萬(wàn)星宇,舒彩霞,2,3,徐 陽(yáng),袁佳誠(chéng),李海同,廖慶喜,2,3
?
油菜聯(lián)合收獲機(jī)分離清選差速圓筒篩設(shè)計(jì)與試驗(yàn)
萬(wàn)星宇1,舒彩霞1,2,3,徐 陽(yáng)1,袁佳誠(chéng)1,李海同1,廖慶喜1,2,3※
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 南方糧油作物協(xié)同創(chuàng)新中心,長(zhǎng)沙 410128;3. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
為減少油菜聯(lián)合收獲機(jī)旋風(fēng)分離清選系統(tǒng)負(fù)載和提高清選性能,該文設(shè)計(jì)了一種與旋風(fēng)分離清選裝置配合使用、可對(duì)油菜脫出物進(jìn)行初步篩分的差速圓筒篩。分析計(jì)算了篩網(wǎng)與助流裝置轉(zhuǎn)速范圍,開(kāi)展了基于EDEM的性能指標(biāo)正交試驗(yàn),以篩分損失率與篩下物清潔率為指標(biāo),以篩網(wǎng)轉(zhuǎn)速、助流裝置轉(zhuǎn)速和助流裝置投影面齒數(shù)為影響因素,得出了最佳參數(shù)組合,并開(kāi)展了臺(tái)架及田間驗(yàn)證試驗(yàn)。仿真結(jié)果表明:最佳參數(shù)組合為篩網(wǎng)轉(zhuǎn)速35 r/min,助流裝置轉(zhuǎn)速80 r/min,助流裝置投影面鋸齒數(shù)6個(gè)。臺(tái)架驗(yàn)證試驗(yàn)表明:整機(jī)喂入量3 kg/s、脫出物喂入量為1 kg/s條件下,差速圓筒篩與旋風(fēng)分離清選裝置配合使用,清選系統(tǒng)油菜籽??倱p失率為4.83%,其中篩分損失率為3.97%,清潔率為85.7%,風(fēng)機(jī)轉(zhuǎn)速可降低36.9%。田間試驗(yàn)表明:清選系統(tǒng)損失率平均值為5.9 %,籽粒清潔率平均值為84.4%,平均功耗為3.48 kW,差速圓筒篩作業(yè)順暢。該研究可減少旋風(fēng)分離清選負(fù)載,為油菜聯(lián)合收獲機(jī)清選系統(tǒng)的結(jié)構(gòu)改進(jìn)和優(yōu)化提供參考。
農(nóng)業(yè)機(jī)械;設(shè)計(jì);試驗(yàn);油菜;清選;旋風(fēng)分離;圓筒篩;EDEM
現(xiàn)階段油菜機(jī)械化收獲主要有分段收獲和聯(lián)合收獲兩種方式[1-4],聯(lián)合收獲一次性完成全部作業(yè)環(huán)節(jié),生產(chǎn)效率高,其中清選系統(tǒng)是油菜聯(lián)合收獲機(jī)的關(guān)鍵部件,常用油菜聯(lián)合收獲機(jī)多為稻麥?zhǔn)斋@機(jī)改裝,清選裝置多采用風(fēng)機(jī)與振動(dòng)篩配合使用,通過(guò)增大割臺(tái)深度、調(diào)節(jié)撥禾輪位置及傳動(dòng)比、增加主動(dòng)分禾器、更換篩網(wǎng)等措施以適應(yīng)田間油菜植株高大、分枝多且相互纏繞、成熟度不一致等因素導(dǎo)致的喂入量波動(dòng)、油菜脫出物組分糅雜等復(fù)雜工況,常用往復(fù)式振動(dòng)篩在處理含水率較高的油菜脫出物時(shí),在無(wú)清篩裝置的條件下物料運(yùn)移過(guò)程中易出現(xiàn)油菜脫出物堵塞篩網(wǎng)即“糊篩”現(xiàn)象,導(dǎo)致物料透篩率降低,造成籽粒損失增大、清潔率降低等問(wèn)題,在簡(jiǎn)化結(jié)構(gòu)、減少損失、降低振動(dòng)等方面有待優(yōu)化[5-9]。旋風(fēng)分離采用氣流清選原理,結(jié)構(gòu)相對(duì)簡(jiǎn)單,工作狀態(tài)相對(duì)平穩(wěn)、噪音低,多應(yīng)用于糧食加工、工業(yè)除塵等領(lǐng)域[10-12],已有學(xué)者將旋風(fēng)分離引入谷物聯(lián)合收獲機(jī)中[13-17]。旋風(fēng)分離清選系統(tǒng)主要利用谷物脫出物各組分懸浮速度差異分離籽粒與雜余[18-20],但油菜脫出物成分復(fù)雜,清選負(fù)載較大,對(duì)油菜脫出物的適應(yīng)性有待提高,增加初步篩選裝置分離脫出物中尺寸較大的粗長(zhǎng)雜余是減少旋風(fēng)分離清選系統(tǒng)負(fù)載的解決方法之一。圓筒篩為回轉(zhuǎn)運(yùn)動(dòng)篩,工作平穩(wěn),在糧食分級(jí)、精選等領(lǐng)域應(yīng)用較為廣泛[21-24],在谷物聯(lián)合收獲機(jī)中鮮有研究,其原因之一在于圓筒篩主要利用物料機(jī)械物理特性差異和離心力分離各物料組分,為增加物料流速以提高作業(yè)效率,圓筒篩多為傾斜配置[25-27],但傳統(tǒng)機(jī)械傳動(dòng)方式安裝復(fù)雜。本文為解決油菜聯(lián)合收獲機(jī)旋風(fēng)分離清選系統(tǒng)負(fù)載較大的問(wèn)題,設(shè)計(jì)了一種與旋風(fēng)分離清選系統(tǒng)配合使用的差速圓筒篩,在圓筒篩內(nèi)增加物料助流裝置以提高作業(yè)質(zhì)量,降低“糊篩”影響,初步篩分油菜脫出物中的粗長(zhǎng)雜余,減少旋風(fēng)分離清選系統(tǒng)的負(fù)載,提高旋風(fēng)分離清選系統(tǒng)對(duì)油菜脫出物的適應(yīng)性。
本研究清選系統(tǒng)適應(yīng)多種油菜聯(lián)合收獲機(jī),基于自制4LYZ-1.8型油菜聯(lián)合收獲機(jī)開(kāi)展研究,其結(jié)構(gòu)如圖1所示,主要包括分體組合式割臺(tái)、集成式縱軸流脫粒分離裝置、清選系統(tǒng)等部分。已割油菜在分體組合式割臺(tái)撥禾輪作用下進(jìn)入脫粒分離裝置,脫粒分離后的油菜脫出物由篩下物輸送攪龍?zhí)嵘梁罄m(xù)清選系統(tǒng)中。整機(jī)參數(shù)如表1所示。
1. 分體組合式割臺(tái) 2. 復(fù)合式推運(yùn)器 3. 集成式縱軸流脫粒分離裝置 4. 底盤(pán) 5.篩下物提升攪龍 6. 差速圓筒篩 7. 拋揚(yáng)機(jī) 8. 糧倉(cāng) 9. 旋風(fēng)分離筒 10. 吸雜管道 11. 風(fēng)機(jī) 12. 液壓油箱 13. 駕駛室
表1 油菜聯(lián)合收獲機(jī)主要技術(shù)參數(shù)
