• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hermite Spectral Method for Nonlinear Fokker-Planck Equations on the Whole Line

    2018-08-06 06:10:32GuoChaiandTianjunWang
    Journal of Mathematical Study 2018年2期

    Guo Chai and Tian-jun Wang

    Henan University of Science and Technology,Luoyang 471003,P.R.China.

    Abstract.In this paper,we develop a spectral method for the nonlinear Fokker-Planck equations modeling the relaxation of fermion and boson gases.A full-discrete generalized Hermite spectral scheme is constructed.Its convergence and stability are proved strictly.Numerical results show the efficiency of this approach and coincide well with theoretical analysis.

    AMS subject classifications:65M99,41A30,35K55

    Key words:Nonlinear Fokker-Planck equations,the whole line,generalized Hermite spectral method,full-discrete scheme.

    1 Introduction

    In recent years,the more and more attentions were paid to the problems defined on unbounded domains.It is natural to take Hermite(or Laguerre)polynomial/functions as basis functions for the problems defined on the whole line(or half line),see for example[4,8,11,14,16,22,23,25,28,32,33].In earlier studies,with respect to the problems defined on the whole line,ones take the Hermite orthogonal polynomials with the weight function eλv2(λ is a non-zero constant)as the basis functions which lead to non-uniform weights.The non-uniform weights are not natural for certain underlying physical problems,see for example[1–3,10,11,13,17,19,26]and the references therein.In addition,for the problems with variable coefficients or nonlinear wave equations,such as the Fokker-Planck equations in statistic physics or Dirac equation in quantum mechanics,the solutions decay to zero at infinity.The non-uniform weights will destroy the symmetry and positive de finiteness of the bilinear operators as well as the conservation properties,and then lead to complications in analysis and implementation.In such cases,we prefer to consider approximations by Hermite functions with weight χ(v)≡1(see[15,24,31,34]).

    In this paper,we consider the Fokker-Planck equations modeling the relaxation of fermion and boson gases.Let v be the velocity of particles,R={v|?∞<v<∞}.Denote by W(v,t)the probability density.What’s more,W0(v)represents the initial state.For simplicity,letetc..We think of the following Cauchy problem(see[28]),

    The Fokker-Planck equations have been put forward as kinetic models for the relaxation to equilibrium for bosons(k=1)and fermions(k=-1),see[5,9,20]and the references therein.These models have been introduced as a simplification with respect to Boltzmann-based models as in[7,21].Carrillo,Rosado,and Salvarani[6]indicated that inwhichway theentropymethodappliesforquantifying explicitly theexponentialdecay towards Fermi-Dirac and Bose-Einstein distributions in the one-dimensional case.Also,someauthors consideredFokker-Planck equationsin an in finite channel orthe whole line by using Laguerre functions coupled with domain decomposition(see[18,27,28]).The domain decomposition method needs much more basis functions and is extremely complicated to analyze and implement for the problems defined on unbounded domains.In particular,it costs a lot of work to match the numerical solutions on the common boundary of the adjacent subdomains.Thus it is more appropriate to consider approximations by Hermite functions Hσn(v)(see[31])directly.

    This paperaims at expoundingonthegeneralized Hermitespectralmethodto thenumerical solution of problem(1.1).Firstly,the main difficulty in dealing with(1.1)numerically is caused by the two order difference terms of nonlinear?v(vW(v,t)(1+kW(v,t))).To estimate the errors rooted in the nonlinear terms,we need serval inverse inequalities.Next,we need a fewlemmas in time t-direction for numerical analysis of the full-discrete scheme of(1.1).In addition,the fact that the terms?2vW(v,t)and ?vW(v,t)in(1.1)possess thecoefficients 1 and v varying from?∞to∞,brings some difficulties inactual computation and numerical analysis(see[28]).To remedy the deficiency,we need a nonstandard projection of generalized Hermite functions(see[29]).Then a generalized Hermite spectral scheme for(1.1)can be constructed,and its convergence and stability can be proved too.Since in many cases,W(v,t)decays very fast as v→∞,it is better to use the generalized Hermite functions as the basis functions in actual computation(see[24,31]).They are L2(R)-orthogonal system with regard to weight χ(v)≡1,lead to a much simplified analysis,more precise error estimates and easier algorithms.We also design an efficient algorithm for actual computation,and present some numerical results showing the efficiency of this approach.

