• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ill-posedness of Inverse Diffusion Problems by Jacobi’s Theta Transform

    2018-08-06 06:10:24FakerBenBelgacemDjalilKatebandVincentRobin
    Journal of Mathematical Study 2018年2期

    Faker Ben Belgacem,M.Djalil Kateb and Vincent Robin

    LaboratoiredeMath′ematiquesAppliqu′eesdeCompiegne,Sorbonne Universit′es,UTC,EA 2222,F-60205 Compiegne,France.

    Abstract.The subject is the ill-posedness degree of some inverse problems for the transient heat conduction.We focus on three of them:the completion of missing boundary data,the identification of the trajectory of a pointwise source and the recovery of the initial state.In all of these problems,the observations provide over-specified boundary data,commonly called Cauchy boundary conditions.Notice that the third problem is central for the controllability by a boundary control of the temperature.Presumably,they are all severely ill-posed,a relevant indicator on their instabilities,as formalized by G.Wahba.We revisit these issues under a new light and with different mathematical tools to provide detailed and complete proofs for these results.Jacobi Theta functions,complemented with the Jacobi Imaginary Transform,turn out to be a powerful tool to realize our objectives.In particular,based on the Laptev work[Matematicheskie Zametki 16,741-750(1974)],we provide a new information about the observation of the initial data problem.It is actually exponentially ill-posed.

    Key words:Integral operators,regular kernels,Jacobi transform,separated variables approximation.

    1 Introduction

    In many areas in sciences and engineering,computational methods for the identification of missing boundary data,of pointwise source or of initial states from Cauchy measurements in transient heat transfer seem recurrent(see[1,2,5,8,22]).They are among few pertinent ways to proceed,if not the only ones.The distinctive property of these inverse problems is their ill-posedness;they suffer from serious instabilities(see[3,10,23,26]).Careless numerical procedures used for the approximation of these unstable problems fail most often.We refer to[11]for a general exposition of the possible regularization remedies.The scope here is the ill-posedness degree in the sense of[28]for the reconstruction problems of either the boundary data,the pointwise source or the initial state.In the proofs proposed here,we show how Jacobi Theta functions help to determine how fast the singular values of the underlying operators decreases toward zero,for each of the inverse problems under scrutiny.

    The contents of the paper are as follows.Section 2 is a focus on the identification of a missing boundary data,for the diffusion problem.Using Fourier series,we set the inverse problem as a convolution equation;the kernel being an in finite sum of exponentials.Practicing a zoom on this convolution kernel to especially see its shape at the initial time requires a substantial transformation of it.Applying Laplace’s transform to the heat equation,solving it explicitly and using the table of the inverse Laplace transform,we derive a different expansion of that kernel,where the time is inverted in a way.This new expression displays the flatness of the convolution kernel at the initial instant.This statement is enough to ensure the severe ill-posedness or the severe instability of the data completion problem.Section 3 introduces the Jacobi Theta functions and enumerates the identities resulting from the Jacobi Imaginary Transform,resulting itself from Poisson’s summation formula.Thenwe revisit the data completion kernel to show that its transformation can be directly deduced,as a particular example,from the ’inverse’formulas on Jacobi’s Theta functions.In Section 4,we investigate the non-linear problem of pointwise source reconstruction and illustrate that the corresponding linearized inverse problem is severely ill-posed.We turn in Section 5 to the observation problem,currently studied as the adjoint of the exact control of the temperature by a boundary control(see[30]).The novelty the analysis ends to is the exponential ill-posedness of the boundary controllability problem.There is no clues that this statement has been seen before.

    2 Boundary data completion

    Let a rod be geometrically represented by I,the segment(0,π)of the real axis and J=(0,T)the time interval.We set Q=I×J.The generic point in I is denoted by x and the time variable is t.Assume now be given a boundary condition η in L2(0,T).Then,we consider the following heat equation

    The symbol′is used for the space derivative ?x.Putting the source data and the initial state to zero is chosen only for simplicity.

    The inverse problem of the boundary completion consists in recovering the data η at extremity x=0,which is inaccessible,for some practical reason.Hopefully,it is achieved by collecting observations on y at the other extremity x=π where measurements can be collected.This results in redundant boundary data at point x=π and in unavailable condition at x=0.

    Now,consider that h=h(t)is given in L2(J).The boundary condition η(at x=0)is unknown,it is the missing data to be recovered from observation on y at x=π,

    Neumann condition given in(2.1)together with(2.2)are the Cauchy conditions at x=π.The lack of boundary data at x=0 is known to rise high difficulties.The focus here is on the ill-posedness degree.Following the definition in[28],the inverse problem is said to be severely ill-posed if the singular-values(μn)n≥0of the operator D decays faster than any negative power of n.This means that the sequence(nνμn)n≥0decays towards zero for all ν>0.Slightly different definitions may be encountered in the literature;they are all variants of the basic one in[28].We hold the definition we follow here as a pertinent one and is sufficient to our goal.We provide in the subsequent a mathematical proof of the severe ill-posedness of the problem.

