久另类99精品国产91| 99久久中文字幕三级久久日本| 亚洲aⅴ乱码一区二区在线播放| 精品无人区乱码1区二区| 美女被艹到高潮喷水动态| 小说图片视频综合网站| 美女黄网站色视频| 精品久久久久久久久av| 少妇裸体淫交视频免费看高清| 欧美zozozo另类| 日本黄色片子视频| 国产探花在线观看一区二区| 国产精品一区二区三区四区免费观看| 欧美一区二区精品小视频在线| 免费观看a级毛片全部| 欧美精品国产亚洲| 69av精品久久久久久| 男人的好看免费观看在线视频| 三级毛片av免费| 久久久a久久爽久久v久久| 亚洲,欧美,日韩| 男女边吃奶边做爰视频| 婷婷六月久久综合丁香| 精品午夜福利在线看| 国产av不卡久久| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 精品欧美国产一区二区三| 美女高潮的动态| 亚洲欧美日韩高清在线视频| 亚洲av二区三区四区| 亚洲av中文av极速乱| 丰满人妻一区二区三区视频av| 99九九线精品视频在线观看视频| 插阴视频在线观看视频| 男人狂女人下面高潮的视频| 老女人水多毛片| 国产精品不卡视频一区二区| 国产精品不卡视频一区二区| 国语自产精品视频在线第100页| 两个人的视频大全免费| 亚洲欧美日韩无卡精品| av免费在线看不卡| 午夜免费激情av| 国产亚洲av片在线观看秒播厂 | 久久久久免费精品人妻一区二区| 不卡一级毛片| 国产精品久久久久久精品电影| 国产女主播在线喷水免费视频网站 | 久久国内精品自在自线图片| 乱系列少妇在线播放| 中出人妻视频一区二区| 亚洲在线自拍视频| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| 日韩欧美 国产精品| 色哟哟·www| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 在线天堂最新版资源| 高清日韩中文字幕在线| 久99久视频精品免费| 国产激情偷乱视频一区二区| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 99久国产av精品| 国内精品一区二区在线观看| eeuss影院久久| 久久韩国三级中文字幕| 国产日韩欧美在线精品| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 性欧美人与动物交配| av在线亚洲专区| 91av网一区二区| а√天堂www在线а√下载| 老司机福利观看| 国产毛片a区久久久久| 亚洲欧美成人综合另类久久久 | 亚洲第一电影网av| 国产免费一级a男人的天堂| 有码 亚洲区| 中文字幕精品亚洲无线码一区| 国产在线男女| avwww免费| videossex国产| 最近最新中文字幕大全电影3| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 乱系列少妇在线播放| 国产色爽女视频免费观看| 国产午夜精品一二区理论片| 岛国毛片在线播放| av国产免费在线观看| 免费大片18禁| 校园人妻丝袜中文字幕| 高清毛片免费看| 熟女电影av网| 超碰av人人做人人爽久久| 91精品国产九色| 免费av不卡在线播放| 日韩欧美三级三区| 久久久国产成人精品二区| 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 国产熟女欧美一区二区| 国产黄片视频在线免费观看| 一级毛片久久久久久久久女| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 天堂av国产一区二区熟女人妻| 亚洲成人av在线免费| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 99久久无色码亚洲精品果冻| 久久99热6这里只有精品| 啦啦啦韩国在线观看视频| 在线a可以看的网站| 亚洲自拍偷在线| 亚洲国产欧美人成| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址| 国产三级在线视频| 禁无遮挡网站| 久久精品国产亚洲av涩爱 | 亚洲欧美精品综合久久99| 夫妻性生交免费视频一级片| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 免费大片18禁| 高清在线视频一区二区三区 | 精品人妻视频免费看| 美女内射精品一级片tv| 99久久精品一区二区三区| 日本与韩国留学比较| 白带黄色成豆腐渣| 国产精品人妻久久久影院| 一进一出抽搐动态| 免费av不卡在线播放| 亚洲精品色激情综合| 麻豆国产av国片精品| 日日摸夜夜添夜夜添av毛片| 99久久中文字幕三级久久日本| 精品人妻熟女av久视频| 少妇熟女aⅴ在线视频| eeuss影院久久| 亚洲最大成人手机在线| 久久久久免费精品人妻一区二区| 国产精品人妻久久久影院| 欧美色欧美亚洲另类二区| 