• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Efficient and Accurate Spectral Approximation of the Angular Mathieu Equation for any Parameter Values q

    2018-08-06 06:10:26HaydarAlandJieShen
    Journal of Mathematical Study 2018年2期
    關(guān)鍵詞:死板體育課教學方法

    Haydar Al?c?and Jie Shen

    1Department of Mathematics,Harran University,63290 S?anl?urfa,Turkey;

    2Department of Mathematics,Purdue University,47907 West Lafayette,IN,USA.

    Abstract.The eigenpairs of the angular Mathieu equation under the periodicity condition are accurately approximated by the Jacobi polynomials in a spectral-Galerkin scheme for small and moderate values of the parameter q.On the other hand,the periodic Mathieu functions are related with the spheroidal functions of order±1/2.It is well-known that for very large values of the bandwidth parameter,spheroidal functions can be accurately approximated by the Hermite or Laguerre functions scaled by the square root of the bandwidth parameter.This led us to employ the Laguerre polynomials in a pseudospectral manner to approximate the periodic Mathieu functions and the corresponding characteristic values for very large values of q.

    AMS subject classifications:33E10;33D50;65L60;65L15

    Key words:Mathieu function,spectral methods,Jacobi polynomials,Laguerre polynomials.

    1 Introduction

    Mathieu functions were first introduced by Mathieu in 1868 while investigating the vibrating modes of an elliptic membrane[32].The eigenpairs of the Mathieu equation are needed in many scientific phenomena including wave motion in elliptic coordinates such as acoustic and electromagnetic scattering from an elliptic structures[14,19,26,31],particle in a periodic potential[22]and vibrational spectroscopy of molecules with near resonant frequencies[37,43].Theoretical aspects of the Mathieu functions have been studied by many authors,including Stratton[42],McLachlan[33],Sips[41],Meixner&Sch¨afke[34]and Wang and Zhang[45](cf.also[44]).

    As is seen for many physical and mathematical problems in elliptic geometries the separation of variables process in elliptic coordinates leads to the Mathieu equations.If one wants to solve these problems with large wavenumbers,it is very important to be able to obtain accurate numerical solutions for the angular Mathieu equation for very large values of q since it is related to the wavenumber parameter present in these equations.

    Mathieu functions remain difficult to employ,mainly because of the impossibility of analytically representingthemin asimple and handyway[41].Thereare numerousstudies on the numerical computation of the Mathieu functions and corresponding eigenvalues.Erricolo used Blanch’s algorithm for computing the expansion coefficients of Mathieu functions[16].Erricolo and Carluccio provided software to compute angular and radial Mathieu functions for complex q values[17].Shirts presented two algorithms for the computation of eigenvalues and solutions of Mathieu’s differential equation for noninteger orders[39,40].Alhargan introduced algorithms for the computation of all Mathieu functions of integer order which can deal with a range of the order n(0?200)and the parameter q(0?4n2)[3].Co¨?sson and co-workers describe a numerical algorithm which allows a fl exible approach to the computation of all the Mathieu functions[12].Cojocaru in[13]provided Mathieu functions computational toolbox implemented in Matlab.MATSLISEis anothersoftware package for the computationof the Mathieu eigenpairs by using the power of high-order piecewise constant perturbation methods[29]and many others[1,9,21,24,25,28,30].

    Most of the above algorithms employ the well-known trigonometric series representation

    forcomputingtheperiodicMathieufunctionswhere A and B are knownas theexpansion coefficients.There are several ways of computing these expansion coefficients such as continued fractions method[33],the forward and the backward recurrence relations[9,17]and as the eigenvectors of tri-diagonal matrix-eigenvalue problems[12,13].Each has its advantages and disadvantages.However,these algorithms are not suitable for very large values of q.Thus,the aim of this study is to construct accurate and efficient spectral algorithms for the computation of the integer order periodic Mathieu functions and the corresponding characteristic values for both small and very large values of the real parameter.

    The rest of the paper is organized as follows:Sections 2 and 3 are concerned with the construction of the spectral methods for small and very large values of q,respectively.Some numerical results are presented in Section 4.The last section concludes the paper with some remarks.