    Using Fourier series for the computation of the solution yη,we come up with an integral form

    As a result,the observation operator D is as follows

    with the kernel K defined to be

    The condensed problem(2.2)turns out to be a Volterra equation and D is a convolution operator with kernel K(·).

    The specialized literature shows that the ill-posedness degree of equation(2.2)is tightly related to the smoothness of the convolution kernel K(·)on J(see[12,27])and in particular to its behavior in the vicinity of t=0.A direct result is that K=K(t,s),looked at a bivariate function,can be approximated,with high accuracy,by a finite sequence of separated functions.This has to do with the concept of Kolmogorov approximation numbers of the operators(see[24]).This is the pursued aim.

    Let us first of all notice straight away that,by applying the discrete version of the dominated convergence theorem,K(·)is inde finitely differentiable in]0,T].Hence,the important issue is not only to investigate the differentiability at point t=0+but also to know whether K is flat or not.To get an insight on what happen,we use matlab to depict in Figure 1 the representative curves of K so as of its three first derivatives K′,K′′and K′′.They confirms the expectation.

    Figure 1:The representative curves of the kernel and its first derivatives,K,K′(left)and K′,K′′(right).They are all flat at the vicinity of zero.

    We rigorously show in the sequel that behavior of the kernel K.We therefore need to transform the expression of K.The dominated convergence theorem allows therefore to prove the desired flatness of K to the right of the origin.

    Lemma 2.1.There holds that

    Proof.LetLbe the Laplace transform with respect to the time variable.Set=Lyη.Hence,for all p≥0,the function?yη(·,p)is solutionof the elliptic boundary value problem

    This problem can be explicitly solved.Making all calculations,we obtain that

    Owing to the convolution theorem of the Laplace transform,we haveThis yields Calling for the table of Laplace transform shows that(see[4,Chapter V,Section 5.6,example 1,page 245]),

    This achieves the result and the proof is complete.

    Proposition 2.1.For all integer ν,we have that

    Proof.Using the dominated convergence theorem we are able to check out that for all integer ν,

    This is a sufficient indication of the flattened shape of K at the vicinity of t=0.The proof is complete.

    A straightforward consequence is that the data completion problem is severely illposed and falls short of exponential ill-posedness.

    Corollary 2.1.Problem(2.2)is severely ill-posed.

    Proof.Onaccount oftheregularityofK inProposition2.1and following[12],thesingularvalues(μn)n∈Nof the operator D,ordered decreasingly,decay toward zero faster than n?νfor any ν>0.This is the indicator of severe ill-posedness.The proof is complete.

    Remark 2.1.Problem(2.2)may not be exponentially ill-posed.K is clearly not analytic near t=0.There is no further indication that the singular-values(μn)n≥0decrease like e?βnνfor some β >0 and ν >0.

    3 Jacobi’s Theta transform

    Theta functions enter in a the large category of special functions.Similar to most of special functions,they have an important role in the area of mathematical physics and they enjoy a central utility in the theory of elliptic functions(see[29]).Those we will use thoroughly in our exposition are variants of the fundamental Jacobi theta function introduced in the early 19th century(see[17,1828]).We consider here two of these Jacobi theta functions,depending on two arguments,τ and z,τ and z are complex variables.Both sums are uniformly converging within the domain?(τ)>0 and z∈C and these two functions are therefore analytic.Notice that ?1and ?3are the notations introduced by Jacobi himself for these functions.We do not provide the two remaining functions ?2and ?4since they won’t be used.

    The key result for these functions,we will use repeatedly,is the so-called Jacobi Imaginary transform formula,a fl avor of which has been supplied in Lemma 2.1.The proof is based on the Poisson summation formula and may be found in[29,chapter XXI,page 475].

    Lemma 3.1([29]).The following Jacobi identities hold

    4 Pointwise source identification

    The inverse problem we focus on is the determination of pointwise source from some given observations.It has been addressed in the non-exhaustive list[8,9].The heat equation to work with reads as

    The source g(t)δx?a(t)is eithernot knownat all or only partially knownthat is one among the intensity g(·)or the position a(·)is not available.Consider that a sensor is installed at the extreme point x=0 and that the measurement function h(·)of the temperature y is known.Assume g(·)is known and that the trajectory a(·)of the source does not touch the sensor.This means that a(·)≥a for some constant a∈]0,π[.Then,we are left with the inverse problem: find a(·)satisfying

    The operator B is non-linear.Comprehensive identifi ability analysis has been elaborated in[3,16,18].They conclude to the injectivity of B.Despite the fact that ill-posedness degree of non-linear problem,here defined by B,may not be directly linked to its derivative B′(see[25]),we choose to investigate the linearized version of it.Most often,solving(4.2)calls for iterative procedures—Newton,Gradient algorithms.At each iteration,one has to cope with a linearized problem defined by B′.This is why we are rather interested in the linearized operator.

