• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Diagonalized Legendre Rational Spectral Method for Problems on the Whole Line

    2018-08-06 06:10:34XuhongYuYungeZhaoandZhongqingWang
    Journal of Mathematical Study 2018年2期
    關(guān)鍵詞:右臂臺(tái)式血壓計(jì)

    Xuhong Yu,Yunge Zhao and Zhongqing Wang

    School of Science,University of Shanghai for Science and Technology,Shanghai,200093,P.R.China.

    Abstract.A diagonalized Legendre rational spectral method for solving second and fourth order differential equations are proposed.Some Fourier-like Sobolev orthogonal basis functions are constructed which lead to the diagonalization of discrete systems.Accordingly,both the exact solutions and the approximate solutions can be represented as in finite and truncated Fourier series.Numerical results demonstrate the effectiveness of this approach.

    AMS subject classifications:65N35,41A20,33C45,35J25,35J40,35K05

    Key words:Legendre rational spectral method,Sobolev orthogonal functions,elliptic boundary value problems,heat equation,numerical results.

    1 Introduction

    Many science and engineering problems are set in unbounded domains,such as fl uid flows in an in finite strip,nonlinear wave equations in quantum mechanics and so on.How to accurately and efficiently solve such problems is a very important and dif ficult subject,since the unboundedness causes considerable theoretical and practical challenges.There are several ways for their numerical simulations.Usually we restrict calculations to some bounded subdomains and impose certain artificial boundary conditions.It is easy to be performed,but it lowers the accuracy sometimes.The second way is to use spectral method associated with some orthogonal systems on the unbounded domains,such as the Laguerre and Hermite spectral method[1,2,5,6,8–10,13,16–19].However,since the Laguerre/Hermite Gauss points are too concentrated near zero,the approximation results are usually not ideal,especially where the points are far away from zero.The third method is to change original problems by variable transformations to certain singular problems on finite intervals,and then use Jacobi approximation to resolve the resulting problems[7].The fourth effective method is to use algebraically mapped Legendre,Chebyshev or Jacobi functions to approximate the differential equations,i.e.,the so-called Legendre,ChebyshevorJacobi rational spectralmethod[3,4,11,12,21,22].Compared with the first three methods,we prefer the last way,since the distribution of the Gauss points is more reasonable than that of Laguerre and Hermite Gauss points.

    As is well known,the utilization of Legendre rational functions usually leads to a highly sparse algebraic system(a nine-diagonal matrix for second order problems and a seventeen-diagonalmatrix for fourth order problems),the condition numbers increase as O(N2)for the second order problem andO(N4)for the fourth order problem.However,in many cases,researchers still want a set of Fourier-like basis functions for a diagonalized algebraic system[14,15,20].Motivated by[14,15,20],the main purpose of this paper is to construct the Fourier-like Sobolev orthogonalbasis functions and proposethe diagonalized Legendre rational spectral method for second and fourth problems on the whole line.

    The main advantages of the suggested algorithm include:(i)The exact solutions and the approximate solutions can be represented as in finite and truncated Fourier series,respectively;(ii)The condition numbers for the resulting algebraic systems are equal to 1;(iii)The computational cost is much less than that of the classical Legendre rational spectral method.

    This paper is organized as follows.In Section 2,we introduce the modified Legendre rational functions and its basic properties.In Section 3,we construct the Sobolev orthogonal Legendre rational functions corresponding to the second order elliptic equation,the fourth order elliptic equation and the nonlinear heat equation,and propose the diagonalized Legendre rational spectral methods.Some numerical results are presented in Section 4 to demonstrate the effectiveness and accuracy.

    2 Modified legendre rational functions

    We first recall the Legendre polynomials.Let I={y|?1<y<1}and Lk(y)be the Legendre polynomial of degree k,which is the eigenfunction of the singular Sturm-Liouville problem:

    The set of all Legendre polynomials forms a complete L2(I)-orthogonal system,namely,

    where δk,lis the Kronecker function.By virtue of(2.1)and(2.2),we have

    Moreover,for any k≥1,the following recurrence relations are satisfied with L0(y)=1 and L1(y)=y,

    Besides,Lk(±1)=(±1)kand ?yLk(±1)=(±1)k+1k(k+1).