    2 Spectral formulation for small and moderate parameter values

    For any given value of the parameter q,the angular Mathieu equation

    supplemented with a certain periodic boundary conditions admits two linearly independent families of periodic solutions with period π or 2π for specific values of the separation constant λ.Such values of the parameter λ are known as characteristic values or eigenvalues.When the solutions Φ(η)are even with respect to η =0 the characteristic values are denotedas an(q)whereas for odd solutions they are representedas bn+1(q),n=0,1,....Periodic eigenfunctions corresponding to the an(q)and bn+1(q)are denoted by cen(η;q)and sen+1(η;q),respectively.Thenotations ce and se are dueto Whittakerand Watson[47]and they stand for cosine-elliptic and sine-elliptic,respectively.Before describing the nu-

    Table 1:The periodic Mathieu functions.

    merical scheme,we firsttransform theangular Mathieuequationto a more tractable form for each boundary condition set in Table 1.The angular Mathieu equation in(2.1)and Table 1 allow us to write

    that can be transformed to an equivalent algebraic form

    by the mapping x=cos2η∈(?1,1)where yn(x;q)=ce2n(x;q).The connection formula

    reveals that the function y does not have to satisfy any boundary conditions at all.Next,we consider the system

    and have found the corresponding algebraic form to be

    upon use of the transformations x=cos2η and ce2n+1(x;q)=(1+x)1/2yn(x;q)on both independent and dependent variables,respectively.Returning back to the original variables we see that the solution

    satisfies the boundary conditions in(2.5)meaning that we don’t need to impose any boundaryconditionson(2.6).Thirdly,themaps x=cos2η and se2n+1(x;q)=(1?x)1/2yn(x;q)transform the system

    to the equivalent algebraic form

    without any boundary conditions since the solution

    readily satisfies the conditions in(2.8).Finally,the system

    can be converted to the form

    by means of x=cos2η and se2n+2(x;q)=(1?x2)1/2yn(η;q).Again,the solution in original variable

    satisfies the specified boundary conditions.

    Actually the equations in(2.3),(2.6),(2.9)and(2.12)can be put together to give the equation

    with

    體育和其它文化課程的區(qū)別是體育課是為了促進學生身心健康發(fā)展的輔助性課程,它的教學目的不是為了讓學生取得高成績,而是為了讓學生擁有一個強健的體魄,所以體育課并沒有很多死板的理論知識課程。但是傳統(tǒng)體育教學方法只對跑跳等運動進行簡單的訓練,無法充分的激發(fā)起學生足夠的體育熱情。小學生由于心智還在萌芽發(fā)展時期,對很多事情都有著充足的好奇心但缺乏長久的耐性,小學體育游戲教學法將體育運動充分有效地融入到游戲之中,利用游戲的教學方法將枯燥的體育活動變得生動、有趣。在游戲中學生的天性和好奇心可以得到釋放和滿足,使小學體育教學朝著積極健康的方向不斷發(fā)展。

    The characteristic values

    of(2.1)are connected with those of the equation in(2.14)by the relations

    respectively,while the corresponding eigenfunctions

    are related with the solutions of(2.14)by the formula

    Notice that,the set of parameter valueslead to the eigenpairs(ce2n,a2n),(ce2n+1,a2n+1),(se2n+1,b2n+1)and(se2n+2,b2n+2),respectively.Here,the constant C will be chosen in such a way that||Φ(η;q)||L2(0,π)=π.That is,

    leading to

    when the orthonormal eigenfunctions||yn||L2ω(?1,1)=1 of(2.14)is in consideration.

    Now,we will construct the Galerkin spectral formulation of(2.14).Let

    The Spectral-Galerkin method for(2.14)is to findsuch that

    where ω(α,β)(x)=(1?x)α(1+x)βis the Jacobi weight function.Now,proposing

    we see that the Spectral-Galerkin formulation(2.24)of the differential eigenvalue problem(2.14)reduces to the matrix-eigenvalue equation

    with cn=(cn0,cn1,...,cnN)T,S=[Sjk]=?k(k+α+β+1)δjkand

    The three term recurrence relation of the normalized Jacobi polynomials

    in which

    allows us to write down the entries

    ofthesymmetrictri-diagonal matrix R for j,k=0,1,...,N.Noticein(2.31)that thediagonal entries are all zero since we havefor all k whenMoreover,the entries of the matrix R requires special attention whensince in this case the first coefficient

    The matrices have simple structure,more specifically S is a diagonal and R is a tridiagonal matrix with zero main diagonal.Thus,the resulting discrete system is a tridiagonal matrix.Despite its simple structure,the present formulation yields highly accurate numerical eigenpairs.For small q values,even the last discrete eigenpair corresponding to N is correct up to some digits which is promising if we remember the fact that only the two-thirds,often one-half or considerably smaller portion of the computed eigenpairs are correct up to some accuracy for a fixed truncation order N[10,46].Speci fically,when q=1 and N=100,relative errors for all the eigenvalues except the last one are of order 10?14and for the same N with q=102,ninety-four of them have relative errors of order 10?14.

    Table 2:The number of eigenvalues(ev)having relative errors of order 10?14and the number of eigenvectors(ef)having absolute errors of order at most 10?13for a given truncation order N and the parameter q.

    On the other hand,the number of accurate aigenvectors having the values of the Mathieu functions at some evaluation points is slightly less than that of eigenvalues.The accuracy of the eigenpairs are checked by increasing the truncation order N systematically and observing the stable digits between two consecutive truncation orders N and N+1.For the eigenvectors,vector infinity norm is used to measure the errors.