    Assume that g∈L2(J)and a∈L∞(J).For a mathematical study of the ill-posedness degree,we calculate a closed form of the solution y using Fourier series.It is given by

    This allows to provide an integral expression of the non-linear operator B which is also the non-linear convolution operator with the kernel

    We will know more about the operator B at the vicinity of a∈L∞(J)after studying its Fr′echet derivative D:=B′a.This derivative is expressed as follows:for all f∈L2(J),

    We have set here

    The symbol I(0,∞)is for the indicator function of(0,∞).

    Working in a Hilbert framework is better than doing so in Banach spaces.We therefore consider D as an operator mapping L2(J)into itself.We can also study it when it operates from L∞(J)into L2(J).In that context,the spectral theory we have in mind is replaced by the concept of Kolmogorov approximation numbers of the operators(see[24]).

    The spectral analysis of D is linked to the smoothness of the full kernel

    The hardest part of it consists in finding out the regularity at the vicinity of the diagonal line t?s=0 in the plan(t,s).The Jacobi Imaginary transform is there to help us with this issue.

    Proposition 4.1.There holds that:for all(t,a)∈]0,∞[×R.

    Proof.According to Lemma 3.1,and after settingwe get

    Under explicit form,this formula reads as

    Replacing cosh in terms of exponentials and reordering yields to

    Deriving with respect to a concludes to the desired result.The proof is complete.

    Remark 4.1.Kernels in Proposition 4.1 are plotted in Figure 2 for several trajectories when g=1.If necessary,zooms are realized at the time origin t=0.The flat behavior of these kernels is hence visible either for fixed or moving sources.Notice that the less flat curves are those related to the sources located near the observation point x=0.

    Figure 2:Kernels of Proposition 4.1 for fixed sources at x=a(left).The same kernel for a moving source represented by the black curve(right).The red curve is the trajectory t→a(t).

    Another preliminary point to deal with is concerned with the regularity of the kernel K,when identifi ed to the following mapping tK(t,·).We begin by studying the(sub)kernel G.

    Lemma 4.1.Let?be an arbitrary integer.Then,the derivativeG belongs to L∞(J×J).

    Proof.The critical point is to clarify the behavior of G near the diagonal line t?s=0.This is the reason why we split the derivativeG as follows

    The real number α is positive and small.is supportedaway ofthe diagnonal while the support ofis the narrow strip(of widthembracing the diagonal t?s=0.Each functionandwill be handled in a specific way.We start byThe following statement is straightforward

    By the Lebesgue dominated theorem,commuting the derivativeand the in finite sum∑k≥1is authorized.A by-product is that∈L∞(J×J).Addressingrequires the transformation given in Proposition 4.1.It can be expanded as

    The notations corresponds in an abvious way to the two terms of the expansion of the kernel G.The targeted result is proceeded gradually.

    (i)We begin by the derivatives of the( first)in finite sum

    Calculate the successive derivatives of the general term γk(·,·)yields

    P2?+1is a bivariate polynomial with degree ≤ 2?+1 with respect to each variable.The fact that 0≤a(·)≤π induces the following bound

    The coefficients of the polynomial|P|2?+1are the absolute values of those of P2?+1.By the dominated convergence theorem,this bound proves not only the uniform convergence of the series(γk)k≥1on the domain 0 ≤ t?s≤ α but also its complete flatness at the diagonal line.Indeed,we have

    (ii)The derivatives of the second in finite series

    are monitored following the same lines as for the first.This concludes to the same statement that

    The proof is then complete.

    Toprovidea relevant boundonthesingularvalues ofthe compact operator D we need the following result known as Allahverdiev’s formula(see[14,Theorem 2.1,page 28])

    We have the following

    Lemma 4.2.Let ν be a positive real number.There exists Cν>0 for which the singular-values of D satisfy

    Proof.The kernel G can be expanded on the Tchebycheff polynomials(T?)?≥0so that

    The smoothness of G explains the error estimate(see[15])

    Now,define the kernel Knby

    Using(4.4)implies the following bound

    Select Dn,the integral operator with the kernel Kn.It is easily seen that the range of Dnis spanned by(T?)0≤?≤n?1.Its rank is then ≤n.The result is ensued from identity(4.3).The proof is complete

    Theorem 4.1.Problem(4.2)is severely ill-posed.