    This paper is organized as follows.In Section 2,we introduce some results on the generalized Hermite approximation,which play important roles in the numerical analysis of spectral methods for various differential equations in an in finite interval.Then we construct the Hermite spectral scheme for(1.1)and prove its convergence and stability in Section 3.We present some numerical results indicating the high accuracy of the proposed algorithm in Section 4.The final section reveals some concluding remarks.

    2 Preliminaries

    In this section,we present some notations and basic results concerning the generalized Hermite orthogonal approximation which will be used in the sequel.

    2.1 Generalized Hermite approximation

    Let R={v|?∞<v<∞}and χ(x)be a certain weight function.For any integer r≥0,we define the space Hrχ(R)as usual,equipped with the inner product(u,v)r,χ,R,the seminorm|u|r,χ,R,and the norm‖u‖r,χ,Λ.In particular,(R)=(R),with the inner product(u,v)χ,R,and thenorm‖u‖χ,R.Thesubscript χ is omitedin thenotationswheneverχ(v)≡1.

    Let Hn(v)be the usual Hermite polynomials,namely,

    which are mutually orthogonal with the weight function χ(v)=e?v2.The generalized Hermite function of degree n is defined by(cf.[31])

    where σ>0 is a constant.

    The set of generalized Hermite functions(v)forms a complete L2(R)-orthogonal system,namely,

    with the corresponding eigenvalue λn= λn(n,σ):=2σ2n.According to Equation(2.4),Equation(2.5)of[31],we have

    For any u∈L2(R),we can write

    Thanks to Lemma 2.1 of[31],for any φ ∈ QN,σ(R)(cf.[15]for σ =1),

    Lemma 2.1.For any φ ∈ QN,σ(R),we have that

    Proof.For any φ ∈ QN,σ(R),letBy(2.4),we get

    then,we have

    The above derivation leads to the desired result.

    We need the following inverse inequality which will be used in the forthcoming analysis.

    Remark 2.1.For any φ ∈QN,σ(R)and q≥1(cf.[34]),

    In particular,

    In order to represent the approximation results,we introduce a normed space(see[31]).For any integer r≥0,let

    equipped norm

    The orthogonal projection PN,σ,R:L2(R)→QN,σ(R),defined by

    Proposition 2.1.If u∈(R)and integers 0≤μ≤r,then(cf.[31])

    The above result with σ=1 was firstly given by Guo et al.,see Theorem 2.3 of[15].

    We need a nonstandard projection which plays an important role in the forthcoming analysis.To do this,let

    Proposition 2.2.If u∈and integer r≥1,then(cf.[29])

    Lemma 2.2.For any u∈H1(R)(cf.[34]),

    In numerical analysis of Fokker-Planck equations,we need the following estimate on L∞(R)-norm of P1N,σ,Ru.By Proposition 2.2 and Lemma 2.2,we have the following result.

    Proposition 2.3.

    Weneedalemmaintime t-directionfornumerical analysisthefull-discreteofFokker-Planck equations.For this purpose,let[T]be the integer part of any fixed positive constant T,and τ be the mesh size of the variable t.We denote

    Let

    Lemma 2.3.We have(cf.Lemma 4.6 of[12]),

    Remark 2.2.Different from the Section 2 of[30,34],here we work with the problem of variable coefficients by using non-uniformly weighted Sobolev spaces.In equation(1.1),the fact that the power of coefficient of the term?vW(v,t)is even bigger than that of the termW(v,t),brings some difficulties in numerical analysis and actual computation.Moreover,the projectionorthogonal projection defined on the whole line,rather than the composite generalized Laguerre approximation for domain decomposition on the whole line which need to match the numerical solutions on the common boundaries of adjacent subdomains,see[28].

    3 Full-discrete scheme for nonlinear Fokker-Planck equations

    In this section,we propose the Hermite spectral scheme for the nonlinear Fokker-Planck equations on the whole line,with the convergence analysis.