清選系統(tǒng)主要由差速圓筒篩與旋風(fēng)分離清選裝置組成,差速圓筒篩主要包括喂入攪龍、圓筒篩網(wǎng)、篩網(wǎng)內(nèi)部的助流裝置、罩殼等組成,旋風(fēng)分離清選系統(tǒng)主要包括拋揚(yáng)機(jī)、旋風(fēng)分離筒、吸雜管道、離心風(fēng)機(jī)、籽粒提升攪龍等。清選系統(tǒng)作業(yè)對(duì)象為油菜脫出物,主要包括油菜籽粒、粗長(zhǎng)雜余(短莖稈及莢殼)及輕雜余。差速圓筒篩主要功能是完成油菜脫出物的初步篩分,喂入攪龍將脫出物喂入圓筒篩網(wǎng)內(nèi),篩網(wǎng)與助流裝置差速轉(zhuǎn)動(dòng)、轉(zhuǎn)向相反,助流裝置擾動(dòng)物料并促進(jìn)物料向排草口移動(dòng),粗長(zhǎng)雜余被排出機(jī)外,透過(guò)篩網(wǎng)的油菜籽粒及輕雜余則進(jìn)入拋揚(yáng)機(jī),在拋揚(yáng)機(jī)作用下以一定速度進(jìn)入旋風(fēng)分離筒,在旋風(fēng)分離筒內(nèi)負(fù)壓氣流作用下分離油菜籽粒及輕雜余,輕雜余經(jīng)由吸雜管道及離心風(fēng)機(jī)排出,油菜籽粒由旋風(fēng)分離筒出糧口下落進(jìn)入提升攪龍被提升至糧倉(cāng)中,完成清選作業(yè),清選系統(tǒng)作業(yè)流程如圖2所示。
1. 喂料口 2. 罩殼 3. 圓筒篩 4. 助流裝置 5.排草口 6. 粗長(zhǎng)雜余 7. 拋揚(yáng)機(jī) 8. 旋風(fēng)分離筒 9. 吸雜管道 10. 離心風(fēng)機(jī) 11. 輕雜余 12. 出糧口 13. 油菜籽粒
差速圓筒篩作為清選系統(tǒng)的初選裝置,其結(jié)構(gòu)如圖3所示,主要包括圓筒篩、助流裝置、罩殼及傳動(dòng)裝置。圓筒篩為平面篩環(huán)形彎折定型,助流裝置為鋸齒形螺旋結(jié)構(gòu)且安裝于圓筒篩內(nèi)部,二者同軸轉(zhuǎn)動(dòng);液壓馬達(dá)為助流裝置提供動(dòng)力,通過(guò)過(guò)渡傳動(dòng)軸齒輪傳動(dòng)將動(dòng)力傳遞給圓筒篩,由齒輪傳動(dòng)完成換向功能,實(shí)現(xiàn)圓筒篩與助流裝置同軸轉(zhuǎn)動(dòng)、轉(zhuǎn)向相反的差速運(yùn)動(dòng)以促進(jìn)物料流動(dòng);助流裝置主體為鋸齒形螺旋葉片,其軸向投影具有若干均分鋸齒,通過(guò)轉(zhuǎn)動(dòng)過(guò)程中葉片的高度變化,實(shí)現(xiàn)對(duì)緊貼篩網(wǎng)物料的間斷輸送以及對(duì)遠(yuǎn)離篩面物料的連續(xù)輸送即實(shí)現(xiàn)分層輸送,增加緊貼篩網(wǎng)處物料的篩分時(shí)間,促進(jìn)遠(yuǎn)離篩網(wǎng)物料的軸向流動(dòng)使物料到達(dá)前方篩分區(qū)域,增加篩分效率。差速圓筒篩篩分效果與篩網(wǎng)有效篩分面積、篩網(wǎng)轉(zhuǎn)速、篩網(wǎng)類(lèi)型、篩孔布局、助流裝置轉(zhuǎn)速等有關(guān)。
1. 液壓馬達(dá) 2. 下罩殼 3. 助流裝置 4. 過(guò)渡傳動(dòng)軸 5. 上罩殼 6. 圓筒篩 7. 喂料口 8. 篩下物出口 9. 排草口
物料進(jìn)入圓筒篩后在篩面摩擦力作用下沿篩面上升至一定高度,然后在重力作用下下落至篩面底部,為周期性運(yùn)動(dòng),物料運(yùn)動(dòng)過(guò)程中可接觸篩網(wǎng)部分的面積即篩網(wǎng)有效篩分面積,有效篩分面積越大,篩網(wǎng)可承擔(dān)的物料喂入量越大。有效篩分面積與篩網(wǎng)直徑、篩網(wǎng)長(zhǎng)度、篩網(wǎng)轉(zhuǎn)速等參數(shù)有關(guān)。在有效篩分面積內(nèi)為保證油菜籽粒能及時(shí)透過(guò)篩網(wǎng)、減少篩分損失,以油菜籽粒為對(duì)象分析其在篩網(wǎng)內(nèi)運(yùn)動(dòng)范圍最低點(diǎn)與最高點(diǎn)的臨界受力狀態(tài),如圖4所示。
最低平衡點(diǎn)處油菜籽粒受力分析可知:
計(jì)算得
1. 圓筒篩 2. 油菜籽粒
1. Cylinder sieve 2. Rapeseed
注:為油菜籽粒質(zhì)量,g;為平衡狀態(tài)最低點(diǎn)的油菜籽粒與圓心的連線和垂直中心線之間的夾角,rad;1為最低點(diǎn)處摩擦力,N;為圓筒篩角速度,rad×s-1;為圓筒篩內(nèi)徑,mm;1為最低點(diǎn)處支撐力,N;為油菜籽粒與篩網(wǎng)的摩擦系數(shù),油菜籽粒與篩網(wǎng)摩擦角為15°[28],故tan=0.27;為平衡狀態(tài)最高點(diǎn)的油菜籽粒與圓心的連線和垂直中心線之間的夾角,rad;2為最高點(diǎn)處摩擦力,N;2為最高點(diǎn)處支撐力,N;為透篩油菜籽粒與圓心的連線和垂直中心線之間的夾角,rad,?[,p-];3為甩出摩擦力,N;3為甩出時(shí)篩面支撐力,N;1為有效篩分面積,m2。
Note:is the rapeseed mass, g;is the angle between the lines between rapeseed at lowest point and circle center and the vertical center line in force balance state, rad;1is the friction at the lowest point, N;is the angular velocity of cylinder sieve, rad×s-1;is the internal diameter of cylinder sieve, mm;1is the supporting force at the lowest point, N;is thefriction coefficient between rapeseed and the sieve. The friction anglebetween rapeseed and sieve is 15°[28], sotan=0.27;is the angle between the lines between rapeseed at highest point and circle center and the vertical center line in force balance state, rad;2is friction at the highest point, N;2is the supporting force at highest point, N;is the angle between the lines between rapeseed going through sieve holes and circle center with the vertical center line,?[,p-], rad;3is the friction when the rapeseed goes through sieve holes, N;3is the supporting force when the rapeseed goes through sieve holes, N;1is the effective screening area, m2.