    5 Initial state recovery

    The third problem we study is concerned with the recovery of the initial state of the heat equation from some observations at the extreme point of the rod.A narrow connection does exist between this problem and the controllability of the heat equation by a Neumann boundary condition.They are adjoint of each other.Here again Theta functions with the Jacobi Imaginary transform turn out to be well-fitting tools for the exploration of ill-posedness degree of both problems.

    Let be given an initial state ψ∈L2(I).Denote y∈L2(J;H1(I))the unique solution of the boundary value problem

    Let h(·)be given in L2(J).The observation equation is expressed as: find ψ ∈ L2(J)such that

    This inverse problem is the adjoint of the controllability of the heat equation;the control beingaNeumannconditionat x=0.Ill-posednessresultshave beenprovenforaDirichlet type control in[6].The spectral properties of some in finite structured matrices such as Cauchy and Pick matrices play an important role in the analysis elaborated there.We follow a more direct way to state an improved exponential ill-posedness.

    The operator B is bounded from L2(I)in L2(J).We intend to put it in an integral form and to study its kernel.The explicit expression of B comes from Fourier series(see[13,22]).Given that the sequence(cos(kx))k≥1is an orthogonal basis in L2(I),we may expand ψ as

    Substituteit into problem(5.1)and after achieving necessary computations,B may be put presented as follows,

    The kernel of the integral operator is hence defined by

    Inversion of B amounts to solving the Cauchy sideways problem.This inverse problem has at most one solution(see[19]).Then B is into and its kernelis the trivial subspace,i.e.,N(B)={0}.This tells that the singular-values(μn)n≥0of B are all positive.Investigating the singular-values of B can therefore be carried out by studying the non-vanishing eigenvalues(λn)n≥0of the operator A=BB?which is also an integral operator

    The kernel function G of A is given by

    Easy calculations ascertain that G belongs to L2(J×J)and A is in the class of Hilbert-Schmidt operators.Asymptotics of(the singular-values of B)are conditioned by the smoothness of G.Actually G is inde finitely smooth away form the origin(t,s)=(0,0).The key is the behavior of G at the vicinity of the vertex(0,0).We proceed in the sequel to shed some light on this issue.Jacobi’s Theta functions are capable of supplying us with the answer and to lift uncertainty about the behavior of G at the origin.

    Lemma 5.1.We have that:for all t,s∈(0,T),

    Proof.The Jacobi Theta Transformation on ?3,provides

    The proof is complete.

    The purpose is now to obtain asymptotics of the eigenvalues of the operator A=B?B.The core questionis therefore the in fluence of the term(t+s)?1/2,in the expressionof the kernel G.Notice that G has a form close to a class of integral operators examined in the early 70’s by A.A.Laptev in[20].A modern approach appears in[7,2006]that simplifies and extendthoseresults to the Banach spaces where the concept of Kolmogorov numbers is used.Recall that Kolmogorov numbers and the singular-values of a linear operator are equivalent in Hilbert scales(see[24]).We will follow this methodology.First of all,we need an important result about the separated expansion of the kernel(t+s)?1/2,

    The sequences(a?)0≤?≤n,(b?)0≤?≤n?1belong both to L2(J).The error estimate we give here can be found in[7].

    Lemma 5.2.There exist a sequence(a?(t),b?(s))0≤?≤n?1such that(5.3)holds with the following error estimation

    The constants(C,)are independent upon n.

    Theorem 5.1.There exist(f?(t),g?(s))0≤?≤n?1?L2(J)×L2(J)such that

    The following estimate holds

    Proof.Let r∈J be a small real number to be fixed later on.Consider the partition of unity

    The function I1is the indicator of the small square[0,r]×[0,r],I2is the characteristic function of the strip[0,r]×[r,1]and I3is finally for the strip[r,1]×[0,1].Basically,the proof is obtained after expanding each of the three functions Gi=GIi,1≤i≤3.(i)For the expansion of G3,it is easy to see that

    Bounding ∈3(·,·)in L2(J×J)is conducted in a progressive way

    (ii)The decomposition of G2is realized following the same lines as above.In fact,we write that J.

    with the estimate on∈2,

    (iii)The last expansion is for G1.Keeping the exponential family(e?k2t)k≥0in the expression of G1fails to provide an interesting error bound.We hence call for Lemma 5.2 to tansform it,

    Plugging expansion(5.3)into the above identity produces the following formula

    Estimate for rn(·,·)is predicted in Lemma 5.2.It remains to bound ∈1(·,·)with respect to the norm of L2(J×J).It is derived as follows

    If we switch to the L2-norm then we obtain

    This achieves the third step.