    3.1 Discrete scheme and error analysis

    A weak formulation of(1.1)is to seek solutionsuch that

    In designing the relevant fully discrete scheme for(3.1),we use Crank-Nicolson scheme in time direction with the mesh size τ.It is to find wN(t)∈QN,σ(R)for all t∈ˉRτ(T)such that

    We now deal with the convergence of scheme(3.2).The origin of difficulty in dealing with(3.2)numerically is two order difference terms of nonlinear vW(v,t)(1+kW(v,t)).To estimate the errors caused by the nonlinear terms,letW.By the definition ofττu(t)in(2.15),we have(cf.[34])

    In order to analyse numerical errors,we can write

    where

    We derive the following equation from(3.1)that for t∈Rτ(T)

    where

    where

    Next,we give the main result of our work in this subsection.

    Theorem 3.1.andIfwith r≥1,then for all t∈(T),

    where b1,b2and b3are positive constants depending on σ and the norms of W in the spaces mentioned above.

    Proof.We estimate the terms|Gj(t,N(t))|in(3.5),1≤j≤7.Let Rτ(t?τ)like Rτ(T)in(2.14).We use Cauchy-Schwarz inequality,Proposition 2.2 with r=1 and Lemma 2.3 to verify that for s∈Rτ(t?τ),

    We have

    We use Cauchy-Schwarz inequality again and Proposition 2.2,Lemma 2.3 to show that

    whence

    Now,we are in a position of estimating the Gj(t,φ),j=4,5.By virtue of Proposition 2.2,Lemma 2.2 and(2.13)with r=1,we get that

    From the Taylor formula and Lemmas 2.2,Proposition 2.1 withμ=r=0 and(2.11)with r=1,we also have for τ1∈(s,s+)and τ2∈(s+,s+τ)that

    A combination of the above estimate gives that

    where d1(W)is a certain positive constant depending only on ‖W‖C(s,s+τ;H1A,σ(R)),and d2(W)is a certain positive constant depending only on ‖W‖C1(s,s+τ;H1A,σ(R)).

    Finally,we estimate Gj(s,φ),j=6,7.A direct result

    can be got.By the H¨older’s inequality,Remark 2.1,Lemma 2.1 and Proposition 2.2,we deduce that

    Thus,we obtain that

    where d3(W)is a certain positive constant depending only ond4(W)is a certain positive constant depending only on ‖vW‖L∞(R).

    Furthermore,we use(2.10)and(2.11),Proposition 2.1 withμ=0 to derive that

    provided ρ1(t)is finite.By Gronwall lemma(see Lemma 3.2 of[12]),we get that

    A combination of the above estimate with(2.11)derive the desired result(3.14).

    Remark 3.1.The constants d1(W),d2(W)and d3(W)may dependon N whenusing(2.11)with r6=1.

    3.2 Stability analysis

    We now consider the generalized stability of(3.2).Let?W0be the errors of W0,which induce the error of wN,say?wN.From(3.2),we get that

    Using the same manner as in derivation of(3.12),we derive that

    Let E(u,t)be thesame as in(3.14)andByGronwall lemma(seeLemma3.2 of[12])again,we have the following result that for suitably small τ and certainRτ(T).

    Proposition 3.1.then for all t∈ˉRτ(ξ),

    where b4and b5are positive constants dependent only onand σ.

    4 Numerical results

    Inthis section,we describe the implementations for the spectralschemes(3.2)witha nonhomogeneousterm f(v,t),and present some numerical results confirming the theoretical analysis.For fixedness,we suppose that k=1 in(3.2)in the forthcoming discussions.We use the Crank-Nicolson discretization in time t,with the mesh size τ.At each time step,we then need to solve a nonlinear equation

    In actual computation,we expand the numerical solution as

    Let

    and define the vectors

    Inserting the above expansion into(4.1)and taking φ=Hσm(v)respectively,in(4.1)for 0≤m≤N,we find that(4.1)is equivalent to the following system of

    where the matrices A=(amn),B=(bmn)and C=(cmn)have the entries

    and

    By the orthogonal property of generalized Hermite polynomial,all matrices in(4.3)are some diagonal matrices,pentadiagonal symmetric matrices and pentadiagonal antisymmetric matrices.This feature simplifies the calculation.