圖4 臨界位置處油菜籽粒受力分析
Fig.4 Stress analysis of a rapeseed at the critical location
最高平衡點(diǎn)處受力分析可知:
計(jì)算得
為保證油菜籽粒能夠穿過(guò)篩孔,油菜籽粒在篩孔內(nèi)受力應(yīng)滿(mǎn)足
計(jì)算得
為防止油菜籽粒由頂部排出,需大于0,取0即油菜籽粒位于篩網(wǎng)垂直方向頂端時(shí),油菜籽粒所受重力需大于離心力使油菜籽?;芈渲梁Y網(wǎng)內(nèi)部,即
計(jì)算得
1為截面內(nèi)有效篩分弧長(zhǎng),有效篩分面積1滿(mǎn)足
式中為篩網(wǎng)長(zhǎng)度,mm。由式(9)可知,有效篩分面積與圓筒篩直徑、長(zhǎng)度與轉(zhuǎn)速有關(guān)。
圓筒篩面為平面篩網(wǎng)環(huán)形彎折成型,不考慮材料拉伸和壓縮,篩孔在平面上的投影為橢圓形,如圖5所示。
注:l0為折彎后篩孔最小弧長(zhǎng),mm;d為折彎前平面篩孔直徑,mm;i為單個(gè)篩孔在折彎后對(duì)應(yīng)的圓弧角,rad;dk為折彎后篩孔投影短軸長(zhǎng),mm。
長(zhǎng)軸長(zhǎng)度為彎折前篩孔直徑,則短軸長(zhǎng)度滿(mǎn)足:
為保證油菜籽粒順利透過(guò)篩孔,短軸長(zhǎng)度需滿(mǎn)足:
d>0(11)
式中0為油菜籽粒直徑,取2 mm[29]。
根據(jù)農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)可知,篩網(wǎng)單位面積可承擔(dān)的脫出物喂入量q為1.5~2.5 kg/(s?m2),油菜籽粒較小,q可取2.5 kg/(s?m2)[30],有效篩分面積需滿(mǎn)足:
式中Q為脫出物喂入量,割臺(tái)喂入量為3 kg/s時(shí)測(cè)得脫出物喂入量為1 kg/s。計(jì)算得1≥0.4 m2。
考慮到整機(jī)安裝空間,取篩網(wǎng)內(nèi)徑=500 mm,代入式(6)與式(8)可得圓筒篩轉(zhuǎn)動(dòng)角速度范圍為:
3.25 rad/s< 6.26 rad/s
轉(zhuǎn)換為轉(zhuǎn)速
31.1 r/min< n<59.8 r/min
由式(2)與式(4)可知:
解得
將=0.27代入解得
+=1.04 rad (15)
計(jì)算得1= 0.525 m,則≥0.76 m,設(shè)計(jì)取整數(shù)= 800 mm,實(shí)際有效篩分面積1=0.42 m2,篩網(wǎng)總面積=1.256 m2。
由篩孔短軸計(jì)算得>3.9 mm,考慮通用性,選擇=5 mm。
篩網(wǎng)面積一定條件下,篩孔數(shù)量與篩孔面積有效系數(shù)有關(guān),越大篩孔數(shù)越多,常規(guī)篩面中正三角形排布篩孔的面積有效系數(shù)較大,如圖6所示,設(shè)篩網(wǎng)孔距為0,為保證篩網(wǎng)整體剛度,取0=3 mm,篩孔按正三角形排布的篩面面積有效系數(shù)為:
計(jì)算得=0.35。
注:0為篩孔間距,mm。
Note:0is the spacing of the sieve holes, mm.