    Putting together different expansions of G1,G2and G3,and after re-ordering we derive that

    To get the bound on the residual function(·,·),we observe that

    The constant C is of course insensitive to r.Ultimately,selecting r so that r=1/n leads to the final majoration

    The proof is complete.

    Reproducing the same argumentation as for the former inverse problem of pointwise source detection we derive an exponential decreasing rate of the singularvalues of B.

    Corollary 5.1.The singularvalues(μn)n≥0of the operator B decrease like e?′n.The observation problem(5.2)is exponentially ill posed.

    Remark 5.1.Investigatingtheill-posednessdegreeofthecontrollability problemby Neumann or Dirichlet boundary data has been addressed in some works(see[13,22,23]).The most advanced results we know of are found in[6].It is shownthere that the singularvalues(μn)n≥0decrease faster than any negative power n?ν,ν>0.The analysis conducted here concludes to additional informations on the decreasing rate of(μn)n≥0.

    6 Conclusion

    The methdology developed is handy and seems successful for analyzing the compactness of some integral operators,constructed by kernels generated from the heat equation.Jacobi Theta functions and their Imaginary transforms turn out to be strongly fitted to help clarifying some inverse and control questions linked to the diffusion boundary value problems.Hopefully,the mathematical arguments exposed through this paper will be re-insvested for dispersion coupled problem as one can find in[18]and references therein.They might serve to solve further issues related to the diffusion problems.We think in particular of the sensitive question of the exact determination of the control cost??The cost blows up like e/T;computing exactly is interesting for some application,as indicted in[21].for shortime null-controllability of the heat equation.Volterra integral equations with kernels defined by elliptic functions similar to Jacobi Theta functions may also be concerned.