    Now,we take the test function

    For description of the errorW?wN,Let vN,R,nand ωN,R,nbe the nodes and the weights of the standard Hermite-Gauss interpolation.According to definition(2.1),we can get the nodes and weights of the scaled Hermite-Gauss function interpolation as follows

    We notate

    The numerical errors are measured by the discrete norm

    In Figure 1,we plot the errors log10EN,τ(t)with t=1 and σ =1.Clearly,the errors decay fast when N increase and τ decreases.The facts coincide very well with theoretical analysis in Section 3.Inparticular,theyshowthe spectral accuracy in the space of scheme(3.2).

    Figure 1:log10EN,τ(1)vs of scheme(3.2)with σ =1 and diあerent τ.

    Figure 2:log10EN,τ(t)vs t of scheme(3.2)with τ =0.001,N=36 and σ =1.

    In Figure 2,we plot the numerical errors log10EN,τ(t)with σ=1,N=36,τ=0.001,They indicate the stability of scheme(3.2)for long time computing.

    For the verification of the validity of the method,we think more forcible numerical examples with solutions having decays algebraically at infinity.To do this,we take the following test function

    Figure 3:log10EN,τ(t)vs log10N of scheme(3.2)with τ =0.001,and diあerent σ.

    In Figure 3,we plot the errors log10EN,τ(t)with t=1 and τ =0.001.Clearly,the errors decay at a certain algebraic rate.We also note that for the same N and τ,the errors for parameter σ =2 in scheme(3.2)are better than that for σ =1 in scheme(3.2).They show the scheme(3.2)is also valid for the solution of(3.1)with decays algebraically at infinity.

    5 Concluding remarks

    In this paper,we studied numerical simulation of nonlinear Fokker-Planck equations on the whole line,which plays an important role in many fields.We constructed a spectral scheme using the generalized Hermite functions which are orthogonal with weight χ(v)≡1,simplified the algorithm schemes and saved a lot of work.We proved the convergence and stability of the proposed schemes using the approximation of a nonstandard generalized Hermite functions.The numerical results demonstrated the spectral accuracy in space,and coincide well with the theoretical analysis.

    The main advantages of the proposed approach are as follows:

    ?With the aid of the generalized Hermite approximations,we could deal with PDEs properly,and approximate partial differential equations directly.

    ?By using the generalized Hermite approximations,we could properly deal with the singularities of coefficients v appearing in the underlying differential equations,which varies from?∞to∞.Consequently,we could deal with the problems on the whole domain properly.

    ? The adjustable parameter σ involved in the generalized Hermite approximation enables us to fit the asymptotic behaviors of exact solutions at infinity closely.

    AlthoughweonlyconsideredthenonlinearFokker-Planckequationofone-dimensional,the main idea and techniques developed in this paper are also applicable to many other partial differential equations defined on unbounded domains.

    6Acknowledgement

    The first author of this work was supported in part by NSF of China No.11401380.The second author was supported in part by NSF of China No.11371123,No.11571151 and No.11771299.