圖6 篩孔排布
Fig.6 Arrangement of sieve holes
設(shè)篩面橫截面處篩孔數(shù)量相等,則篩孔總數(shù)量滿(mǎn)足
計(jì)算得=2.24×104。
物料助流裝置為螺旋鋸齒形結(jié)構(gòu),安裝在圓筒篩內(nèi)部,與圓筒篩同軸反向轉(zhuǎn)動(dòng),以鋸齒齒根圓為分界線,鋸齒部分對(duì)緊貼篩面的物料進(jìn)行間斷輸送,可將油菜脫出物打散,保證篩分時(shí)間,鋸齒齒根圓以下葉片部分為連續(xù)輸送,可持續(xù)輸送遠(yuǎn)離篩面的物料,緊貼篩網(wǎng)部分與遠(yuǎn)離篩網(wǎng)部分物料輸送速度不同,即實(shí)現(xiàn)分層輸送,為提高篩面利用率,分層輸送設(shè)計(jì)為均分物料層,結(jié)構(gòu)圖與軸向投影視圖如圖7所示。
注:Df為助流裝置葉片內(nèi)徑,mm;D1為鋸齒葉片齒根圓直徑,mm;D2為齒頂圓直徑,mm;a為連續(xù)葉片外圓與篩網(wǎng)間隙,mm;b為鋸齒齒頂與篩網(wǎng)間隙,mm;H為物料流動(dòng)層高度,mm;ωz為助流裝置角速度,rad×s-1;t為葉片螺距,mm。
為保證脫出物充分的篩分時(shí)間,物料軸向運(yùn)動(dòng)速度不宜太快,設(shè)物料軸向平均輸送速度v=0.25 m/s[27],則單位時(shí)間內(nèi)物料流動(dòng)層高度滿(mǎn)足:
式中0為脫出物密度,取粗長(zhǎng)莖稈密度80 kg/m3計(jì)算,計(jì)算得=119 mm,取120 mm。
助流裝置葉片內(nèi)徑即葉片中心軸直徑滿(mǎn)足:
計(jì)算得D<260 mm,在葉片外徑一定情況下,葉片內(nèi)徑越小,葉片高度即葉片作用面積越大,針對(duì)喂入量波動(dòng)現(xiàn)象,宜取較小的葉片內(nèi)徑以增強(qiáng)助流裝置對(duì)物料喂入量適應(yīng)性和對(duì)物料的促流作用,同時(shí)考慮實(shí)際加工對(duì)管料的通用性,取D=50 mm。
為實(shí)現(xiàn)分層輸送,連續(xù)葉片外圓直徑保證均分物料層,物料層厚度由式(18)計(jì)算為120 mm,則1380 mm,連續(xù)葉片外圓與篩網(wǎng)間隙為=(–1)/2= 60 mm,葉片與篩網(wǎng)之間的間隙一般為5~10 mm[30],油菜籽粒易破損,為減少對(duì)油菜籽粒的碾壓,篩網(wǎng)間隙可取較大值,故鋸齒齒頂與篩網(wǎng)間隙取=10 mm,則齒頂圓直徑2480 mm。
助流裝置輸送能力需要大于粗長(zhǎng)雜余的喂入量[18],鋸齒形葉片按照螺旋葉片輸送能力計(jì)算需大于脫出物喂入量,同時(shí)為減少油菜籽粒篩分損失,助流裝置葉片鋸齒底徑以下部分的連續(xù)螺旋輸送量需小于油菜脫出物喂入量:
式中1為助流裝置模擬螺旋葉片連續(xù)輸送的輸送量,kg/s;2為助流裝置鋸齒以下部分螺旋葉片連續(xù)輸送的輸送量,kg/s;為充滿(mǎn)系數(shù),取0.3[30];為葉片螺距,考慮葉片通用性,取螺旋輸送常用螺距200 mm[30];為助流裝置轉(zhuǎn)速,r/min;為物料密度,取80 kg/m3[30];為傾斜輸送系數(shù),水平輸送取1[30]。計(jì)算得:
76.2 r/min≤≤244.6 r/min
鋸齒按圓周均勻分布,其數(shù)量z與鋸齒間隙角滿(mǎn)足:
鋸齒數(shù)量過(guò)少會(huì)降低助流裝置輸送能力,過(guò)多則會(huì)增加油菜籽粒篩分損失,以助流裝置投影面鋸齒數(shù)為因素,后續(xù)取投影面均按鋸齒數(shù)為2、4、6三個(gè)水平開(kāi)展相關(guān)試驗(yàn)。
清選系統(tǒng)作業(yè)對(duì)象包括油菜籽粒、粗長(zhǎng)雜余(短莖稈及莢殼)及輕雜余,測(cè)量脫粒分離裝置篩下物成分可知,割臺(tái)喂入量為3 kg/s時(shí),脫粒分離裝置脫出物輸出量為1 kg/s,油菜脫出物中油菜籽粒、粗長(zhǎng)雜余及輕雜余質(zhì)量之比為1∶1.5∶0.5。
差速圓筒篩作為清選系統(tǒng)的關(guān)鍵部件,其性能直接影響籽粒清潔率與損失率,因此,采用EDEM建立差速圓筒篩的仿真模型,以油菜脫出物成分含量最高的油菜籽粒、粗長(zhǎng)雜余及輕雜余為研究對(duì)象,開(kāi)展正交試驗(yàn)分析運(yùn)行參數(shù)與結(jié)構(gòu)參數(shù)變化對(duì)差速圓筒篩篩下物油菜籽粒清潔率與排草口篩分損失率的影響,得出最佳參數(shù)組合。
3.1.1 變量參數(shù)設(shè)置
差速圓筒篩篩分過(guò)程的實(shí)質(zhì)是通過(guò)篩面及助流裝置與顆粒之間以及顆粒與顆粒之間的接觸、碰撞促使顆粒運(yùn)動(dòng)、透篩。為描述碰撞過(guò)程,本文采用Hert-Mindlin無(wú)滑移模型。各物料顆粒的力學(xué)特性參數(shù)及和其他物體的接觸系數(shù)[19]設(shè)置見(jiàn)表2和表3。
表2 物料力學(xué)參數(shù)
表3 接觸系數(shù)
3.1.2 顆粒模型
為保證差速圓筒篩作業(yè)過(guò)程的真實(shí)模擬,參照相關(guān)文獻(xiàn)及對(duì)油菜脫出物中油菜籽粒、粗長(zhǎng)雜余及輕雜余相關(guān)參數(shù)測(cè)定,建立顆粒模型,如圖8所示,其中油菜籽粒為球形,直徑2 mm;粗長(zhǎng)雜余為長(zhǎng)圓柱形,外徑8 mm,長(zhǎng)度60 mm[31];輕雜余為長(zhǎng)方體,選取油菜脫出物中輕雜余,主要為破碎莢殼薄片,外形近似為長(zhǎng)方體,開(kāi)展三軸尺寸測(cè)量取平均值并取整,仿真中取長(zhǎng)4 mm,寬 3 mm,高1 mm。
圖8 顆粒模型
3.1.3 差速圓筒篩仿真模型
利用Pro/E軟件在合理簡(jiǎn)化、保留主要工作部件的基礎(chǔ)上,按照理論計(jì)算得出的結(jié)構(gòu)參數(shù)1:1建模,對(duì)差速圓筒篩進(jìn)行三維建模,主要包括罩殼、圓筒篩、助流裝置等部件,如圖9所示。顆粒工廠位于模型喂料口內(nèi),按照脫出物總質(zhì)量及各成分比例設(shè)定油菜籽粒、粗長(zhǎng)雜余和輕雜余生成總質(zhì)量分別為0.3、0.45和0.15 kg,各顆粒同時(shí)產(chǎn)生,產(chǎn)生方式均為動(dòng)態(tài),顆粒產(chǎn)生時(shí)間為1 s,時(shí)間步長(zhǎng)設(shè)定為Rayleigh時(shí)間步長(zhǎng)的20%,即10–5s,數(shù)據(jù)記錄間隔0.01 s,為保證顆粒完整輸送,將圓筒篩與助流裝置運(yùn)動(dòng)模擬時(shí)間總長(zhǎng)設(shè)為10 s。
1. 喂料口 2. 罩殼 3. 助流裝置 4. 圓筒篩 5. 排草口 6. 出糧口
上文理論分析已確定篩網(wǎng)類(lèi)型、篩孔排列、篩網(wǎng)內(nèi)徑、篩面長(zhǎng)度等結(jié)構(gòu)參數(shù),對(duì)篩網(wǎng)轉(zhuǎn)速、助流裝置轉(zhuǎn)速等運(yùn)行參數(shù)范圍進(jìn)行了分析,故仿真過(guò)程中以助流裝置轉(zhuǎn)速、篩網(wǎng)轉(zhuǎn)速及助流裝置投影面鋸齒數(shù)為影響因素,以差速圓筒篩出糧口油菜籽粒清潔率與排草口篩分損失率為評(píng)價(jià)指標(biāo),開(kāi)展三因素三水平正交試驗(yàn),因素水平如表4所示。仿真結(jié)束后統(tǒng)計(jì)排草口與出糧口物料總質(zhì)量與油菜籽粒總質(zhì)量,計(jì)算清潔率與損失率:
式中Y為油菜籽粒清潔率,%;1為出糧口油菜籽粒質(zhì)量,kg;0為出糧口物料總質(zhì)量,kg;Y為篩分損失率,%;2為排草口油菜籽粒質(zhì)量,kg。
表4 因素水平
正交試驗(yàn)設(shè)計(jì)及試驗(yàn)結(jié)果如表5所示,采用綜合評(píng)分法分析[13],實(shí)際生產(chǎn)中需優(yōu)先保證損失率低,其次保證清潔率高,擬定清潔率權(quán)重為0.35,損失率權(quán)重為0.65,以加權(quán)后的綜合分作為評(píng)價(jià)標(biāo)準(zhǔn),得分越高效果越好。