欧美激情久久久久久爽电影| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 三级国产精品欧美在线观看| 久久6这里有精品| 亚洲av成人精品一区久久| 只有这里有精品99| 午夜精品在线福利| 黄色一级大片看看| 深夜精品福利| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 舔av片在线| 国产久久久一区二区三区| 欧美精品一区二区大全| av卡一久久| av专区在线播放| 精华霜和精华液先用哪个| 一本久久中文字幕| 黄色一级大片看看| 舔av片在线| 午夜久久久久精精品| 国产成人精品久久久久久| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 非洲黑人性xxxx精品又粗又长| 国产 一区 欧美 日韩| 日韩一本色道免费dvd| 丝袜美腿在线中文| 亚洲三级黄色毛片| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 看片在线看免费视频| 亚洲真实伦在线观看| 免费人成视频x8x8入口观看| 联通29元200g的流量卡| 丰满的人妻完整版| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线播放欧美日韩| 色哟哟·www| 好男人在线观看高清免费视频| 尾随美女入室| 人人妻人人澡欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 亚洲综合色惰| 国产69精品久久久久777片| 欧美最新免费一区二区三区| 哪里可以看免费的av片| 亚洲婷婷狠狠爱综合网| 人妻久久中文字幕网| 国产免费一级a男人的天堂| 成人午夜高清在线视频| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 亚洲成a人片在线一区二区| 女同久久另类99精品国产91| 一区二区三区四区激情视频 | 日本爱情动作片www.在线观看| 国产成人a区在线观看| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 欧美人与善性xxx| 免费电影在线观看免费观看| 欧美极品一区二区三区四区| 亚洲欧美精品专区久久| 在线免费观看不下载黄p国产| 免费无遮挡裸体视频| 又粗又硬又长又爽又黄的视频 | 久久久欧美国产精品| av天堂在线播放| 美女xxoo啪啪120秒动态图| 婷婷色av中文字幕| 久久久久久久久久成人| 亚洲欧美日韩无卡精品| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 国产精品麻豆人妻色哟哟久久 | 日韩av不卡免费在线播放| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 有码 亚洲区| 在线播放国产精品三级| 少妇被粗大猛烈的视频| 麻豆av噜噜一区二区三区| 日本-黄色视频高清免费观看| 亚洲av第一区精品v没综合| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 乱码一卡2卡4卡精品| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 小说图片视频综合网站| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验 | 免费av观看视频| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 精品人妻视频免费看| 可以在线观看的亚洲视频| 欧美区成人在线视频| 一个人免费在线观看电影| 成人一区二区视频在线观看| 亚洲av免费在线观看| 校园春色视频在线观看| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 尾随美女入室| 九九热线精品视视频播放| 中文字幕人妻熟人妻熟丝袜美| 精品人妻视频免费看| 热99re8久久精品国产| 精品熟女少妇av免费看| 一级毛片我不卡| 亚洲欧美日韩东京热| 嫩草影院精品99| 国产色婷婷99| 亚洲18禁久久av| 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 狂野欧美白嫩少妇大欣赏| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 欧美激情久久久久久爽电影| 乱人视频在线观看| 中文字幕av在线有码专区| 亚州av有码| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频| 国产精品蜜桃在线观看| 国产极品天堂在线| 久久精品国产亚洲网站| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 九九在线视频观看精品| 精品久久久精品久久久| 国产av码专区亚洲av| 日日摸夜夜添夜夜爱| 麻豆成人av视频| 