    亚洲性久久影院| 真实男女啪啪啪动态图| 亚洲美女搞黄在线观看 | 亚洲无线在线观看| av.在线天堂| 天堂影院成人在线观看| 久久午夜福利片| 天堂√8在线中文| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品久久男人天堂| 久久久久久久午夜电影| 国产成人精品久久久久久| 国产探花在线观看一区二区| 国产美女午夜福利| 舔av片在线| 在线观看av片永久免费下载| 午夜免费男女啪啪视频观看 | av天堂中文字幕网| 国内精品久久久久精免费| 国产麻豆成人av免费视频| 九九热线精品视视频播放| 国产一区二区在线观看日韩| 亚洲av二区三区四区| 久久久精品大字幕| 99热这里只有是精品在线观看| 精品久久久久久久末码| 能在线免费观看的黄片| 亚洲四区av| 午夜福利视频1000在线观看| 国产成人a∨麻豆精品| 美女xxoo啪啪120秒动态图| 国产私拍福利视频在线观看| 国产男人的电影天堂91| 久久欧美精品欧美久久欧美| 成人永久免费在线观看视频| 又爽又黄无遮挡网站| 狂野欧美激情性xxxx在线观看| 国内精品美女久久久久久| 久久精品国产鲁丝片午夜精品| av视频在线观看入口| 国产乱人视频| 精品一区二区三区av网在线观看| videossex国产| 欧美一区二区亚洲| 亚洲av免费在线观看| 日韩精品青青久久久久久| 天堂av国产一区二区熟女人妻| 九九爱精品视频在线观看| 国产成人影院久久av| 免费看美女性在线毛片视频| 亚洲一级一片aⅴ在线观看| 日本黄色视频三级网站网址| 国产片特级美女逼逼视频| 国产一区二区亚洲精品在线观看| 91久久精品电影网| 欧美日韩国产亚洲二区| 欧美成人精品欧美一级黄| 亚洲精品国产av成人精品 | 午夜福利在线观看吧| 亚洲av熟女| 亚洲无线在线观看| 久久精品久久久久久噜噜老黄 | 久久这里只有精品中国| 日韩成人伦理影院| 男人狂女人下面高潮的视频| 嫩草影院精品99| 亚洲精品一区av在线观看| 久久久欧美国产精品| 久久99热6这里只有精品| 最近的中文字幕免费完整| 一边摸一边抽搐一进一小说| 亚洲aⅴ乱码一区二区在线播放| 亚洲内射少妇av| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 精品熟女少妇av免费看| 人妻制服诱惑在线中文字幕| 淫妇啪啪啪对白视频| 麻豆av噜噜一区二区三区| 日本黄色片子视频| 亚洲一区高清亚洲精品| 亚洲精品久久国产高清桃花| or卡值多少钱| 日韩成人av中文字幕在线观看 | 91在线精品国自产拍蜜月| 一进一出好大好爽视频| 免费在线观看影片大全网站| 在线播放无遮挡| 大又大粗又爽又黄少妇毛片口| 国产精品久久电影中文字幕| 国产片特级美女逼逼视频| av卡一久久| 深爱激情五月婷婷| 日韩精品中文字幕看吧| 可以在线观看毛片的网站| 日本撒尿小便嘘嘘汇集6| 久久久久久大精品| 亚洲成人精品中文字幕电影| 97超碰精品成人国产| 成年免费大片在线观看| 一夜夜www| 精品国产三级普通话版| 国产乱人视频| 国产熟女欧美一区二区| 亚洲经典国产精华液单| 欧美人与善性xxx| 欧美最黄视频在线播放免费| 欧美一级a爱片免费观看看| 久久久久精品国产欧美久久久| 精品午夜福利视频在线观看一区| 久99久视频精品免费| 精品免费久久久久久久清纯| 噜噜噜噜噜久久久久久91| 亚洲av成人av| 久久久久久久久大av| 国产成人91sexporn| 国产精品久久久久久久电影| 欧美最黄视频在线播放免费| 在线看三级毛片| 久久久精品欧美日韩精品| 婷婷六月久久综合丁香| 免费在线观看影片大全网站| 免费av不卡在线播放| 免费av不卡在线播放| 免费av不卡在线播放| 欧美最新免费一区二区三区| 亚洲成av人片在线播放无| 午夜视频国产福利| 久久鲁丝午夜福利片| 亚洲中文字幕日韩| 一个人看的www免费观看视频| 午夜视频国产福利| 老女人水多毛片| 51国产日韩欧美| 亚洲av免费高清在线观看| 一个人观看的视频www高清免费观看| 久久久久久久久久成人| 真实男女啪啪啪动态图| 亚洲图色成人| 又爽又黄无遮挡网站| 99热全是精品| av女优亚洲男人天堂| 高清毛片免费观看视频网站| 校园人妻丝袜中文字幕| 亚洲熟妇熟女久久| 久久99热这里只有精品18| 欧美日本亚洲视频在线播放| 成人毛片a级毛片在线播放| 黄色日韩在线| 欧美日本视频| 中文字幕久久专区| 最近最新中文字幕大全电影3| 午夜福利成人在线免费观看| 女人被狂操c到高潮| 99热这里只有是精品在线观看| 干丝袜人妻中文字幕| 最新在线观看一区二区三区| 色视频www国产| 久久精品夜色国产| 美女 人体艺术 gogo| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 在线看三级毛片| 久久久久性生活片| 一级黄片播放器| 中文字幕精品亚洲无线码一区| 