綜合分=清潔率隸屬度′0.35–損失率隸屬度′0.65 (23)
正交試驗(yàn)仿真結(jié)果表明:最佳參數(shù)組合為助流裝置轉(zhuǎn)速80 r/min,圓筒篩轉(zhuǎn)速35 r/min及助流裝置投影面鋸齒數(shù)為6個(gè),影響差速圓筒篩效果的因素主次為助流裝置轉(zhuǎn)速、篩網(wǎng)轉(zhuǎn)速及助流裝置投影面鋸齒數(shù);最佳參數(shù)組合條件下,仿真得出差速圓筒篩篩分損失率為2.54%,清潔率為83.58%,差速圓筒篩中篩網(wǎng)轉(zhuǎn)速過(guò)高時(shí),物料在離心力作用下緊貼篩面,導(dǎo)致糊篩,減少油菜籽粒透篩概率,造成篩分損失率增大;助流裝置轉(zhuǎn)速較高則促進(jìn)物料流動(dòng)能力提高,物料輸送過(guò)快,油菜籽粒來(lái)不及透過(guò)篩網(wǎng)亦會(huì)造成篩分損失率提高;同理,若助流裝置投影面齒數(shù)過(guò)少,對(duì)物料流動(dòng)的促進(jìn)作用也會(huì)增強(qiáng),導(dǎo)致篩分損失率增加,符合圓筒篩相關(guān)研究結(jié)果[27]。差速圓筒篩篩網(wǎng)轉(zhuǎn)速需在滿(mǎn)足透篩率要求的前提下采用較低轉(zhuǎn)速,助流裝置需在滿(mǎn)足物流輸送能力條件下采用較低轉(zhuǎn)速及較多鋸齒數(shù)。
表5 正交試驗(yàn)結(jié)果
為驗(yàn)證差速圓筒篩效果,依據(jù)仿真結(jié)果試制差速圓筒篩,與旋風(fēng)分離清選系統(tǒng)配合使用開(kāi)展臺(tái)架試驗(yàn),試驗(yàn)臺(tái)主要由差速圓筒篩、拋揚(yáng)機(jī)、旋風(fēng)分離筒、離心風(fēng)機(jī)、吸雜管道、糧倉(cāng)、支架及配套液壓傳動(dòng)系統(tǒng)組成,如圖10所示。差速圓筒篩中篩網(wǎng)由電機(jī)帶動(dòng),助流裝置由液壓系統(tǒng)驅(qū)動(dòng),轉(zhuǎn)速轉(zhuǎn)向均可調(diào)。試驗(yàn)物料為油菜脫出物,油菜品種為華油雜62,油菜脫出物主要包括油菜籽粒、輕雜余及粗長(zhǎng)雜余,粗長(zhǎng)雜余包括短莖稈及莢殼(長(zhǎng)度在20 mm以上),籽粒千粒質(zhì)量為4.2 g,油菜籽粒、粗長(zhǎng)雜余及輕雜余按質(zhì)量比1∶1.5∶0.5混合均勻。
臺(tái)架試驗(yàn)擬開(kāi)展功能性驗(yàn)證與對(duì)照試驗(yàn),功能性驗(yàn)證差速圓筒篩與旋風(fēng)分離清選組合的清選形式的可行性,對(duì)照試驗(yàn)為對(duì)比差速圓筒篩與旋風(fēng)分離清選組合作業(yè)和旋風(fēng)分離清選單獨(dú)作業(yè)效果,分析增加差速圓筒篩以減少旋風(fēng)分離清選負(fù)載;對(duì)照驗(yàn)證中設(shè)置差速圓筒篩與旋風(fēng)分離組合作業(yè)工況為試驗(yàn)組,為先篩分后風(fēng)選的清選形式;僅旋風(fēng)分離清選裝置工作為對(duì)照組,為風(fēng)選清選形式;2組試驗(yàn)在清選效果即清潔率穩(wěn)定在85%~90%,損失率穩(wěn)定在5%~6%范圍內(nèi)時(shí),以離心風(fēng)機(jī)轉(zhuǎn)速表征旋風(fēng)分離清選裝置負(fù)載并作為對(duì)照試驗(yàn)評(píng)價(jià)指標(biāo)。
1. 差速圓筒篩 2. 籽粒提升攪龍 3. 旋風(fēng)分離筒 4. 拋揚(yáng)機(jī) 5. 吸雜管道 6. 篩下物提升攪龍 7. 風(fēng)機(jī) 8. 調(diào)速裝置 9. 電機(jī) 10. 液壓馬達(dá)
功能性驗(yàn)證試驗(yàn)時(shí)將物料由篩下物提升攪龍喂入,差速圓筒篩與旋風(fēng)分離清選裝置配合使用,以仿真結(jié)果最佳參數(shù)組合啟動(dòng)清選系統(tǒng),收集差速圓筒篩排草口、旋風(fēng)分離筒出糧口及離心風(fēng)機(jī)出口處物料并稱(chēng)質(zhì)量,篩分其中油菜籽粒并稱(chēng)質(zhì)量,計(jì)算油菜籽??倱p失率與清潔率分別為4.83%與85.7%,其中排草口處篩分損失率為3.97%。
對(duì)照試驗(yàn)組按最佳參數(shù)組合設(shè)定差速圓筒篩相關(guān)參數(shù),僅調(diào)節(jié)風(fēng)機(jī)轉(zhuǎn)速,采用功能性驗(yàn)證試驗(yàn)的取樣方法多次試驗(yàn)直至清潔率、損失率與對(duì)照組范圍相同后,記錄離心風(fēng)機(jī)轉(zhuǎn)速。對(duì)照試驗(yàn)結(jié)果表明:在相同清潔率與油菜籽粒總損失率范圍內(nèi),旋風(fēng)分離清選系統(tǒng)風(fēng)機(jī)轉(zhuǎn)速可由無(wú)差速圓筒篩前的2 300 r/min降至1 450 r/min,轉(zhuǎn)速降低36.9%,有效減少旋風(fēng)分離清選負(fù)載。
2017年5月于華中農(nóng)業(yè)大學(xué)試驗(yàn)田開(kāi)展田間試驗(yàn),如圖11所示。試驗(yàn)對(duì)象為機(jī)直播華油雜62號(hào)油菜,平均種植密度為40株/m2,油菜籽粒、莖稈及莢殼含水率分別為23.47%、20.9% 和33.98%。試驗(yàn)選取株高、密度等植株性狀一致性較好的區(qū)域進(jìn)行田間試驗(yàn),在選定試驗(yàn)區(qū)內(nèi)劃分5個(gè)10 m的滿(mǎn)割幅區(qū)域作為測(cè)試區(qū),機(jī)具在測(cè)試區(qū)內(nèi)滿(mǎn)割幅作業(yè),每次試驗(yàn)前清理差速圓筒篩、拋揚(yáng)機(jī)、糧倉(cāng)內(nèi)物料,單次試驗(yàn)保證割茬高度一致,試驗(yàn)過(guò)程中保持工況不變,前進(jìn)速度2.9~3.6 km/h,作業(yè)效率為0.52~0.65 hm2/h。每次試驗(yàn)后收集差速圓筒篩排草口、旋風(fēng)分離筒出糧口、風(fēng)機(jī)出口處物料并稱(chēng)質(zhì)量,篩分并稱(chēng)量出各自出口物料內(nèi)的油菜籽粒質(zhì)量,計(jì)算得出差速圓筒篩篩分損失率、出糧口油菜籽粒清潔率和風(fēng)機(jī)損失率,記錄清選系統(tǒng)液壓管路油壓與流量,計(jì)算清選系統(tǒng)功耗。因油菜成熟度不一致,田間溝壑較多、行走速度不穩(wěn)定等因素導(dǎo)致整機(jī)喂入量波動(dòng),清選系統(tǒng)損失率平均值為5.9%,油菜籽粒清潔率平均值為84.4%,清選系統(tǒng)平均功耗為3.48 kW,差速圓筒篩作業(yè)順暢。
圖11 清選系統(tǒng)田間試驗(yàn)
1)設(shè)計(jì)了一種與旋風(fēng)分離清選系統(tǒng)配合使用的差速圓筒篩,對(duì)油菜脫出物進(jìn)行初步篩分,可有效減少油菜聯(lián)合收獲機(jī)旋風(fēng)分離清選系統(tǒng)負(fù)載并提高清選性能,滿(mǎn)足油菜聯(lián)合收獲清選需要。
2)基于EDEM仿真正交試驗(yàn)結(jié)果表明:影響差速圓筒篩篩分效果的因素主次為助流裝置轉(zhuǎn)速、篩網(wǎng)轉(zhuǎn)速和助流裝置投影面鋸齒數(shù),最佳參數(shù)組合為助流裝置轉(zhuǎn)速80 r/min、篩網(wǎng)轉(zhuǎn)速35 r/min及助流裝置投影面鋸齒數(shù)6個(gè)。
3)臺(tái)架及田間驗(yàn)證試驗(yàn)結(jié)果表明:在最佳參數(shù)組合條件下,差速圓筒篩與旋風(fēng)分離清選系統(tǒng)配合使用時(shí)系統(tǒng)籽??倱p失率與清潔率分別為4.83%與85.7%,離心風(fēng)機(jī)轉(zhuǎn)速可降低36.9%,減少旋風(fēng)分離負(fù)載;田間試驗(yàn)表明清選系統(tǒng)籽粒總損失率平均值為5.9%,油菜籽粒清潔率平均值為84.4%,清選系統(tǒng)平均功耗為3.48 kW,差速圓筒篩作業(yè)順暢。
差速圓筒篩助流裝置輸送物料過(guò)程中對(duì)物料的喂入量波動(dòng)的適應(yīng)性有待進(jìn)一步探討。