    Nevertheless,it can be seen from Table 2 that the number of accurate pairs decreases with a further increment in q.Indeed,a dramatic decrease occurs especially for q≥105.Therefore,in this article such q values will be called very large.Actually,the accuracy loss for large values of the parameters is typical for all parameter dependent problems such as the Coffey-Evans[18]and the prolate spheroidal wave equation.Efficient numerical approximation of the latter for very large values of the bandwidth parameter may be found in[4,27,35].An efficient method for very large values of the parameter q will be derived in the next section.

    3 Spectral formulation for very large parameter values

    The main difficulty for very large q values originates from the fact that the eigenfunctions of(2.1)are confined to a small interval around the points η=π/2 and η=3π/2 whenthey are considered in the interval(0,2π)(see Figure 1).Therefore,one has to focus on these portions of the interval.One remedy might be the use of mapped Jacobi pseudospectral methodsby using a suitable mapping suchas the one introducedin[7]which can clusters more points around a desired point.However,here we are in favor of employing another technique which is more efficient and accurate from the numerical point of view.

    Consider the general equation

    Figure 1:se1(η,q)for specified values of q on[0,2π].

    where c and ν>?1 is a real parameter.The maps t=sinθ and Ψνn(θ;c)=(1?t2)νψνn(t;c)takes the equation to the algebraic form

    where μn(ν;c)=ν(ν+1)?λn(ν;c).Stratton[42]and later Chu and Stratton[11]defined the spheroidal functions as the solutions of the last equation that remains finite at the singular points t= ±1.For integral orders ν=m=0,1,2,...the functions ψνn(t;c)are related to the spheroidal wave functions that arise from separation of the Helmholtz equation in spheroidal coordinates.For half-integer values ν=±12they are related to the angular Mathieu functions that arise from separation of the Helmholtz equation in elliptic coordinates[38].Thus,we may make use of(3.1)to approximate the eigenpairs of the angular Mathieu equation for very large values of q whose details will be explained below.

    Note that,the solutions ψνnof(3.2)that remain finite at the end points t=±1 suggest the use of boundary conditions Ψνn(±π/2;c)=0 for(3.1).This makes equation(3.1)into a reflection symmetric system so that the even and odd states can be separated.Actually the transformations x=?cos2θ and Ψν2n(x;c)=(1?x)ν/2yνn(x)lead to the equation

    where x∈(?1,1).Onreturningback totheoriginalvariables Ψν2n(θ;c)=cosνθyνn(?cos2θ),we see that the even indexed eigenfunctions are even functions of θ.For the odd states,first we use the map Ψν2n+1(θ;c)=sinθφν2n+1(θ;c)=where φν2n+1is necessarily an even function of θ.This suggest use of the same transformations employed for the even states leading to the equation

    where the odd state eigenfunctions Ψν2n+1(θ;c)=sinθcosνθyνn(?cos2θ)are indeed an odd function of θ.Therefore,instead of(3.2),we have two equations to handle the even and odd states of(3.1)separately.Actually the last two equations can be unified as

    in which

    where the parameters(α,β)=(ν,?)and(α,β)=(ν,)yield the even and odd states,respectively.

    Now,taking c2=4q and comparing(3.5)-(3.6)with(2.14)-(2.15)we obtain the connection relations

    among the eigenvalues of the Mathieu and the generalized spheroidal equation in(3.1).Meanwhile,the well-known relations[33]

    among the eigenvalues oftheMathieu equation,togetherwith(3.7)lead tothe interesting relations

    among the eigenvalues of(3.1)when ν=±1/2.

    For the spheroidal wave equation,that is when ν=m=0,1,2,...in equation(3.1),we have presented highly accurate and efficient method for very large values of the bandwidth parameter c[4].It was based on the idea that when c tends to infinity,the prolate spheroidal wave functions can accurately be approximated by the Hermite functions scaled by the square root of the parameter c[6,15,20,27,36].Clearly,they can also be approximated by the Laguerre functions of order±due to the connections

    between the Hermite and Laguerre polynomials.The same idea can be used with ν=±to approximate the eigenpairs of the Mathieu equation as well.To this end,we transform the equation in(3.1)to another one over the positive half line.This can be accomplished by the maps

    and

    applying in respective order.The first map leads to the operational equivalence

    for the differential part of(3.1)which is not the case for the operator d2/dη2present in the angular Mathieu equation in(2.1).That is to say,in this case it is not possible to find a transformation from the interval η ∈(0,π/2)to the half line x∈(0,∞)leading to such an operator with linear and constant polynomial coefficients.That is why we make use of the more general equation in(3.1)and finally take ν= ±since in these two cases the solutions of(3.1)are related with the angular Mathieu functions.Application of the above transformations lead to the equation

    where

    from which we can compute the characteristic values of the Mathieu equation employing the connection formula(3.7)with ν=and c=p