    We next recall the modifiedLegendrerational functions.Let Λ={x|?∞<x<∞}and(u,v)be the inner product of the space L2(Λ).The modified Legendre rational function of degree k is defined by(cf.[21])

    Forconvenience,let Rk(x)≡0 forany integerk<0.Due to(2.4),themodified Legendrerational functions satisfy the following recurrence relations with

    The set of{Rk(x)}k≥0forms a complete L2(Λ)-orthogonal system,

    Moreover,by(2.3)we know that the functions?x((x2+1)34Rk(x))are mutually orthogonal with respect to the weight function χ1(x)=(x2+1)12,

    Lemma 2.1.For any k≥0,we have

    and

    Proof.By(2.8),(2.6)and(2.7),we derive that

    Next,denote by A=(ak,l)0≤k,l≤Nthe matrix with the element ak,l=(?xRl,?xRk).By using(2.13)and(2.10),we can deduce readily the nonzero elements of matrix A as follows,

    This,along with(2.14),leads to the result(2.11).In the same manner,we derive the result(2.12).

    3 Diagonalized Legendre rational spectral methods

    In this section,we propose a diagonalized Legendre rational spectral method for solving various differential equations.

    3.1 Second-order problems

    Consider the second order elliptic boundary value problem:

    A weak formulation of(3.1)is to find u∈H1(Λ)such that

    Clearly,if f∈(H1(Λ))′,then by Lax-Milgram lemma,(3.2)admits a unique solution.

    Next,let N be any positive integer,andRN(Λ)=span{R0(x),R1(x),···,RN(x)}.The Legendre rational spectral scheme for(3.2)is to find uN∈RN(Λ)such that

    To propose a diagonalized approximation scheme for(3.3),we need to construct new basis functions{?k}0≤k≤N,which are mutually orthogonal with respect to the Sobolev inner produce Aμ(·,·).

    Lemma 3.1.Let ?k∈ Rk(Λ)be the Sobolev orthogonal Legendre rational function such that ?k?Rk∈Rk?1(Λ)and

    Then we have

    where ?k(x)≡0(k<0),ηk=0(k<0),dk,1=0(k<2),dk,2=0(k<4),and

    Proof.We first use mathematical induction to verify the result(3.5).According to the orthogonality assumption(3.4),we have

    Due to the orthogonality(2.9),we know

    Therefore,with the help of(2.11),we obtain that

    1.2.3 血壓測量:采取經(jīng)校正的臺(tái)式血壓計(jì),在受試者靜坐5~10分鐘后采取右臂測量2次,每次間隔至少1分鐘,取3次均值為其血壓值。

    This means ?1(x)=R1(x).Similarly,

    which means ?2(x)=R2(x)?d2,1?0(x)with the constantIn the same manner,we can verify the results of(3.5)for k=3,4,with the constantsandas in(3.6).

    Next,assume that for any 0≤l≤k?1 and k≥5,

    We shall prove that for k≥5,

    In fact,by(3.2),(3.8),(2.11)and the induction assumption,we derive that for k>l≥0 and k≥5,

    Hence,by(3.7)we verify the result(3.5)with

    It remains to confirm the constant ηk.Clearly,by(2.9)and(2.11)we get

    On the other hand,by(3.5)we have

    This ends the proof.

    Obviously,RN(Λ)={?k(x):0≤k≤N}.Thus the variational forms(3.2)and(3.3)together with the orthogonality of{?k(x)}lead to the following main theorem in this subsection.

    Theorem 3.1.Let u(x)and uN(x)be the solution of(3.1)and(3.3),respectively.Then both u(x)and uN(x)have the explicit representations in{?k(x)},

    3.2 Fourth-order problems

    Consider the fourth order elliptic boundary value problem:

    A weak formulation of(3.10)is to find u∈H2(Λ)such that

    Clearly,if f∈(H2(Λ))′,then by Lax-Milgram lemma,(3.11)admits a unique solution.

    The Legendre rational spectral scheme for(3.11)is to find uN∈RN(Λ)such that

    Toproposeadiagonalized approximation schemefor(3.12),weneedto constructnew basis functions{ψk}0≤k≤N,which are mutually orthogonal with respect to the Sobolev inner produce Bα,β(·,·).