[1] 吳崇友,肖圣元,金梅. 油菜聯(lián)合收獲與分段收獲效果比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(17):10-16.Wu Chongyou, Xiao Shengyuan, Jin Mei. Comparation on rape combine harvesting and two-stage harvesting[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 10-16. (in Chinese with English abstract)
[2] 劉德軍,趙秀榮,高連興,等. 不同收獲方式含水率對(duì)油菜收獲物流損失的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10): 339-342. Liu Dejun, Zhao Xiurong, Gao Lianxing, et al. Effect of moisture content on rape harvest logistics losses under different harvest methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 339-342. (in Chinese with English abstract)
[3] 左青松,黃海東,曹石,等. 不同收獲時(shí)期對(duì)油菜機(jī)械收獲損失率及籽粒品質(zhì)的影響[J]. 作物學(xué)報(bào),2014,40(4):650-656. Zuo Qingsong, Huang Haidong, Cao Shi,et al. Effects of harvesting date on yield loss percentage of mechanical harvest and seed quality in rapeseed[J]. Acta Agronomica Sinica, 2014, 40(4): 650?656. (in Chinese with English abstract)
[4] 黃小毛,宗望遠(yuǎn). 油菜聯(lián)合收獲的研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程,2012,2(1):14-19. Huang Xiaomao, Zong Wangyuan. Research status and development trend of rape combine harvester[J]. Agricultural Engineering, 2012, 2(1): 14-19. (in Chinese with English abstract)
[5] 羅海峰,湯楚宙,官春云,等. 適應(yīng)機(jī)械化收獲的田間油菜植株特性研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(13): 61-66. Luo Haifeng, Tang Chuzhou, Guan Chunyun, et al. Plant characteristic research on field rape based on mechanized harvesting adaptability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(13): 61-66. (in Chinese with English abstract)
[6] 王剛,關(guān)卓懷,沐森林,等. 油菜聯(lián)合收獲機(jī)種子籽粒脫粒裝置結(jié)構(gòu)及運(yùn)行參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):52-57. Wang Gang, Guan Zhuohuai, Mu Senlin, et al. Optimization of operating parameter and structure for seed thresher device for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 52-57. (in Chinese with English abstract)
[7] 徐立章,李耀明,馬朝興,等. 4LYB1-2.0型油菜聯(lián)合收獲機(jī)主要部件的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(8):54-57.Xu Lizhang, Li Yaoming, Ma Chaoxing, et al. Design of main working parts of 4LYB1 -2.0 rape combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 54-57. (in Chinese with English abstract)
[8] 高志朋,徐立章,李耀明,等. 履帶式稻麥聯(lián)合收獲機(jī)田間收獲工況下振動(dòng)測(cè)試與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):48-55. Gao Zhipeng, Xu Lizhang, Li Yaoming, et al. Vibration measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 48-55. (in Chinese with English abstract)
[9] 李耀明,王智華,徐立章,等. 油菜脫出物振動(dòng)篩分運(yùn)動(dòng)分析及試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(9):111-114. Li Yaoming, Wang Zhihua, Xu Lizhang, et al. Motion analysis and experimental research of rape extractions on vibration sieve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 111-114. (in Chinese with English abstract)
[10] 黃炎,趙滿(mǎn)全. 基于數(shù)值模擬與風(fēng)洞試驗(yàn)的旋風(fēng)分離式集沙儀優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):50-56. Huang Yan, Zhao Manquan. Optimization design of performance test of cyclone separator sand sampler based on numerical simulation and wind erosion tunnel experiment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 50-56. (in Chinese with English abstract)
[11] 董玉平,董磊,強(qiáng)寧,等. 旋風(fēng)分離器內(nèi)生物質(zhì)焦油湍流特性的數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):171-175.Dong Yuping, Dong Lei, Qiang Ning, et al. Numerical simulation of biomass gas and tar torrential flow characteristics in cyclone separator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 171-175. (in Chinese with English abstract)
[12] Elsayed K, Lacor C. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations[J]. Chemical Engineering Science, 2010(65): 6048-6058.