    Here,α is a scaling or an optimization parameter whose optimum value is usually determined by trial and error.However,fortunately,for this problem as is explained above its optimum value is fixed as αopt==(4q)1/4.To approximate the eigenpairs of(3.14),we utilize the Laguerre functions in a pseudospectral picture since it reduces to the differential equation for the Laguerre functions when q(x)≡0 and r(x)=1.Basically,the idea is to collect the grid points,that are the roots of the order γ=±1/2 Laguerre polynomials,to the small interval where the eigenfunctionsare away from zero by means of the scaling factor αopt=.Now,consider the weighted interpolation of the solution of(3.14)

    in which

    are the set of N?th degree Lagrange polynomials and xkstand for the N+1 real and distinct roots ofwhich are computed by using the well-known Golub-Welsch algorithm[5,23].Proposingthe interpolant as an approximate solutionto(3.14)and requiring the satisfaction of(3.14)at the collocation points xk,we obtain a discrete representation

    where Q(xn)are the values of the function Q(x)in(3.15)at the nodal points xn.This matrix can be factored as?B=SBS?1where S=diag{s1,s2,...,sN}is diagonal matrix with

    and B is symmetric matrix with entries

    Therefore we may replace the unsymmetric system in(3.20)with the symmetric one

    since the similar matrices share the same eigenvalue set.Clearly,an eigenvectorof(3.20)is connected with that of(3.24)by

    On the other hand,for an orthonormal eigenfunction of(3.14)we may write

    where we have used(3.12).However,applying the change of variable sinθ=tanhin(3.11),to an eigenfunction of(3.1)we obtain

    of the normalized Laguerrefunctions in(3.19)with n=N+1 and x=xk,we may represent the angular Mathieu functions in terms of the spheroidal functions of orders ν=±1/2 as

    where

    The matrix in(3.23)only necessitates the knowledge of the zeros of the(N+1)?st degree Laguerre polynomial of order γ=±1/2.It is easy to construct and symmetric with quite reasonable condition number.In fact,numerical experiments reveal that as q gets larger,the condition number of the matrixBof size(N+1)×(N+1)converges to 4N+1 and(4N+3)/3 when γ = ?1/2 and γ =1/2,respectively.

    Table 3:The number of eigenvalues having relative errors of order 10?14for a given truncation order N and the parameter q.

    Now,in Table 3 by comparing with the Jacobi spectral method we see that the Laguerre pseudospectral formulation leads to much better results for large q values,especially as q gets larger and larger.

    4 Numerical results

    In this section we present some numerical tables and plots of eigenfunctions for small,moderate and very large values of the parameter q.

    It is clear from Table 4 that the algorithms mentioned in this study can accurately approximate the eigenvalues when the parameter q is small.Here we executed our algorithm in Fortranquadruple precisionarithmetic to see if the results agree with thoseof[1]up to the accuracy quoted.This does not mean that the other algorithms can not attain such accuracy for small q.In contrast,there would have been algorithms cited in this study which can also attain the same accuracy if they were implemented in quadruple precision arithmetic,too.

    Then in Table 5 we present the discrete values of the function ce9(η,100)at the specified angles.First two columns include the results obtained from the present Jacobi-Galerkin method with the truncation orders N=25 and N=26.The last column includes the results from[8]which truncates the second series in(1.1)at N=20.Although it seems that,our method yields better results then the classical trigonometric series expansion,at a cost of computing more expansion coefficients,the trigonometric series can also produce results that are accurate to machine precision.It is clear from Table 5 that for small values of q both the present Jacobi-Galerkin and the trigonometric series approach produce similar results.

    Table 4:Comparison of b2(25)and b10(25)with some literature results.

    Table 5:Values of the Mathieu function ce9(η,100)at the specified angles η.

    Table 6 demonstrates the accuracy improvement of b2n+1(q)for the parameter values q=1,1010and eigenvalue indices n=1,1001.It is clear that the methods described here not only yield accurate results for lower states,but also for higher ones as high as thousand with quite reasonable truncation orders N.As a result of separation,the necessary truncation size to print b1001(1)on the screen is N=501.However,N=502 is enough to obtain it with a relative error of order 10?15.Similarly,N=513 does the same job for b1001(1010)revealing the efficiency of our algorithms.