    Lemma 3.2.Let ψk∈ Rk(Λ)be the Sobolev orthogonal Legendre rational functions such that ψk?Rk∈Rk?1(Λ)and

    Then the following recurrence relation holds:

    where ψk(x)≡0(k<0),σk=0(k<0),ak=0(k<2),bk=0(k<4),ck=0(k<6),dk=0(k<8),and

    Proof.According to the orthogonality assumption(3.13),we have

    We first use mathematical induction to verify(3.14).By(2.9)we have(Rk,ψm)=0,? m<k.Therefore,by(2.11)and(2.12)we obtain

    Thus,ψ1(x)=R1(x).Similarly,

    which means ψ2(x)=R2(x)?a2ψ0(x)with the constantIn the same manner,we can verify the results of(3.14)for k≤8.

    Next,assume that for any 0≤l≤k?1 and k≥9,

    We shall prove that for k≥9,

    In fact,by(2.9)and(3.11),we deduce that for any k>m≥0,

    From(2.11),(2.12)and(2.9),we know thatfor 0≤m≤k?9 and 0≤n≤k?5.Therefore,by(3.15)we get

    Next,by(2.11),(2.12),(2.9),(3.13)and the induction assumption,we know that for k≥9,

    On the other hand,

    It remains to confirm the coefficients ak,bk,ck,dkand σk.Actually,by using(2.11),(2.12)and(2.9),we obtain that for k>m≥0 and k≥9,

    On the other hand,

    Taking m=k?2,k?4,k?6,k?8 in(3.17)and(3.18)respectively,we derive the results(ii)-(v)in Lemma 3.2.

    We next confirm the constant σk.By using(2.11),(2.12),(2.9)and(3.13),we know that for k≥9,

    and

    This gives the result(i)of Lemma 3.2.

    Theorem 3.2.Let u(x)and uN(x)be the solution of(3.10)and(3.12),respectively.Then both u(x)and uN(x)have the explicit representations in{ψk(x)},

    3.3 The nonlinear heat equation

    Consider the following nonlinear heat equation,

    whereμ>0 and f(x,t)is a given function.

    We shall propose an efficient spectral- finite difference scheme based on diagonalized Legendre rational spectral method in space and the finite difference method in time.

    Denote by τ the time step size,M=,and u(k)(x)=u(x,kτ),k=0,1,2,···,M.Then,a standard centered difference scheme in time is given by

    A weak formulation of(3.20)is to find u(k+1)(x)∈H1(Λ)such that

    where

    The Legendre rational spectral scheme for(3.21)is to findsuch that

    where

    To propose a diagonalized Legendre rational spectral scheme for(3.22),we need to constructnewbasis functions{Ψk(x)}0≤k≤N,whichare mutually orthogonalwithrespect to the Sobolev inner produce Aτ,μ(·,·).

    Lemma 3.3.Let Ψk∈ Rk(Λ)be the Sobolev orthogonal Legendre rational functions such that Ψk?Rk∈Rk?1(Λ)and

    Then we have

    where Ψk(x)≡0(k<0),γk=0(k<0),dk,1=0(k<2),dk,2=0(k<4),and

    Proof.The proof is in the same way as Lemma 3.1.We neglect the details.

    Theorem 3.3.Letbe the solution of(3.22).Then we have

    Remark 3.1.This is an implicit scheme.In actual computation,an iterative process should be employed to evaluate the expansion coefficients.

    4 Numerical results

    Inthis section,weexamine theeffectivenessand theaccuracy ofthediagonalized Legendre rational spectralmethod for solving elliptic equations and nonlinear heat equation.

    We first examine the secondorderproblem(3.1)withμ=1,and considerthe following two cases of the smooth solutions with different decay properties.

    ? u(x)=e?x2sin(kx),which is exponential decay with oscillation.In Figure 1,we plot the log10of the discrete L2-and H1-errors vs.N with k=2.The two near straight lines indicate a geometric convergence rate.

    Figure 1:Errors of scheme(3.3)with exponential decay function.

    Figure 2:Errors of scheme(3.3)with algebraic decay function.

    Figure 3:Errors of scheme(3.12)with exponential decay function.

    Figure 4:Errors of scheme(3.12)with algebraic decay function.

    We next examine the fourth order problem(3.10)with α= β=1,and consider the following two cases of the smooth solutions with different decay properties.

    ?u(x)=e?x2sin(kx),which is exponential decay with oscillation.In Figure 3,we plot the log10of the discrete L2-and H1-errors vs.N with k=2.Again,a geometric convergence rate is observed.