    免费看不卡的av| 如何舔出高潮| 国产精品嫩草影院av在线观看| 嫩草影院入口| 国产在视频线精品| 精品人妻一区二区三区麻豆| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女中出高潮动态图| 纯流量卡能插随身wifi吗| 亚洲av综合色区一区| 一区二区三区激情视频| 国产精品免费视频内射| 久久人人爽人人片av| 丰满饥渴人妻一区二区三| 国产欧美日韩一区二区三区在线| 丝袜在线中文字幕| 国产一级毛片在线| 久久久久久人妻| 91成人精品电影| 亚洲三级黄色毛片| 男女无遮挡免费网站观看| 日韩视频在线欧美| 亚洲国产精品国产精品| 久久久国产欧美日韩av| 亚洲图色成人| 日韩视频在线欧美| 蜜桃在线观看..| 亚洲精品美女久久久久99蜜臀 | 成年人午夜在线观看视频| 日韩免费高清中文字幕av| 婷婷色综合www| 国产精品嫩草影院av在线观看| 亚洲一区中文字幕在线| 久久精品国产综合久久久| 久久综合国产亚洲精品| xxxhd国产人妻xxx| 久久热在线av| 成人漫画全彩无遮挡| 2018国产大陆天天弄谢| 在线观看三级黄色| 久久久国产一区二区| 国产精品一区二区在线不卡| 一二三四中文在线观看免费高清| 我的亚洲天堂| 丰满少妇做爰视频| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影 | 乱人伦中国视频| 男女午夜视频在线观看| 一个人免费看片子| 亚洲国产看品久久| 免费黄网站久久成人精品| 婷婷色av中文字幕| 欧美 日韩 精品 国产| 天天影视国产精品| 国产伦理片在线播放av一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品999| 尾随美女入室| 久久久精品免费免费高清| 国产午夜精品一二区理论片| 国产有黄有色有爽视频| 日韩av不卡免费在线播放| 国产精品 国内视频| 只有这里有精品99| 69精品国产乱码久久久| 欧美日韩精品成人综合77777| 亚洲精品aⅴ在线观看| 狠狠婷婷综合久久久久久88av| 最近中文字幕2019免费版| 欧美激情极品国产一区二区三区| 亚洲人成77777在线视频| 国产日韩一区二区三区精品不卡| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 2021少妇久久久久久久久久久| 蜜桃国产av成人99| 波多野结衣av一区二区av| 考比视频在线观看| 色94色欧美一区二区| 一级毛片黄色毛片免费观看视频| 精品福利永久在线观看| 少妇被粗大猛烈的视频| 十分钟在线观看高清视频www| 男女高潮啪啪啪动态图| √禁漫天堂资源中文www| 大片电影免费在线观看免费| 丰满乱子伦码专区| 精品久久久久久电影网| 欧美另类一区| 黄色怎么调成土黄色| 男男h啪啪无遮挡| 亚洲一区中文字幕在线| 国产无遮挡羞羞视频在线观看| 国产日韩欧美亚洲二区| 高清视频免费观看一区二区| 欧美日韩综合久久久久久| 国产福利在线免费观看视频| 亚洲精品,欧美精品| 亚洲国产av影院在线观看| av一本久久久久| 一二三四中文在线观看免费高清| 亚洲欧美日韩另类电影网站| 老女人水多毛片| 18+在线观看网站| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 丝袜美足系列| 久久这里有精品视频免费| 久久久亚洲精品成人影院| 91久久精品国产一区二区三区| 精品国产超薄肉色丝袜足j| 国产成人一区二区在线| 性少妇av在线| 最近2019中文字幕mv第一页| 在线天堂中文资源库| 又大又黄又爽视频免费| 女性被躁到高潮视频| 午夜福利乱码中文字幕| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| 亚洲综合色网址| 欧美精品国产亚洲| 午夜免费鲁丝| 在线免费观看不下载黄p国产| 91成人精品电影| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 免费人妻精品一区二区三区视频| 国产国语露脸激情在线看| 2018国产大陆天天弄谢| 一区二区三区四区激情视频| 99久久精品国产国产毛片| 美女视频免费永久观看网站| 日本91视频免费播放| 欧美最新免费一区二区三区| av免费观看日本| 有码 亚洲区| 好男人视频免费观看在线| 少妇熟女欧美另类| 免费少妇av软件| 久久久国产精品麻豆| 久久久久久久久久久久大奶| 一区二区av电影网| 亚洲国产精品一区三区| 免费日韩欧美在线观看| 老熟女久久久| 亚洲男人天堂网一区| 男女免费视频国产| 黄片无遮挡物在线观看| 亚洲欧洲日产国产| 一二三四中文在线观看免费高清| 亚洲四区av| 18禁观看日本| 人妻一区二区av| 国产女主播在线喷水免费视频网站| 欧美日韩一级在线毛片| 观看美女的网站| 三级国产精品片| 天天影视国产精品| 成人免费观看视频高清| 日韩人妻精品一区2区三区| 亚洲国产av影院在线观看| 久久综合国产亚洲精品| 免费在线观看视频国产中文字幕亚洲 | 男女高潮啪啪啪动态图| 一二三四中文在线观看免费高清| 人妻系列 视频| tube8黄色片| 久久久久久久久久久免费av| 国产黄色免费在线视频| 精品国产一区二区久久| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| 免费黄色在线免费观看| 精品一区二区三卡| 久久精品人人爽人人爽视色| 欧美精品人与动牲交sv欧美| 美女国产视频在线观看| 丝袜美足系列| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 久久精品亚洲av国产电影网| 一级毛片 在线播放| 最近中文字幕高清免费大全6| 欧美人与性动交α欧美软件| 久久精品熟女亚洲av麻豆精品| 亚洲视频免费观看视频| 免费大片黄手机在线观看| freevideosex欧美| 高清av免费在线| 99久久精品国产国产毛片| 国产爽快片一区二区三区| 99re6热这里在线精品视频| 亚洲精品aⅴ在线观看| 大片电影免费在线观看免费| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 少妇被粗大的猛进出69影院| 亚洲欧美一区二区三区黑人 | 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线| 