    For comparison,the bottom row includes the results obtained from MATSLISE package[29]and Cojocaru[13].The latter diagonalizes the tri-diagonal matrix resulted from writing the recurrence relation of the expansion coefficients of(1.1)in matrix form.As it is mentioned in Introduction,this type of approaches are suitable for small or moderate q values and not able to produce satisfactory results for very large values of the param-eter q.Specifically,N=2000 was not enough to approximate the eigenvalue b1001(1010).Even for the ground state eigenvalue b1(1010)one needs to diagonalize a matrix of size N=1100.Actually,MATSLISE works for very large values of q as high as 1013beyond which it also has difficulties in approximating the Mathieu eigenpairs.

    Table 6:Accuracy improvement for b1001(q)for q=1 and q=1010by using the Jacobi and the Laguerre bases,respectively.

    Figure 2:ce30(η,106)and ce50(η,106)corresponding to the characteristic values a30(106)=?1878467.04186782 and a50(106)=?1799283.43142027,respectively.

    For large values of q it is still possible to approximate the lower eigenpairs by the Jacobi bases at a cost of very high truncation orders.In Figure 2 we present plots of the Mathieu functions ce30(η,106)and ce50(η,106)that are obtained by using both the Jacobi and the Laguerre bases.Note the confinement of the eigenfunctions to a small interval around the point π/2 for such large values of q.

    In order to check the efficiency of the Laguerre basis approach,in Table 7 we include several eigenvalues for very large value of q=1020.In this case,the integer part of the eigenvalues occupy more than twenty digits.Therefore,we have implemented our algorithm in Fortran programming language by using quadruple precision arithmetic and tabulate the values a(q)+2q or b(q)+2q instead of a(q)and b(q),respectively.To approximate the eigenvalue a1000(1020)with the present Laguerre pseudospectral methodto the accuracy quoted,we only need to diagonalize a matrix of size 505×505 which is impressing.It is known that,for finite n and large q values a2n(q)≈b2n+1(q)and a2n+1(q)≈b2n+2(q)[33].This can also be observed from the equations(3.14)-(3.16)and(3.7).In fact,in(3.14)one has λn(ν,c)=λn(?ν,c)since there is a quadratic dependence on ν.Then,it is easy to see that an(q)≈ bn+1(q)by employing this fact in the connection formulas(3.7).Numerical results in Table 7 are in accordance with the asymptotic formula

    Table 7:Several eigenvalues of the angular Mathieu equation for q=1020.

    Figure 3:Mathieu functions ce10(η,q)and se12(η,q)corresponding to the characteristic values a10(q)+2q=419999999944.7499999927156 and b12(q)+2q=459999999933.7499999904406,respectively.

    up to their last digits where k=2n+1[28,33].

    Then,in Figure 3 we present the plots of two eigenfunctions corresponding to the same q=1020.Notice in this case that their nonzero parts are confined to a tiny interval of length 10?4around the points(2k+1)π/2 where k is an integer.

    5 Conclusion

    In this article,we have constructed accurate and efficient spectral and pseudospectral methods based on the Jacobi and the Laguerre polynomials to approximate the integer order periodic Mathieu functions and the corresponding characteristic values.To this end,the angular Mathieu equation is transformed into several equations resembling the Jacobi and the Laguerre differential equations.These particular transformations motivated us to use the most suitable Jacobi or Laguerre polynomial with specific parameter(s)as basis sets for the approximation of the eigenpairs.It is observed from numerical results that the Jacobi-Galerkin methods are well suited for small q values whereas the Laguerre pseudospectral methods scaled by(4q)1/4are more appropriate for very large values of q.Note that,in the Laguerre pseudospectral method a suitable scaling parameter optimizing the accuracy is not chosen by experimentally since it is initially set as αopt=(4q)1/4.

    The algorithms developed in this paper are implemented in a set of Matlab routines,Mathieu.m,Mathieu_Small_q.m,Mathieu_Large_q.m and eigfunplot.m,which can be downloaded via the link http://www.math.purdue.edu/~shen/pub/mathieu.zip.The routineMathieu.mservesas themain filewhichcalls theotherthreetocomputetheMathieu eigenpairs.Mathieu_Small_q.mand Mathieu_Large_q.mapproximate the eigenpairs for|q|<106and|q|≥106,respectively whereas Eigfunplot.m is responsible for plotting the results obtained from these routines.

    The methods developed here will be useful in a variety of physical and engineering applications in which accurate solutions of the angular Mathieu equation are needed.

    6Acknowledgement

    The first author’s research was supported by a grant from T¨UB˙ITAK,the Scientific and Technological Research Council of Turkey.The second author’s research was partially supported by NSF DMS-1620262,DMS-1720442 and AFOSR FA9550-16-1-0102.