    We finally consider the nonlinear heat equation(3.19)withμ=1,and consider the following two cases of the smooth solutions with different decay properties.

    Figure 5:L2-errors of scheme(3.22)with exponential decay function.

    Figure 6:H1-errors of scheme(3.22)with exponential decay function.

    Figure 7:Stability of scheme(3.22)with exponential decay function.

    Figure 8:L2-errors of scheme(3.22)with algebraic decay function.

    ? u(x,t)=e?x2sin(k1x+k2t),which is exponential decay with oscillation.In Figures 5 and 6,we plot the log10of the discrete L2-and H1-errors vs.N with τ=0.1,0,01,0.001,0.0001 and k1=2,k2=1,respectively.Clearly,a geometric convergence rate is observed.They also indicate that the smaller the time step size τ,the smaller the numerical errors would be.In Figure 7,we plot the values of L2-errors for 0≤t≤100 with τ =0.01.It demonstrates the stability of long-time calculation of scheme(3.21).

    To demonstrate the essential superiority of the diagonalized Legendre rational spectral method to the classic Legendre rational and Hermite spectral methods,we also ex-amine the issues on the condition numbers for the resulting algebraic systems and the computational cost.

    Table 1:Condition numbers of the classical Legendre rational spectral method

    Table 2:Condition numbers of Hermite spectral method

    Table 3:Diagonalized Legendre rational spectral method for(3.10).

    Table 4:Classical Legendre rational spectral method for(3.10).

    The basis functions in the diagonalized Legendre rational spectral method are chosenandwhich are Sobolev orthogonal.Accordingly,the condition numbers are equal to 1.

    For the classical Legendre rational and Hermite spectral methods,the basis functions are chosen asThe corresponding stiff matrices have off-diagonal entries.In Tables 1 and 2 below,we list the condition numbers of the classical Legendre rational spectral method and Hermite spectral method for(3.1)and(3.10).Note that the condition numbers in Table 1 increase asO(N2)for the second order problem(3.1)andO(N4)for the fourth order problem(3.10)by the classical Legendre rational spectral method with α=β=μ=1.Moreover,the condition numbers in Table 2 increase asO(N)for the second order problem(3.1)andO(N2)for the fourth order problem(3.10)by the Hermite spectral method with α=β=μ=1.

    For comparison of the computational cost between the diagonalized Legedre rational spectral method and the classical Legedre rational spectral method,we consider the problem(3.10)with α=β=1.In Tables 3 and 4,we list the L2-errors and the corresponding computational cost.It can be observed that our diagonalized spectral method costs much less CPU time.

    Acknowledgments

    This work was supported in part by NSF of China No.11571238 and No.11601332 and the Hujiang Foundation of China No.B14005.