伦理电影免费视频| 少妇的逼水好多| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产毛片av蜜桃av| 大码成人一级视频| videos熟女内射| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 另类精品久久| 如日韩欧美国产精品一区二区三区 | 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 亚洲美女搞黄在线观看| 成人国产麻豆网| 欧美成人精品欧美一级黄| 街头女战士在线观看网站| 国产精品99久久99久久久不卡 | 婷婷成人精品国产| 国产精品一国产av| 日韩免费高清中文字幕av| 日韩一区二区视频免费看| 国产一区二区三区av在线| 中文字幕av电影在线播放| 国产色婷婷99| 国产精品成人在线| 99九九在线精品视频| 精品人妻在线不人妻| av免费观看日本| 一本一本综合久久| 国产成人freesex在线| 亚洲综合色网址| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 91久久精品国产一区二区三区| 自线自在国产av| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 黄色欧美视频在线观看| 国产熟女午夜一区二区三区 | 精品国产一区二区三区久久久樱花| 黑人猛操日本美女一级片| 国产爽快片一区二区三区| 永久免费av网站大全| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄| 建设人人有责人人尽责人人享有的| 这个男人来自地球电影免费观看 | 少妇被粗大猛烈的视频| 国产精品蜜桃在线观看| 亚洲欧洲国产日韩| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 国产色爽女视频免费观看| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 97超视频在线观看视频| 欧美97在线视频| 高清av免费在线| 日韩一区二区视频免费看| 亚洲欧洲日产国产| kizo精华| 黄色怎么调成土黄色| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 女人久久www免费人成看片| 国产成人免费无遮挡视频| 久久精品人人爽人人爽视色| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看| 美女cb高潮喷水在线观看| 日本免费在线观看一区| 亚洲国产色片| 亚洲av国产av综合av卡| 妹子高潮喷水视频| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 视频区图区小说| 99热这里只有是精品在线观看| 岛国毛片在线播放| 国产乱来视频区| 夜夜看夜夜爽夜夜摸| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 我的女老师完整版在线观看| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 国产高清有码在线观看视频| 久热这里只有精品99| 精品久久久久久久久av| 日韩电影二区| 亚洲综合色网址| 成人综合一区亚洲| 成人国语在线视频| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| 精品99又大又爽又粗少妇毛片| 男人操女人黄网站| 99热这里只有是精品在线观看| 18在线观看网站| 亚洲欧美日韩另类电影网站| 伊人亚洲综合成人网| 国产精品一区www在线观看| 午夜福利网站1000一区二区三区| 亚洲精品日本国产第一区| 在线看a的网站| 五月天丁香电影| 永久免费av网站大全| av女优亚洲男人天堂| 欧美精品一区二区大全| 国产精品一区www在线观看| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 91精品国产国语对白视频| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 国产成人aa在线观看| videosex国产| 黑人欧美特级aaaaaa片| 国产午夜精品一二区理论片| 人人妻人人澡人人爽人人夜夜| 日本猛色少妇xxxxx猛交久久| 少妇精品久久久久久久| 美女国产视频在线观看| 丰满饥渴人妻一区二区三| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 亚洲第一区二区三区不卡| av国产久精品久网站免费入址| 久久久久久久久久成人| 大片免费播放器 马上看| 精品熟女少妇av免费看| 99热全是精品| 少妇人妻 视频| 乱码一卡2卡4卡精品| 国产精品免费大片| 高清视频免费观看一区二区| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| a级毛片黄视频| 