    猜你喜歡
    死板體育課教學方法
    初中英語寫作教學方法初探
    甘肅教育(2020年2期)2020-09-11 08:01:42
    教學方法與知識類型的適宜
    體育課
    “死板”一詞源于古代鑄錢技術(shù)
    “死板”的姐姐
    小布老虎(2016年1期)2016-12-01 05:45:27
    “死板”源于古代鑄錢技術(shù)
    上好期末三節(jié)體育課
    體育師友(2015年3期)2015-12-22 11:04:16
    初中數(shù)學教師不可忽視的幾種教學方法
    散文百家(2014年11期)2014-08-21 07:17:18
    "三個結(jié)合“上好室內(nèi)體育課
    一堂遺憾的體育課
    體育師友(2011年2期)2011-03-20 15:29:29
    国产在视频线在精品| 亚洲成人久久爱视频| 18禁在线播放成人免费| 26uuu在线亚洲综合色| 小说图片视频综合网站| 亚洲三级黄色毛片| 日本黄色片子视频| 国语对白做爰xxxⅹ性视频网站| 亚洲熟妇中文字幕五十中出| 亚洲av中文av极速乱| 欧美不卡视频在线免费观看| 亚洲av中文字字幕乱码综合| 一卡2卡三卡四卡精品乱码亚洲| 一级黄片播放器| av卡一久久| 狂野欧美激情性xxxx在线观看| 我的女老师完整版在线观看| 欧美日韩在线观看h| 国产女主播在线喷水免费视频网站 | 国产高清不卡午夜福利| 国产伦精品一区二区三区四那| 精品久久久久久成人av| 青春草国产在线视频| 欧美xxxx黑人xx丫x性爽| 成人特级av手机在线观看| 国产不卡一卡二| 国产女主播在线喷水免费视频网站 | videossex国产| 久久久精品欧美日韩精品| 日韩精品有码人妻一区| 国产精品久久久久久久电影| 伊人久久精品亚洲午夜| 一级毛片aaaaaa免费看小| 国产久久久一区二区三区| 水蜜桃什么品种好| 插阴视频在线观看视频| 性插视频无遮挡在线免费观看| 国产亚洲午夜精品一区二区久久 | 免费在线观看成人毛片| 性色avwww在线观看| 深爱激情五月婷婷| 爱豆传媒免费全集在线观看| 午夜a级毛片| 蜜臀久久99精品久久宅男| 免费观看在线日韩| 人妻制服诱惑在线中文字幕| 老女人水多毛片| 国产单亲对白刺激| 国产乱来视频区| 亚洲成人久久爱视频| 成人无遮挡网站| 国产精品女同一区二区软件| 黑人高潮一二区| 日韩制服骚丝袜av| 国产三级在线视频| 国产女主播在线喷水免费视频网站 | 最近手机中文字幕大全| av视频在线观看入口| 日韩强制内射视频| 国产精品国产三级国产av玫瑰| 久久久久久久久大av| 菩萨蛮人人尽说江南好唐韦庄 | 日日撸夜夜添| 午夜a级毛片| 久久精品国产自在天天线| 中文天堂在线官网| 小说图片视频综合网站| 少妇高潮的动态图| 午夜视频国产福利| 免费观看精品视频网站| 九九爱精品视频在线观看| 建设人人有责人人尽责人人享有的 | 国语自产精品视频在线第100页| .国产精品久久| 伦理电影大哥的女人| 精品酒店卫生间| 内射极品少妇av片p| 日日摸夜夜添夜夜添av毛片| 小蜜桃在线观看免费完整版高清| 欧美潮喷喷水| 秋霞伦理黄片| 国产色婷婷99| 成人一区二区视频在线观看| 级片在线观看| 亚洲不卡免费看| 蜜桃亚洲精品一区二区三区| 久久精品国产99精品国产亚洲性色| 中文字幕精品亚洲无线码一区| 狂野欧美白嫩少妇大欣赏| 亚洲av免费高清在线观看| av国产久精品久网站免费入址| 久久精品久久精品一区二区三区| 美女内射精品一级片tv| 18禁在线无遮挡免费观看视频| 18禁在线无遮挡免费观看视频| 在线观看美女被高潮喷水网站| 久久久久久久午夜电影| 99在线人妻在线中文字幕| 亚洲18禁久久av| 国产精品国产三级国产av玫瑰| 99久久中文字幕三级久久日本| 国产精品av视频在线免费观看| 国产精品福利在线免费观看| 亚洲精品亚洲一区二区| 永久免费av网站大全| 国产精品1区2区在线观看.| 白带黄色成豆腐渣| 亚洲色图av天堂| 国产精品乱码一区二三区的特点| 伦精品一区二区三区| 99久久九九国产精品国产免费| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美中文字幕日韩二区| 久久久久九九精品影院| 免费观看的影片在线观看| 热99re8久久精品国产| 亚洲精品乱码久久久v下载方式| 日韩在线高清观看一区二区三区| 国内精品一区二区在线观看| 少妇熟女aⅴ在线视频| 国产高清不卡午夜福利| 国产免费一级a男人的天堂| 午夜福利高清视频| 寂寞人妻少妇视频99o| 成人亚洲欧美一区二区av| 岛国毛片在线播放| 欧美+日韩+精品| 日韩国内少妇激情av| 一个人看视频在线观看www免费| www.av在线官网国产| 看十八女毛片水多多多| 白带黄色成豆腐渣| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 亚洲av二区三区四区| av福利片在线观看| 成人亚洲欧美一区二区av| 国产老妇女一区| 国产伦理片在线播放av一区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美,日韩| 日韩成人伦理影院| 欧美+日韩+精品| 搞女人的毛片| 国产精品1区2区在线观看.