    猜你喜歡
    右臂臺(tái)式血壓計(jì)
    莫忘給血壓計(jì)“體檢”
    血壓計(jì)的測壓原理
    血壓計(jì)巧防腦中風(fēng)
    電子血壓計(jì)可靠性的討論與展望
    電子測試(2018年4期)2018-05-09 07:28:36
    我的右臂開著淤青的花朵
    一種面向育種家的新型臺(tái)式棉籽脫絨機(jī)
    中國棉花(2017年10期)2017-11-04 06:39:32
    平潭石頭厝里的“臺(tái)式創(chuàng)業(yè)夢”
    海峽姐妹(2017年7期)2017-07-31 19:08:20
    情感化在臺(tái)式電腦設(shè)計(jì)中的應(yīng)用
    柔軟
    少林反擒拿法
    少林與太極(2014年9期)2014-10-15 04:21:54
    欧美大码av| 99久久综合免费| 电影成人av| 午夜两性在线视频| 在线观看免费日韩欧美大片| 国产三级黄色录像| 欧美久久黑人一区二区| 亚洲av欧美aⅴ国产| 欧美激情高清一区二区三区| 国产一区二区三区在线臀色熟女 | www日本在线高清视频| 视频在线观看一区二区三区| 精品少妇黑人巨大在线播放| 黑人巨大精品欧美一区二区蜜桃| 搡老熟女国产l中国老女人| 一进一出抽搐动态| 人人妻人人爽人人添夜夜欢视频| 一区二区三区激情视频| 啦啦啦中文免费视频观看日本| e午夜精品久久久久久久| 欧美日韩福利视频一区二区| 麻豆av在线久日| kizo精华| 少妇粗大呻吟视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久精品人妻al黑| 亚洲精品国产av蜜桃| 精品国产国语对白av| 欧美亚洲 丝袜 人妻 在线| 超碰97精品在线观看| 精品少妇内射三级| 国产精品秋霞免费鲁丝片| 精品乱码久久久久久99久播| 美女福利国产在线| 夫妻午夜视频| 国产亚洲精品久久久久5区| 精品国产一区二区三区四区第35| 黄片播放在线免费| 极品人妻少妇av视频| 欧美xxⅹ黑人| 成年动漫av网址| 啦啦啦啦在线视频资源| 无限看片的www在线观看| 少妇的丰满在线观看| 亚洲激情五月婷婷啪啪| 精品国产一区二区三区久久久樱花| 欧美黑人精品巨大| 999久久久精品免费观看国产| 免费在线观看黄色视频的| 91av网站免费观看| 午夜福利一区二区在线看| 又紧又爽又黄一区二区| 国精品久久久久久国模美| 18在线观看网站| av有码第一页| 啦啦啦免费观看视频1| 欧美精品啪啪一区二区三区 | 在线观看免费日韩欧美大片| 成年人免费黄色播放视频| 国产真人三级小视频在线观看| 亚洲伊人色综图| 欧美激情久久久久久爽电影 | 亚洲欧洲精品一区二区精品久久久| 少妇裸体淫交视频免费看高清 | 乱人伦中国视频| av在线播放精品| 成人18禁高潮啪啪吃奶动态图| 麻豆av在线久日| 午夜福利乱码中文字幕| 美女国产高潮福利片在线看| 欧美日韩国产mv在线观看视频| 久久99一区二区三区| 国产真人三级小视频在线观看| 乱人伦中国视频| 色老头精品视频在线观看| 国精品久久久久久国模美| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情 高清一区二区三区| 中文字幕精品免费在线观看视频| 青春草亚洲视频在线观看| 国产精品成人在线| 岛国毛片在线播放| 国产主播在线观看一区二区| 国产精品久久久久久精品电影小说| 精品少妇内射三级| 亚洲 欧美一区二区三区| www.熟女人妻精品国产| 精品熟女少妇八av免费久了| 欧美黑人欧美精品刺激| 亚洲熟女毛片儿| √禁漫天堂资源中文www| 婷婷丁香在线五月| 中亚洲国语对白在线视频| 免费看十八禁软件| 中国美女看黄片| 精品久久蜜臀av无| 国产精品欧美亚洲77777| 9191精品国产免费久久| 伦理电影免费视频| √禁漫天堂资源中文www| 成年女人毛片免费观看观看9 | 成年人黄色毛片网站| 91精品三级在线观看| 日韩欧美国产一区二区入口| 国产成人欧美| 久久人人爽人人片av| a级毛片黄视频| 中文字幕av电影在线播放| 首页视频小说图片口味搜索| 天堂中文最新版在线下载| 久久久国产精品麻豆| 另类亚洲欧美激情| 不卡一级毛片| 大香蕉久久网| 国产伦人伦偷精品视频| 超色免费av| 成人国语在线视频| 精品少妇久久久久久888优播| 日韩免费高清中文字幕av| 在线观看舔阴道视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美精品综合一区二区三区| 成年人午夜在线观看视频| 一区二区三区激情视频| 亚洲中文字幕日韩| 亚洲精品一卡2卡三卡4卡5卡 | 新久久久久国产一级毛片| 99国产极品粉嫩在线观看| 99久久人妻综合| 精品亚洲成国产av| 午夜福利乱码中文字幕| 国产精品久久久人人做人人爽| 人妻一区二区av| 国产一区二区三区综合在线观看| 国产免费福利视频在线观看| 久久精品亚洲av国产电影网| 国产欧美日韩综合在线一区二区| 欧美另类一区| av国产精品久久久久影院| 