[13] 廖慶喜,萬(wàn)星宇,李海同,等. 油菜聯(lián)合收獲機(jī)旋風(fēng)分離清選系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):24-31. Liao Qingxi, Wan Xingyu, Li Haitong, et al .Design and experiment on cyclone separating cleaning system for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 24-31. (in Chinese with English abstract)
[14] 任述光,謝方平,王修善,等. 4LZ-0.8型水稻聯(lián)合收割機(jī)清選裝置氣固兩相分離作業(yè)機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):16-22. Ren Shuguang, Xie Fangping, Wang Xiushan, et al. Gas- solid two-phase separation operation mechanism for 4LZ-0.8 rice combine harvester cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 16-22. (in Chinese with English abstract)
[15] 伊文靜,劉師多,師清翔,等. 旋風(fēng)分離清選系統(tǒng)結(jié)構(gòu)及工況對(duì)清選性能的影響[J]. 農(nóng)機(jī)化研究,2013,35(5): 170-174. Yi Wenjing, Liu Shiduo, Shi Qingxiang, et al. Influence of cleaning system and working condition[J]. Journal of Agricultural Mechanization Research, 2013, 35(5): 170-174. (in Chinese with English abstract)
[16] 倪長(zhǎng)安,張利娟,劉師多,等. 無(wú)導(dǎo)向片旋風(fēng)分離清選系統(tǒng)的試驗(yàn)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(8):135-138. Ni Chang’an, Zhang Lijuan, Liu Shiduo, et al. Experimental analysis on cyclone separating cleaning system of no-guide vanes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 135-138. (in Chinese with English abstract)
[17] 師清翔,馬萌,閆衛(wèi)紅,等. 雙揚(yáng)谷器旋風(fēng)分離清選系統(tǒng)試驗(yàn)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):124-128. Shi Qingxiang, Ma Meng, Yan Weihong, et al. Two-stage winnower cyclone separating cleaning system performance testing and optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 124-128. (in Chinese with English abstract)
[18] 馬征,李耀明,徐立章. 油菜脫出物漂浮速度及摩擦與浸潤(rùn)特性的測(cè)定與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9): 13-17. Ma Zheng, Li Yaoming, Xu Lizhang. Testing and analysis on rape excursion components characteristics in floating, friction and wettability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 13-17. (in Chinese with English abstract)
[19] 陳立,廖慶喜,宗望遠(yuǎn),等. 油菜聯(lián)合收獲機(jī)脫出物空氣動(dòng)力學(xué)特性測(cè)定[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊1): 125-130. Chen Li, Liao Qingxi, Zong Wangyuan, et al. Aerodynamic Characteristics Measurement of Extraction Components for Rape Combine Harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp. 1): 125-130. (in Chinese with English abstract)
[20] 陳翠英,王志華,李青林. 油菜脫出物在氣流中的運(yùn)動(dòng)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2004,35(5):90-93.
Chen Cuiying, Wang Zhihua, Li Qinglin. Analysis of aerodynamic properties of rape extractions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5): 90-93. (in Chinese with English abstract)
[21] 胡良龍,田立佳,王海鷗,等. 5XY-5型種子圓筒篩分級(jí)設(shè)備的研制[J]. 農(nóng)機(jī)化研究,2007(2): 90-92, 96. Hu Lianglong, Tian Lijia, Wang Haiou, et al. Design of 5XY-5 cylinder screen grader. Journal of Agricultural Mechanization Research, 2007(2): 90-92, 96. (in Chinese with English abstract)
[22] 汪正保,鮑昌華,龔為. 一種新型圓筒篩分裝置的設(shè)計(jì)研究[J]. 機(jī)電產(chǎn)品開(kāi)發(fā)與創(chuàng)新,2012,25(3):58-59. Wang Zhengbao, Bao Changhua, Gong Wei. Research on the design of new type rotary sieve[J]. Development & Innovation of Machinery & Electrical Products, 2012, 25(3): 58-59. (in Chinese with English abstract)
[23] 宋井玲. 圓筒篩式玉米種子分級(jí)機(jī)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2007(1):146-147. Song Jingling. Design of the cylinder screen seed corn grader. Journal of Agricultural Mechanization Research,2007(1): 146-147. (in Chinese with English abstract)
[24] 閘建文,何芳,汪裕安. 一種新型圓筒篩的性能分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),1996,27(3):67-70.