| 亚洲av二区三区四区| 我的老师免费观看完整版| 日韩av不卡免费在线播放| 日日啪夜夜撸| 国产 一区精品| 日本wwww免费看| 亚洲国产精品专区欧美| 日韩三级伦理在线观看| АⅤ资源中文在线天堂| 少妇的逼好多水| 舔av片在线| 国产亚洲最大av| 最近中文字幕高清免费大全6| 中文字幕熟女人妻在线| 久久综合国产亚洲精品| 欧美一区二区亚洲| 亚洲国产最新在线播放| 亚洲最大成人手机在线| 午夜爱爱视频在线播放| 欧美丝袜亚洲另类| 色综合站精品国产| 国产高清国产精品国产三级 | 国产一区亚洲一区在线观看| 国产一区亚洲一区在线观看| 久久久久久大精品| 久久6这里有精品| 美女内射精品一级片tv| 国产精品嫩草影院av在线观看| 乱系列少妇在线播放| 国产精品久久久久久精品电影小说 | 最近最新中文字幕免费大全7| 亚洲成人中文字幕在线播放| 看非洲黑人一级黄片| 亚洲伊人久久精品综合 | 丝袜美腿在线中文| 青春草亚洲视频在线观看| 午夜亚洲福利在线播放| 六月丁香七月| 亚洲综合精品二区| 国产精品嫩草影院av在线观看| 建设人人有责人人尽责人人享有的 | 午夜福利网站1000一区二区三区| 91久久精品电影网| 神马国产精品三级电影在线观看| 波多野结衣高清无吗| 久久亚洲精品不卡| 一边亲一边摸免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品无大码| 亚洲国产高清在线一区二区三| 国产乱人视频| 精品久久久久久久久亚洲| 精品午夜福利在线看| 亚洲精品国产成人久久av| 欧美激情在线99| 男人和女人高潮做爰伦理| 非洲黑人性xxxx精品又粗又长| 久久精品国产99精品国产亚洲性色| 老师上课跳d突然被开到最大视频| 亚洲欧美成人精品一区二区| 国语自产精品视频在线第100页| 日韩精品青青久久久久久| 国产一区二区在线观看日韩| 日本wwww免费看| 国产视频首页在线观看| 日韩av在线大香蕉| 国产麻豆成人av免费视频| 99久国产av精品| 午夜久久久久精精品| 99久久精品一区二区三区| 国产精品99久久久久久久久| 小说图片视频综合网站| 男人舔奶头视频| 九九久久精品国产亚洲av麻豆| 丰满乱子伦码专区| 国产黄色小视频在线观看| 亚洲欧美清纯卡通| 午夜激情欧美在线| 成年av动漫网址| 在线播放无遮挡| 亚洲中文字幕日韩| 亚洲欧美日韩无卡精品| 亚洲av免费在线观看| 91久久精品国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 欧美3d第一页| 中文字幕久久专区| 一级黄色大片毛片| 国产极品天堂在线| 亚洲欧洲国产日韩| 日韩三级伦理在线观看| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 又爽又黄无遮挡网站| 中文字幕久久专区| 国产精品国产高清国产av| 国产女主播在线喷水免费视频网站 | av在线老鸭窝| av专区在线播放| 国产精品1区2区在线观看.| 国内精品美女久久久久久| 国产精品国产三级专区第一集| 日韩欧美三级三区| 一区二区三区四区激情视频| 99在线视频只有这里精品首页| 极品教师在线视频| 麻豆一二三区av精品| 小说图片视频综合网站| 免费看a级黄色片| 国产亚洲91精品色在线| 午夜老司机福利剧场| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 精品熟女少妇av免费看| 婷婷色综合大香蕉| 长腿黑丝高跟| 亚洲av熟女| 热99re8久久精品国产| 久久精品国产鲁丝片午夜精品| 欧美激情国产日韩精品一区| 日本五十路高清| 在线观看一区二区三区| 国产高清国产精品国产三级 | 丰满少妇做爰视频| 免费在线观看成人毛片| 乱码一卡2卡4卡精品| 看免费成人av毛片| 汤姆久久久久久久影院中文字幕 | 亚洲色图av天堂| 亚洲精品,欧美精品| 欧美性猛交黑人性爽| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 色综合色国产| 国产精品无大码| 青春草亚洲视频在线观看| 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 岛国毛片在线播放| 午夜福利在线在线| 久久久久久久久久黄片| 一个人观看的视频www高清免费观看| 国产中年淑女户外野战色| 国产激情偷乱视频一区二区| 国产极品精品免费视频能看的| 五月伊人婷婷丁香| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 亚洲国产精品久久男人天堂| 亚洲,欧美,日韩| 91午夜精品亚洲一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久视频播放| 免费黄网站久久成人精品| 国产免费男女视频| 亚洲真实伦在线观看| 国产精品日韩av在线免费观看| 禁无遮挡网站| 老女人水多毛片| 一个人看的www免费观看视频| 国产 一区精品| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 看免费成人av毛片| 国产精品福利在线免费观看| 精品午夜福利在线看| 男人的好看免费观看在线视频| 中文在线观看免费www的网站| 白带黄色成豆腐渣| 欧美日韩精品成人综合77777| 乱人视频在线观看| 最近的中文字幕免费完整| 国产成人精品一,二区| 亚洲av二区三区四区| 