国产精品1区2区在线观看. | 午夜免费观看性视频| 人人妻人人爽人人添夜夜欢视频| 人妻一区二区av| 99精品欧美一区二区三区四区| 一二三四社区在线视频社区8| 无遮挡黄片免费观看| 国产日韩欧美在线精品| 国产淫语在线视频| 欧美日本中文国产一区发布| 深夜精品福利| 亚洲国产日韩一区二区| 啦啦啦 在线观看视频| 欧美黑人欧美精品刺激| 亚洲精品美女久久av网站| 美女中出高潮动态图| 国产精品香港三级国产av潘金莲| 国产主播在线观看一区二区| 久久女婷五月综合色啪小说| 亚洲七黄色美女视频| 国产福利在线免费观看视频| 久久久精品国产亚洲av高清涩受| 亚洲五月婷婷丁香| 热99re8久久精品国产| 国产主播在线观看一区二区| 无遮挡黄片免费观看| 欧美精品高潮呻吟av久久| 高清视频免费观看一区二区| 成年动漫av网址| 久久久久精品人妻al黑| 国产精品 国内视频| 亚洲国产av新网站| 亚洲成人手机| 男人舔女人的私密视频| 热99久久久久精品小说推荐| 他把我摸到了高潮在线观看 | 伊人久久大香线蕉亚洲五| tube8黄色片| 在线精品无人区一区二区三| 欧美老熟妇乱子伦牲交| 90打野战视频偷拍视频| 国产免费福利视频在线观看| 99精国产麻豆久久婷婷| 午夜福利在线观看吧| bbb黄色大片| 欧美日韩福利视频一区二区| 黄片大片在线免费观看| 亚洲熟女精品中文字幕| 日本vs欧美在线观看视频| 99久久精品国产亚洲精品| 国产男人的电影天堂91| 久久综合国产亚洲精品| 亚洲 欧美一区二区三区| 国产亚洲精品一区二区www | av在线老鸭窝| 韩国精品一区二区三区| 热re99久久精品国产66热6| 韩国高清视频一区二区三区| 12—13女人毛片做爰片一| 亚洲成人免费av在线播放| 他把我摸到了高潮在线观看 | 国产欧美日韩一区二区三区在线| 亚洲专区国产一区二区| 纯流量卡能插随身wifi吗| 欧美+亚洲+日韩+国产| 亚洲全国av大片| 欧美av亚洲av综合av国产av| 精品国产一区二区三区四区第35| av天堂在线播放| 国产淫语在线视频| 免费高清在线观看日韩| 国产91精品成人一区二区三区 | 久久久久久久国产电影| 飞空精品影院首页| 韩国精品一区二区三区| 午夜福利乱码中文字幕| 成年人免费黄色播放视频| 日本黄色日本黄色录像| 一个人免费在线观看的高清视频 | 交换朋友夫妻互换小说| 日韩大码丰满熟妇| 一级片免费观看大全| 母亲3免费完整高清在线观看| 亚洲美女黄色视频免费看| 亚洲美女黄色视频免费看| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区免费欧美 | 91字幕亚洲| 99久久人妻综合| 久久天堂一区二区三区四区| 国产在线免费精品| 成人手机av| 欧美一级毛片孕妇| 高清av免费在线| 免费在线观看日本一区| www日本在线高清视频| 亚洲三区欧美一区| 涩涩av久久男人的天堂| 久久天堂一区二区三区四区| 五月开心婷婷网| 男女免费视频国产| 麻豆国产av国片精品| 国产欧美日韩一区二区精品| 日本vs欧美在线观看视频| 欧美精品av麻豆av| 啦啦啦视频在线资源免费观看| 欧美性长视频在线观看| 欧美 日韩 精品 国产| 久久人人97超碰香蕉20202| 宅男免费午夜| 亚洲一码二码三码区别大吗| 桃红色精品国产亚洲av| 午夜福利在线观看吧| 最新在线观看一区二区三区| 国产精品一区二区在线不卡| netflix在线观看网站| 亚洲三区欧美一区| 国产在线一区二区三区精| 精品人妻熟女毛片av久久网站| cao死你这个sao货| 久久香蕉激情| 欧美精品av麻豆av| 久久久久视频综合| 久久青草综合色| 日韩一区二区三区影片| 国产真人三级小视频在线观看| 国产三级黄色录像| 国产精品偷伦视频观看了| 亚洲第一欧美日韩一区二区三区 | 性高湖久久久久久久久免费观看| 国产精品 国内视频| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 天堂俺去俺来也www色官网| 一区二区日韩欧美中文字幕| 久久女婷五月综合色啪小说| av网站免费在线观看视频| 亚洲国产av影院在线观看| 国产成人啪精品午夜网站| 免费一级毛片在线播放高清视频 | 精品乱码久久久久久99久播| 宅男免费午夜| 亚洲精品中文字幕一二三四区 | 母亲3免费完整高清在线观看| 少妇人妻久久综合中文| xxxhd国产人妻xxx| 少妇 在线观看| 一区二区日韩欧美中文字幕| 视频区欧美日本亚洲| 日本一区二区免费在线视频| 欧美中文综合在线视频| 五月天丁香电影| 女人高潮潮喷娇喘18禁视频| h视频一区二区三区| 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 9热在线视频观看99| 欧美日韩亚洲高清精品| 国产又爽黄色视频| 成年人免费黄色播放视频| a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看 | 五月开心婷婷网| 亚洲一码二码三码区别大吗| 亚洲美女黄色视频免费看| 国产亚洲午夜精品一区二区久久| 9191精品国产免费久久| 