免费高清在线观看视频在线观看| 中文字幕免费在线视频6| 日本vs欧美在线观看视频| 大又大粗又爽又黄少妇毛片口| 久久影院123| 伦理电影大哥的女人| 欧美 亚洲 国产 日韩一| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 国产免费一区二区三区四区乱码| 成人毛片60女人毛片免费| 国产成人aa在线观看| 亚洲色图 男人天堂 中文字幕 | 午夜精品国产一区二区电影| 大码成人一级视频| 人妻一区二区av| 热re99久久国产66热| 在线看a的网站| 国产精品一二三区在线看| 亚洲美女视频黄频| 秋霞伦理黄片| 免费观看无遮挡的男女| 三级国产精品欧美在线观看| 成人二区视频| 爱豆传媒免费全集在线观看| 久久av网站| 精品国产国语对白av| 天天操日日干夜夜撸| 国产一级毛片在线| 国产成人91sexporn| 青春草视频在线免费观看| 黑人欧美特级aaaaaa片| 99国产综合亚洲精品| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 精品一区二区三卡| 国产成人av激情在线播放 | 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 少妇人妻久久综合中文| 久久久欧美国产精品| 91精品伊人久久大香线蕉| 两个人的视频大全免费| 如何舔出高潮| 国产国拍精品亚洲av在线观看| 91精品三级在线观看| 一区二区三区免费毛片| 精品人妻偷拍中文字幕| 亚洲av不卡在线观看| av免费在线看不卡| 中国美白少妇内射xxxbb| 99九九在线精品视频| 亚洲精品亚洲一区二区| 久久久久久久久久久丰满| 久久久国产一区二区| 一个人看视频在线观看www免费| 美女cb高潮喷水在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲无线观看免费| 午夜福利影视在线免费观看| 男女啪啪激烈高潮av片| 高清毛片免费看| 免费久久久久久久精品成人欧美视频 | 自线自在国产av| 午夜久久久在线观看| 久久鲁丝午夜福利片| 国产亚洲精品久久久com| 国产黄频视频在线观看| 久久久国产欧美日韩av| 成人影院久久| 黄色一级大片看看| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 免费大片18禁| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 日本wwww免费看| 免费看不卡的av| 日日爽夜夜爽网站| 日本免费在线观看一区| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 国产伦理片在线播放av一区| 最后的刺客免费高清国语| 国产黄色免费在线视频| 国产亚洲精品第一综合不卡 | 国产精品一二三区在线看| 日韩制服骚丝袜av| 午夜视频国产福利| 能在线免费看毛片的网站| 国产精品国产三级专区第一集| 伊人久久国产一区二区| 黑人欧美特级aaaaaa片| 欧美日韩一区二区视频在线观看视频在线| 亚洲av综合色区一区| 欧美精品国产亚洲| 99国产精品免费福利视频| 亚洲精品日本国产第一区| 观看av在线不卡| 亚洲丝袜综合中文字幕| 国产成人a∨麻豆精品| 久久免费观看电影| 亚洲精品乱码久久久v下载方式| 亚州av有码| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区| 国产探花极品一区二区| 日日爽夜夜爽网站| 夜夜看夜夜爽夜夜摸| 人妻少妇偷人精品九色| 亚洲精品日韩av片在线观看| 精品一品国产午夜福利视频| 9色porny在线观看| 国产成人精品无人区| 九九爱精品视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 九九爱精品视频在线观看| 亚洲精品乱久久久久久| 亚洲三级黄色毛片| 久久久精品94久久精品| 久久av网站| 国产免费视频播放在线视频| 亚洲经典国产精华液单| 一级毛片我不卡| 制服丝袜香蕉在线| 国产成人aa在线观看| 只有这里有精品99| 免费黄网站久久成人精品| 亚州av有码| 99久久精品一区二区三区| 日韩成人av中文字幕在线观看| 亚洲av二区三区四区| 免费日韩欧美在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| 欧美bdsm另类| 免费黄频网站在线观看国产| 亚洲内射少妇av| 热99久久久久精品小说推荐| 亚洲情色 制服丝袜| 亚洲av二区三区四区| 99久国产av精品国产电影| 欧美亚洲 丝袜 人妻 在线| 免费黄网站久久成人精品| 精品一区二区免费观看| 日韩欧美一区视频在线观看| 久久久精品94久久精品| 九草在线视频观看| 水蜜桃什么品种好| 日日撸夜夜添| 岛国毛片在线播放| 青春草国产在线视频| 最近最新中文字幕免费大全7| 十八禁网站网址无遮挡|