女人精品久久久久毛片| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产av蜜桃| 国产在线视频一区二区| 男女啪啪激烈高潮av片| 国产视频首页在线观看| 日韩免费高清中文字幕av| 亚洲国产精品国产精品| 精品酒店卫生间| 1024视频免费在线观看| 多毛熟女@视频| 日韩中文字幕欧美一区二区 | 国产精品久久久久成人av| 免费黄网站久久成人精品| 亚洲av电影在线进入| 亚洲欧美成人综合另类久久久| 一本大道久久a久久精品| 日日啪夜夜爽| 在线看a的网站| 亚洲男人天堂网一区| 亚洲一级一片aⅴ在线观看| 9热在线视频观看99| 亚洲第一青青草原| 国产精品偷伦视频观看了| 两个人看的免费小视频| 天堂俺去俺来也www色官网| 亚洲国产日韩一区二区| 精品国产乱码久久久久久小说| 咕卡用的链子| 亚洲三级黄色毛片| 国产精品国产三级专区第一集| 一边亲一边摸免费视频| 2021少妇久久久久久久久久久| 成年女人在线观看亚洲视频| 久久久亚洲精品成人影院| 久久久久人妻精品一区果冻| 侵犯人妻中文字幕一二三四区| tube8黄色片| 国产精品一国产av| 九色亚洲精品在线播放| 久久精品国产亚洲av高清一级| 青青草视频在线视频观看| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 久久影院123| 久久久a久久爽久久v久久| 亚洲精品,欧美精品| 99久国产av精品国产电影| 看免费成人av毛片| 国产成人av激情在线播放| 国产日韩欧美在线精品| 性少妇av在线| 中文字幕制服av| 91午夜精品亚洲一区二区三区| av国产久精品久网站免费入址| 尾随美女入室| 国产亚洲最大av| videos熟女内射| 91aial.com中文字幕在线观看| 久久久久网色| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| 国产成人精品在线电影| 久久97久久精品| 久久久欧美国产精品| 色吧在线观看| 欧美成人午夜免费资源| 99香蕉大伊视频| 午夜激情av网站| 香蕉丝袜av| 久久精品久久精品一区二区三区| 亚洲男人天堂网一区| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 极品人妻少妇av视频| 成人二区视频| av在线观看视频网站免费| 日本欧美国产在线视频| 免费观看av网站的网址| 久久午夜福利片| 十八禁网站网址无遮挡| 男女高潮啪啪啪动态图| 人妻 亚洲 视频| 极品人妻少妇av视频| 黄色 视频免费看| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 色视频在线一区二区三区| 另类亚洲欧美激情| 欧美中文综合在线视频| 男女无遮挡免费网站观看| 色吧在线观看| 免费黄网站久久成人精品| 青草久久国产| 三级国产精品片| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 国产精品.久久久| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 亚洲人成网站在线观看播放| √禁漫天堂资源中文www| 波多野结衣av一区二区av| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 1024视频免费在线观看| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 精品久久久精品久久久| 精品国产露脸久久av麻豆| 亚洲成人手机| 久久女婷五月综合色啪小说| 国产免费一区二区三区四区乱码| 亚洲成色77777| 亚洲精品av麻豆狂野| 国产成人一区二区在线| 国产成人av激情在线播放| 日韩在线高清观看一区二区三区| 成人影院久久| 亚洲国产精品999| 欧美精品av麻豆av| 国产午夜精品一二区理论片| 一级毛片电影观看| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看 | 黄片播放在线免费| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 午夜福利一区二区在线看| 亚洲内射少妇av| 久久久久精品人妻al黑| 天美传媒精品一区二区| 亚洲成av片中文字幕在线观看 | 亚洲国产毛片av蜜桃av| 国产精品人妻久久久影院| 精品亚洲成国产av| 久久久久视频综合| 精品一区二区三卡| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 国产一区亚洲一区在线观看| 国产又爽黄色视频| 国产激情久久老熟女| 亚洲三级黄色毛片| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 五月伊人婷婷丁香| 91精品国产国语对白视频| 国产一区二区三区av在线| 国精品久久久久久国模美| 男女午夜视频在线观看| 高清黄色对白视频在线免费看| 国产片内射在线| 午夜福利视频在线观看免费| 日韩不卡一区二区三区视频在线| 97人妻天天添夜夜摸| 捣出白浆h1v1| 黑人猛操日本美女一级片| 午夜福利视频在线观看免费| 人人妻人人澡人人看| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 黑人欧美特级aaaaaa片| 久久人人97超碰香蕉20202| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级| av线在线观看网站| 日韩一本色道免费dvd| 午夜免费鲁丝| 91成人精品电影| 成人手机av| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| 一级毛片电影观看| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 国产亚洲精品第一综合不卡| 只有这里有精品99| 又黄又粗又硬又大视频| 黄色配什么色好看| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 久久99热这里只频精品6学生| www.av在线官网国产| 国产精品久久久久久av不卡| 免费观看av网站的网址| 777久久人妻少妇嫩草av网站| 男的添女的下面高潮视频| 一二三四在线观看免费中文在| 18在线观看网站| 国产精品一二三区在线看| 91国产中文字幕| 欧美亚洲日本最大视频资源| 一区二区av电影网| 一级爰片在线观看| 91久久精品国产一区二区三区| a级片在线免费高清观看视频| 中国国产av一级| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 国产免费福利视频在线观看| 99热全是精品| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 美女国产视频在线观看| 国产淫语在线视频| 国产人伦9x9x在线观看 | 中文字幕色久视频| av视频免费观看在线观看| 成人漫画全彩无遮挡| 欧美日本中文国产一区发布| 日韩欧美精品免费久久| 边亲边吃奶的免费视频| 亚洲国产最新在线播放| 国产精品.