999久久久精品免费观看国产| 一区福利在线观看| 香蕉丝袜av| 久久这里只有精品19| 亚洲欧美日韩高清在线视频 | 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 十八禁网站免费在线| 亚洲欧美一区二区三区黑人| 色婷婷av一区二区三区视频| 国产片内射在线| 精品国产国语对白av| 97在线人人人人妻| 天堂中文最新版在线下载| 国产成人免费观看mmmm| 欧美激情久久久久久爽电影 | 国产一区二区 视频在线| 亚洲一区中文字幕在线| 日韩电影二区| 成年美女黄网站色视频大全免费| 大码成人一级视频| 国产亚洲精品一区二区www | 一级片免费观看大全| 国产亚洲午夜精品一区二区久久| 婷婷色av中文字幕| 91精品三级在线观看| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 亚洲七黄色美女视频| 国产成人免费观看mmmm| 精品久久久精品久久久| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 黄片大片在线免费观看| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| tube8黄色片| 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 99精品欧美一区二区三区四区| 亚洲精华国产精华精| 法律面前人人平等表现在哪些方面 | 亚洲欧美日韩另类电影网站| 日韩电影二区| 久久久国产成人免费| 99久久99久久久精品蜜桃| 一二三四在线观看免费中文在| 久久狼人影院| 满18在线观看网站| 精品一区在线观看国产| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 黄色视频在线播放观看不卡| 久久国产精品男人的天堂亚洲| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 韩国高清视频一区二区三区| 黄色视频不卡| 免费人妻精品一区二区三区视频| 国产精品一区二区在线不卡| 午夜两性在线视频| 欧美激情高清一区二区三区| svipshipincom国产片| 性色av一级| 精品久久久久久久毛片微露脸 | 中国国产av一级| 亚洲五月色婷婷综合| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 亚洲,欧美精品.| 成人三级做爰电影| 亚洲精品中文字幕在线视频| 宅男免费午夜| 久9热在线精品视频| 午夜91福利影院| 亚洲成人免费av在线播放| 国产精品 国内视频| 欧美一级毛片孕妇| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 欧美日韩福利视频一区二区| 热re99久久国产66热| 一个人免费看片子| 欧美精品一区二区大全| 国产成人一区二区三区免费视频网站| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 日韩三级视频一区二区三区| 午夜老司机福利片| 亚洲欧美一区二区三区久久| 国产成人系列免费观看| 日本a在线网址| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 色94色欧美一区二区| 国产成人欧美在线观看 | 久久狼人影院| 黄片大片在线免费观看| 黑人猛操日本美女一级片| 老熟妇仑乱视频hdxx| 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| 久久这里只有精品19| av免费在线观看网站| 十八禁网站免费在线| 99热网站在线观看| 曰老女人黄片| 欧美日本中文国产一区发布| 99久久精品国产亚洲精品| 亚洲国产精品成人久久小说| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 国产视频一区二区在线看| 啦啦啦 在线观看视频| 日韩中文字幕视频在线看片| 一级黄色大片毛片| www.999成人在线观看| e午夜精品久久久久久久| 动漫黄色视频在线观看| 香蕉丝袜av| 亚洲国产精品一区三区| 国产成人系列免费观看| 国产av又大| 又黄又粗又硬又大视频| 蜜桃在线观看..