桃色一区二区三区在线观看| 男人狂女人下面高潮的视频| 成熟少妇高潮喷水视频| 免费人成在线观看视频色| 亚洲人成网站在线观看播放| 成人美女网站在线观看视频| 国产伦精品一区二区三区四那| 日本一本二区三区精品| 成人欧美大片| 久久久久久久久久成人| 成人av一区二区三区在线看| 欧美激情国产日韩精品一区| 国产伦在线观看视频一区| 成人永久免费在线观看视频| 特级一级黄色大片| 欧美+日韩+精品| 欧美激情久久久久久爽电影| 天天一区二区日本电影三级| 91狼人影院| 亚洲人成网站在线播放欧美日韩| 我的老师免费观看完整版| 成人三级黄色视频| 亚洲自拍偷在线| 大型黄色视频在线免费观看| 三级国产精品欧美在线观看| 国产精品国产高清国产av| 国产aⅴ精品一区二区三区波| 免费在线观看成人毛片| 免费观看人在逋| 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线观看吧| 成年女人毛片免费观看观看9| 精品午夜福利视频在线观看一区| 亚洲美女搞黄在线观看 | 亚洲最大成人中文| 伦理电影大哥的女人| 免费无遮挡裸体视频| 国产免费一级a男人的天堂| 一进一出抽搐gif免费好疼| 国产精品亚洲一级av第二区| 欧美激情久久久久久爽电影| 小说图片视频综合网站| 一进一出抽搐gif免费好疼| 变态另类成人亚洲欧美熟女| 精品不卡国产一区二区三区| 免费观看在线日韩| 亚洲中文字幕一区二区三区有码在线看| 日本-黄色视频高清免费观看| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 亚洲精品日韩在线中文字幕 | 精品福利观看| 欧美日韩一区二区视频在线观看视频在线 | 99久国产av精品国产电影| 在线免费十八禁| 特大巨黑吊av在线直播| 看黄色毛片网站| 成年版毛片免费区| 成人亚洲欧美一区二区av| 亚洲中文字幕日韩| 在线观看av片永久免费下载| 亚洲成人中文字幕在线播放| 精品乱码久久久久久99久播| 91久久精品国产一区二区三区| 亚洲欧美日韩卡通动漫| 老司机影院成人| 精品午夜福利视频在线观看一区| 最近最新中文字幕大全电影3| 波多野结衣巨乳人妻| 在线观看66精品国产| 欧美激情久久久久久爽电影| 亚洲中文字幕一区二区三区有码在线看| 国内精品美女久久久久久| 无遮挡黄片免费观看| 色吧在线观看| 18禁在线播放成人免费| 久久午夜亚洲精品久久| 99热这里只有是精品在线观看| 色av中文字幕| 成人美女网站在线观看视频| 国产精品不卡视频一区二区| 看十八女毛片水多多多| 1000部很黄的大片| 五月伊人婷婷丁香| 日本精品一区二区三区蜜桃| 最近视频中文字幕2019在线8| 欧美激情在线99| 毛片女人毛片| 国产亚洲欧美98| 久久精品国产亚洲av天美| 国产伦一二天堂av在线观看| 中文亚洲av片在线观看爽| 日本色播在线视频| 久久久久久大精品| 国产真实乱freesex| 亚洲美女搞黄在线观看 | 看非洲黑人一级黄片| 变态另类丝袜制服| 91久久精品国产一区二区成人| 麻豆av噜噜一区二区三区| 麻豆一二三区av精品| 一个人看的www免费观看视频| 国内精品美女久久久久久| 久久人人精品亚洲av| 黑人高潮一二区| 日韩av在线大香蕉| 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 成年版毛片免费区| 你懂的网址亚洲精品在线观看 | av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 黄色视频,在线免费观看| 久久久久九九精品影院| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 内射极品少妇av片p| 此物有八面人人有两片| 色吧在线观看| 黄色视频,在线免费观看| 精品欧美国产一区二区三| 成年av动漫网址| 国产亚洲精品综合一区在线观看| 日本成人三级电影网站| 草草在线视频免费看| 激情 狠狠 欧美| 91久久精品国产一区二区成人| av女优亚洲男人天堂| 免费黄网站久久成人精品| 久久久精品大字幕| 黄色一级大片看看| 97碰自拍视频| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 亚洲,欧美,日韩| 亚洲一区二区三区色噜噜| 亚洲国产精品sss在线观看| 九色成人免费人妻av| 一区二区三区免费毛片| 国产视频内射| 午夜日韩欧美国产| 精品一区二区三区人妻视频| 久久中文看片网| 男女之事视频高清在线观看| av女优亚洲男人天堂| 直男gayav资源| 欧美激情国产日韩精品一区| 12—13女人毛片做爰片一| 精品国产三级普通话版| 一夜夜www| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 亚洲专区国产一区二区| 