久久久| 久久久久久久精品精品| 日韩在线高清观看一区二区三区| 国产一区二区在线观看av| 激情视频va一区二区三区| 精品人妻偷拍中文字幕| 一区二区三区激情视频| 久久久亚洲精品成人影院| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩综合久久久久久| 26uuu在线亚洲综合色| 国产乱人偷精品视频| 精品午夜福利在线看| 久久狼人影院| 一级毛片电影观看| 91精品三级在线观看| 美女福利国产在线| 亚洲av日韩在线播放| 亚洲五月色婷婷综合| 黄片无遮挡物在线观看| 伊人久久国产一区二区| 午夜久久久在线观看| 少妇被粗大的猛进出69影院| 啦啦啦中文免费视频观看日本| 久久国产精品大桥未久av| 老司机影院成人| 男女边摸边吃奶| 成人二区视频| 久久久久久伊人网av| 男人添女人高潮全过程视频| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 美女国产高潮福利片在线看| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 久久国产精品大桥未久av| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| 亚洲图色成人| √禁漫天堂资源中文www| 亚洲成av片中文字幕在线观看 | 亚洲欧美成人精品一区二区| 国产成人a∨麻豆精品| 亚洲欧美精品自产自拍| 99热全是精品| 亚洲国产av影院在线观看| 亚洲三级黄色毛片| 人人妻人人添人人爽欧美一区卜| 国产av码专区亚洲av| 一级a爱视频在线免费观看| 青草久久国产| 国产野战对白在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久人人97超碰香蕉20202| av又黄又爽大尺度在线免费看| 1024香蕉在线观看| 精品少妇内射三级| 久久久久久久久久久久大奶| 女的被弄到高潮叫床怎么办| 各种免费的搞黄视频| 国产成人午夜福利电影在线观看| 黄色毛片三级朝国网站| 国产成人精品久久久久久| 一区二区三区激情视频| 久久久久久伊人网av| 考比视频在线观看| 久久国产亚洲av麻豆专区| 久久人妻熟女aⅴ| 一边摸一边做爽爽视频免费| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区视频免费看| 一区二区三区四区激情视频| 满18在线观看网站| 国产精品久久久久久久久免| xxx大片免费视频| a级片在线免费高清观看视频| 99久久综合免费| 天天躁夜夜躁狠狠久久av| 老汉色∧v一级毛片| 爱豆传媒免费全集在线观看| 亚洲男人天堂网一区| 人妻人人澡人人爽人人| 国产黄色免费在线视频| 99久久人妻综合| 欧美少妇被猛烈插入视频| 女人久久www免费人成看片| 久久久久网色| 欧美日韩一级在线毛片| 黄片播放在线免费| 亚洲成人av在线免费| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 赤兔流量卡办理| 热re99久久国产66热| 久久免费观看电影| 老熟女久久久| 国产高清国产精品国产三级| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 久久这里只有精品19| 国产xxxxx性猛交| 亚洲情色 制服丝袜| 你懂的网址亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 日日撸夜夜添| 亚洲国产精品999| 春色校园在线视频观看| 午夜av观看不卡| 久久国产精品男人的天堂亚洲| 久久久久久久精品精品| 男女下面插进去视频免费观看| 国产精品蜜桃在线观看| 一级片'在线观看视频| 岛国毛片在线播放| 国产精品久久久久久精品电影小说| 国产精品偷伦视频观看了| 波多野结衣av一区二区av| 我的亚洲天堂| 成人毛片60女人毛片免费| 午夜精品国产一区二区电影| 国产激情久久老熟女| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 国产国语露脸激情在线看| 考比视频在线观看| 丰满少妇做爰视频| 男女边摸边吃奶| 亚洲伊人色综图| 精品第一国产精品| 欧美xxⅹ黑人| 亚洲精品国产av蜜桃| 激情五月婷婷亚洲| 国产av码专区亚洲av| 在线观看www视频免费| 大码成人一级视频| 欧美+日韩+精品| a级毛片黄视频| 国产国语露脸激情在线看| 热99久久久久精品小说推荐| 亚洲综合精品二区| 91国产中文字幕| 精品一区二区三卡| 精品少妇内射三级| 国产精品偷伦视频观看了| 天天影视国产精品| 卡戴珊不雅视频在线播放| 亚洲av国产av综合av卡| 欧美av亚洲av综合av国产av | 狠狠精品人妻久久久久久综合| 国产精品 欧美亚洲| 色94色欧美一区二区| 国产乱来视频区| av又黄又爽大尺度在线免费看| 国产在线免费精品| 久久人人爽人人片av| 精品久久蜜臀av无| 国产欧美亚洲国产| 亚洲五月色婷婷综合| 亚洲成国产人片在线观看| www.av在线官网国产| 亚洲精品成人av观看孕妇| 久久久久视频综合| 伦理电影大哥的女人| 国产精品国产三级国产专区5o| 久久久久国产一级毛片高清牌| 国产精品.久久久| 建设人人有责人人尽责人人享有的| xxx大片免费视频| 国产免费现黄频在线看| 一区二区三区激情视频| 熟女少妇亚洲综合色aaa.| 国产高清不卡午夜福利| 999精品在线视频| 欧美少妇被猛烈插入视频| 免费观看av网站的网址| 成年av动漫网址| 国产精品女同一区二区软件| 中文天堂在线官网| 精品亚洲成国产av| 一二三四中文在线观看免费高清|