| 性少妇av在线| 97精品久久久久久久久久精品| 亚洲成av片中文字幕在线观看| 日本五十路高清| 好男人电影高清在线观看| 在线看a的网站| 91大片在线观看| 久久久久久久国产电影| 在线看a的网站| 国产精品一区二区免费欧美 | 国产精品久久久久久人妻精品电影 | 国产伦人伦偷精品视频| 高清在线国产一区| 亚洲精品一区蜜桃| 男女下面插进去视频免费观看| 久久青草综合色| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| 久久久欧美国产精品| 操出白浆在线播放| 亚洲av片天天在线观看| 欧美老熟妇乱子伦牲交| 女警被强在线播放| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 丁香六月欧美| 在线观看免费视频网站a站| 99热网站在线观看| 婷婷成人精品国产| 国产成人精品无人区| 淫妇啪啪啪对白视频 | 国产免费av片在线观看野外av| 免费在线观看黄色视频的| 9热在线视频观看99| 午夜福利在线免费观看网站| 久久久久久久久免费视频了| 久久狼人影院| 99久久精品国产亚洲精品| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 一进一出抽搐动态| 老熟妇乱子伦视频在线观看 | 91av网站免费观看| 精品国产乱子伦一区二区三区 | 99久久国产精品久久久| 女性被躁到高潮视频| 捣出白浆h1v1| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| av一本久久久久| 男女无遮挡免费网站观看| 女人精品久久久久毛片| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影 | 亚洲第一青青草原| 少妇人妻久久综合中文| 999久久久精品免费观看国产| 国产在线免费精品| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| www.av在线官网国产| 国产成人av教育| 日韩中文字幕欧美一区二区| 亚洲人成77777在线视频| 美女扒开内裤让男人捅视频| 韩国精品一区二区三区| 成年人黄色毛片网站| 黄色视频在线播放观看不卡| 男女之事视频高清在线观看| 欧美日韩国产mv在线观看视频| 91麻豆精品激情在线观看国产 | 色94色欧美一区二区| 老司机福利观看| 在线亚洲精品国产二区图片欧美| 18在线观看网站| 又紧又爽又黄一区二区| 国产免费福利视频在线观看| 午夜91福利影院| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区 | 精品少妇内射三级| 国产一区二区三区综合在线观看| 国产人伦9x9x在线观看| 人妻 亚洲 视频| 亚洲五月婷婷丁香| 99国产精品一区二区三区| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 黄色 视频免费看| 国产色视频综合| 国产视频一区二区在线看| 天天操日日干夜夜撸| 不卡av一区二区三区| 黄色视频,在线免费观看| 精品久久久精品久久久| www.av在线官网国产| 色视频在线一区二区三区| 国产不卡av网站在线观看| 欧美另类一区| 国产伦理片在线播放av一区| 日日夜夜操网爽| 国产精品自产拍在线观看55亚洲 | 亚洲七黄色美女视频| 亚洲精品国产av成人精品| 90打野战视频偷拍视频| 91九色精品人成在线观看| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 国产精品av久久久久免费| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 精品久久久精品久久久| 中文字幕另类日韩欧美亚洲嫩草| 两性午夜刺激爽爽歪歪视频在线观看 | www.熟女人妻精品国产| avwww免费| 日本猛色少妇xxxxx猛交久久| 少妇被粗大的猛进出69影院| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 亚洲成人国产一区在线观看| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 中文字幕高清在线视频| 日韩三级视频一区二区三区| 丁香六月欧美| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 黄频高清免费视频| 欧美日韩精品网址| 午夜福利在线观看吧| 亚洲成人免费电影在线观看| 69精品国产乱码久久久| 午夜免费成人在线视频| 美女扒开内裤让男人捅视频| 午夜福利,免费看| 色播在线永久视频| 高清黄色对白视频在线免费看| 亚洲五月色婷婷综合| 欧美日韩福利视频一区二区| av在线老鸭窝| 一级毛片电影观看| 老汉色av国产亚洲站长工具| 亚洲色图综合在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 热99国产精品久久久久久7| 狠狠狠狠99中文字幕| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到| 亚洲国产成人一精品久久久| 精品熟女少妇八av免费久了| 亚洲少妇的诱惑av| 自拍欧美九色日韩亚洲蝌蚪91| 久久久欧美国产精品| 日日爽夜夜爽网站| 黄频高清免费视频| 韩国高清视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 两性夫妻黄色片| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 在线观看人妻少妇| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 日本av手机在线免费观看|