国产午夜精品久久久久久一区二区三区 | 国产熟女欧美一区二区| 亚洲激情五月婷婷啪啪| 亚洲av成人av| 99riav亚洲国产免费| 成年av动漫网址| 黄色一级大片看看| 深夜a级毛片| 成年女人永久免费观看视频| 插阴视频在线观看视频| 国产精品伦人一区二区| 99久久精品一区二区三区| 日日啪夜夜撸| 久久久久久久午夜电影| 亚洲最大成人手机在线| 男女那种视频在线观看| 日韩成人伦理影院| 日韩一本色道免费dvd| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 女的被弄到高潮叫床怎么办| 国产成人一区二区在线| 久久人人精品亚洲av| 精品久久国产蜜桃| 99在线视频只有这里精品首页| 六月丁香七月| 国产精品美女特级片免费视频播放器| 黄色欧美视频在线观看| 色综合色国产| 一区二区三区高清视频在线| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| 夜夜夜夜夜久久久久| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 精品午夜福利在线看| 亚洲欧美清纯卡通| 国产 一区 欧美 日韩| 99视频精品全部免费 在线| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 国产色爽女视频免费观看| 大香蕉久久网| 久久久成人免费电影| 中国美女看黄片| 精品久久久久久久久久免费视频| 日韩欧美 国产精品| 色哟哟·www| 最近的中文字幕免费完整| 久久久欧美国产精品| 欧美又色又爽又黄视频| 美女xxoo啪啪120秒动态图| 久久精品夜色国产| 在线国产一区二区在线| 久久热精品热| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久爱视频| 久久久久久久久中文| 日日啪夜夜撸| 91久久精品国产一区二区三区| 久久久国产成人精品二区| 黄色配什么色好看| 国产成人91sexporn| 午夜精品在线福利| 欧美潮喷喷水| 午夜福利18| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 欧美最新免费一区二区三区| 国产av不卡久久| 乱系列少妇在线播放| 日本三级黄在线观看| 婷婷精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 中出人妻视频一区二区| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 美女被艹到高潮喷水动态| 2021天堂中文幕一二区在线观| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产视频一区二区在线看| 亚洲18禁久久av| 精品一区二区三区视频在线| 中文字幕av在线有码专区| 最好的美女福利视频网| 一夜夜www| 亚洲国产精品久久男人天堂| 全区人妻精品视频| 国产成人福利小说| 欧美色欧美亚洲另类二区| 黄色配什么色好看| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 久久九九热精品免费| 尾随美女入室| 一区福利在线观看| 国产人妻一区二区三区在| 一个人看视频在线观看www免费| 久久久久久伊人网av| 久久99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 免费高清视频大片| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 亚洲精品日韩av片在线观看| 99在线视频只有这里精品首页| 中文资源天堂在线| 久久亚洲精品不卡| 国产中年淑女户外野战色| 国产毛片a区久久久久| 国产精品免费一区二区三区在线| 男人和女人高潮做爰伦理| 国产亚洲精品综合一区在线观看| 黑人高潮一二区| 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| 成人性生交大片免费视频hd| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 精品一区二区三区人妻视频| 在线看三级毛片| 免费看光身美女| 五月玫瑰六月丁香| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 日本五十路高清| 精品欧美国产一区二区三| 欧美不卡视频在线免费观看| 久久国产乱子免费精品| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 久久天躁狠狠躁夜夜2o2o| 伦精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 中国美白少妇内射xxxbb| 