[25] 楊冬生. 圓筒篩篩選焦粒的設(shè)計(jì)及應(yīng)用[J]. 煤礦機(jī)械,2007,28(2):170-172. Yang Dongsheng. Design and application of cylindric screen [J]. Coal Mine Machinery, 2007, 28(2): 170-172. (in Chinese with English abstract)
[26] 尹健,黃年月,吳兵,等. 微型水稻聯(lián)合收割機(jī)新型圓筒篩設(shè)計(jì)研究[J]. 現(xiàn)代機(jī)械,2011(3):62-64, 72.
[27] 連政國(guó),張巖,姜學(xué)東. 柵條圓筒篩內(nèi)物料軸向運(yùn)動(dòng)分析[J]. 萊陽(yáng)農(nóng)學(xué)院學(xué)報(bào),1996,13(2):72-76. Lian Zhengguo, Zhang Yan, Jiang Xuedong. Analysis on materials’axial movement in the grid cylindrical screen. Journal of Laiyang Agricultural College, 1996, 13(2): 72-76. (in Chinese with English abstract)
[28] 李海同,廖慶喜,李平,等. 油菜聯(lián)合收獲機(jī)分體組合式割臺(tái)的設(shè)計(jì)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,33(5):111-116. Li Haitong, Liao Qingxi, Li Ping, et al. Design on separating- combined header of rape combine harvester[J]. Journal of Huazhong Agricultural University, 2014, 33(5): 111-116. (in Chinese with English abstract)
[29] 雷小龍,廖宜濤,王磊,等. 油麥兼用型氣送式集排器增壓管氣固兩相流仿真與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(19):67-75. Lei Xiaolong, Liao Yitao, Wang Lei, et al. Simulation of gas-solid two-phase flow and parameter optimization of pressurized tube of air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 67-75. (in Chinese with English abstract)
[30] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)下冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[31] 吳崇友. 油菜機(jī)械化收獲技術(shù)[M]. 鎮(zhèn)江:江蘇大學(xué)出版社,2017.
Design and experiment on cylinder sieve with different rotational speed in cleaning system for rape combine harvesters
Wan Xingyu1, Shu Caixia1,2,3, Xu Yang1, Yuan Jiacheng1, Li Haitong1, Liao Qingxi1,2,3※
(1.430070,; 2.410128,; 3.430070,)
Combine harvesters and windrowers were conventional machines for rape harvesting. Rape combine harvesters could simultaneously complete cutting, threshing, separation and cleaning at high production efficiencies. Cleaning systems played an important role in rape combine harvesters. The conventional rape combine harvesters were modified based on grain combine harvesters. The majority of cleaning system of combine harvesters was vibrating screen working with fan. Some changes like increasing the depth of header, adjusting reel position and transmission ratio, increasing active divider and so on were made to adapt to the rape plant in the field and there were still some problems like blocking of screen and the structure remained to be optimized. In conclusion, there were some problems like excessive vibration and relatively complicated structures due to vibration sieves in traditional combine harvesters. Cyclone separation was based on the principle of airflow cleaning. It was widely applied to grain processing, industrial dust removal and other fields. It could be used in rape combine harvesters taking the advantages of simple structures. However, short stems and pods made it hard for cyclone separation cleaning system to make the seeds clean. Adding a cylinder sieve was a solution to reduce the burden of cyclone separation cleaning system. The main limitation of the development of cylinder sieve was its relatively low efficiency. To reduce the burden of cyclone separation cleaning system and improve the efficiency of preliminary screening, a kind of cylinder sieve with promoting device in different rotational speed for rape combine harvesters based on EDEM was designed and relative experiments were carried out. As the primary process to separate the stems for the cleaning system, the cylinder sieve with promoting device in different rotational speed was mainly consist of the cylinder sieve, promoting device, the cover shell and the transmission device. The sieve was bent and shaped based on annular plane screen. The promoting device was mounted inside the cylinder sieve. Both of them were rotating around the same center axis. The hydraulic motor to provide power to the promoting device and to the cylinder sieve though the transition gear on transmission shaft. The rotation direction of cylinder sieve was changed by the gear transmission to realize the different rotational speed and direction of cylinder sieve and promoting device. Analysis and calculation of the rotational speed range of promoting device and cylinder sieve were carried out. Orthogonal experiments based on EDEM was obtained. The loss ratio and cleaning ratio of cylinder sieve was taken as the indexes while the rotational speed of sieve and the rotational speed and tooth number of promoting device were the factors. The optimal parameter combination was obtained. Test-bed and field experiments were carried out to verify the results of simulation. The simulation results show that the optimum combination of the parameters was 35 r/min and 80 r/min of rotational speed of sieve and promoting device respectively and 6 of the saw teeth in the projection plane of the promoting device. In addition, the loss ratio and cleaning ratio of cyclone separation cleaning system working with the cylinder sieve were 4.83% and 85.7% respectively while the rotational speed of the fan could be reduced by 36.9% under the condition of best combination of parameters. Field experiments were carried out in the experimental field of Huazhong Agricultural University in May 2017. The materials of experiments were rape planted by direct rapeseed planter. The average planting density was 40 plants/m2, and the water content of rapeseed, stems and pod shells were 23.47%, 20.9% and 33.98%, respectively. The working speed of 4LYZ-1.8 type rape combine harvester was 2.9-3.6 km/h and the working efficiency was 0.52-0.65 hm2/h. The average loss rate of rapeseed was 5.9% and the average cleaning rate of rapeseed was 84.4%. The average power consumption of the cleaning system was 3.48 kW. This research provided a reference for the improvement and optimization of cleaning system for rape combined harvesters.
agricultural machinery; design; experiments; rape; cleaning; cyclone separation; cylinder sieve; EDEM
萬(wàn)星宇,舒彩霞,徐 陽(yáng),袁佳誠(chéng),李海同,廖慶喜.油菜聯(lián)合收獲機(jī)分離清選差速圓筒篩設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):27-35.doi:10.11975/j.issn.1002-6819.2018.14.004 http://www.tcsae.org
Wan Xingyu, Shu Caixia, Xu Yang, Yuan Jiacheng, Li Haitong, Liao Qingxi.Design and experiment on cylinder sieve with different rotational speed in cleaning system for rape combine harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 27-35. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.004 http://www.tcsae.org
2018-01-08
2018-03-04
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700405A);農(nóng)業(yè)農(nóng)村部科研杰出人才與創(chuàng)新團(tuán)隊(duì)項(xiàng)目
萬(wàn)星宇,男,湖北鐘祥人,博士生,研究方向?yàn)楝F(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)與測(cè)控。Email:821786261@qq.com
廖慶喜,男,湖北江陵人,教授,博士生導(dǎo)師,主要從事油菜機(jī)械化生產(chǎn)技術(shù)與裝備等方面的研究。Email:liaoqx@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2018.14.004
S225.99
A
1002-6819(2018)-14-0027-09