久久久久久九九精品二区国产| av卡一久久| 精品久久久久久久人妻蜜臀av| 国产精品无大码| 久久九九热精品免费| 看免费成人av毛片| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 欧美区成人在线视频| 国产精品精品国产色婷婷| 一本精品99久久精品77| 少妇人妻一区二区三区视频| 国产真实乱freesex| 国产成人freesex在线 | 三级毛片av免费| 亚洲精品一卡2卡三卡4卡5卡| 综合色av麻豆| 国产在视频线在精品| 国产一区二区三区av在线 | 午夜免费激情av| 尾随美女入室| 我的女老师完整版在线观看| 色视频www国产| 91午夜精品亚洲一区二区三区| 99riav亚洲国产免费| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 亚洲美女搞黄在线观看 | 国产精华一区二区三区| 久久久久国产精品人妻aⅴ院| 国产高清视频在线观看网站| 晚上一个人看的免费电影| 我的老师免费观看完整版| 欧美在线一区亚洲| 亚洲人成网站高清观看| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 三级男女做爰猛烈吃奶摸视频| 免费大片18禁| 啦啦啦韩国在线观看视频| www.色视频.com| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 欧美激情在线99| 成人永久免费在线观看视频| a级毛片a级免费在线| 亚洲av不卡在线观看| 久久人人精品亚洲av| 成年免费大片在线观看| 男人舔奶头视频| 在线看三级毛片| 此物有八面人人有两片| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| videossex国产| 又黄又爽又免费观看的视频| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 日日撸夜夜添| 99热这里只有精品一区| 国产三级在线视频| 国产成人aa在线观看| 永久网站在线| 嫩草影院入口| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 亚洲在线观看片| 国产亚洲91精品色在线| 国产 一区 欧美 日韩| 亚洲成人中文字幕在线播放| 三级毛片av免费| 国产午夜福利久久久久久| 欧美成人a在线观看| 免费看光身美女| 久久久精品欧美日韩精品| 一级毛片aaaaaa免费看小| 丰满人妻一区二区三区视频av| 午夜精品国产一区二区电影 | 精品一区二区免费观看| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 春色校园在线视频观看| 女同久久另类99精品国产91| 午夜福利在线观看吧| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 日韩欧美免费精品| 欧美+日韩+精品| 日本免费a在线| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 精品午夜福利在线看| 亚洲人成网站高清观看| 亚洲av.av天堂| 国产 一区 欧美 日韩| 高清日韩中文字幕在线| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app| 亚洲真实伦在线观看| 一进一出抽搐动态| 亚洲成人久久性| 精品人妻熟女av久视频| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 身体一侧抽搐| 久99久视频精品免费| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 熟女电影av网| 在线观看午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 69av精品久久久久久| 日韩国内少妇激情av| av在线天堂中文字幕| 国产精品不卡视频一区二区| 久久久久久国产a免费观看| 18+在线观看网站| 超碰av人人做人人爽久久| 国产成人一区二区在线| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看人在逋| 黄色配什么色好看| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 91久久精品国产一区二区成人| 成年版毛片免费区| 国产精品久久久久久av不卡| 一个人看的www免费观看视频| 六月丁香七月| 老熟妇乱子伦视频在线观看| 成人无遮挡网站| 国产精品亚洲一级av第二区| 最近手机中文字幕大全| 亚洲电影在线观看av| 在现免费观看毛片| 亚洲成人久久性| 国产日本99.免费观看| 午夜福利18| 亚洲图色成人| 免费高清视频大片|