美女国产视频在线观看| 日韩高清综合在线| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区| 国产精品久久久久久久电影| 国产伦精品一区二区三区视频9| 69人妻影院| 青春草国产在线视频| 免费一级毛片在线播放高清视频| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 丰满少妇做爰视频| 直男gayav资源| 老司机影院毛片| 久久久久久伊人网av| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 亚洲色图av天堂| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 女人被狂操c到高潮| 国产伦精品一区二区三区四那| 国产午夜福利久久久久久| 黑人高潮一二区| 国内精品宾馆在线| 欧美潮喷喷水| 久久99精品国语久久久| 综合色丁香网| 日本三级黄在线观看| 国产黄片美女视频| 亚洲欧洲国产日韩| 久久久久九九精品影院| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 日韩制服骚丝袜av| 午夜福利在线观看吧| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 国产成人91sexporn| 国产免费视频播放在线视频 | 超碰97精品在线观看| 亚洲人成网站在线观看播放| 精品人妻偷拍中文字幕| 国产一区二区亚洲精品在线观看| 成人性生交大片免费视频hd| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 黄色日韩在线| 国产精品,欧美在线| 99久久精品国产国产毛片| 国产免费又黄又爽又色| 国产免费一级a男人的天堂| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 成年女人永久免费观看视频| 日韩 亚洲 欧美在线| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线| 最近中文字幕高清免费大全6| 极品教师在线视频| 日韩,欧美,国产一区二区三区 | 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 我的老师免费观看完整版| 99在线人妻在线中文字幕| 亚洲国产色片| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 国语自产精品视频在线第100页| 99九九线精品视频在线观看视频| 亚洲在线观看片| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 在线a可以看的网站| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 高清视频免费观看一区二区 | 精品人妻视频免费看| 免费搜索国产男女视频| 中文字幕久久专区| 国产精品综合久久久久久久免费| 丰满乱子伦码专区| 国产一级毛片在线| av天堂中文字幕网| 国产亚洲91精品色在线| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 热99在线观看视频| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看| 亚洲国产精品合色在线| 久久久成人免费电影| 简卡轻食公司| 国产午夜精品一二区理论片| 91av网一区二区| 天天躁日日操中文字幕| 男女那种视频在线观看| 日本五十路高清| 性插视频无遮挡在线免费观看| 又黄又爽又刺激的免费视频.| 国产精品综合久久久久久久免费| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 国产精品野战在线观看| 亚洲自拍偷在线| 精品久久久久久久末码| 精品国内亚洲2022精品成人| 只有这里有精品99| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 久久久午夜欧美精品| 尾随美女入室| 亚洲欧美日韩无卡精品| 观看美女的网站| 亚洲精品一区蜜桃| 日产精品乱码卡一卡2卡三| 狠狠狠狠99中文字幕| 国产色婷婷99| 亚洲自拍偷在线| 亚洲精品国产av成人精品| 18+在线观看网站| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 久久久久久久久久久免费av| 九色成人免费人妻av| 成人鲁丝片一二三区免费| 熟女电影av网| 一级二级三级毛片免费看| 国产精品永久免费网站| 日韩人妻高清精品专区| 久久午夜福利片| 中文字幕av在线有码专区| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 乱系列少妇在线播放| 免费无遮挡裸体视频| 国产亚洲午夜精品一区二区久久 | 久久国产乱子免费精品| 一本一本综合久久| 日本熟妇午夜| 床上黄色一级片| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| АⅤ资源中文在线天堂| 久热久热在线精品观看| 国产成人精品久久久久久| 日日干狠狠操夜夜爽| 国产午夜精品一二区理论片| 久久久成人免费电影| 久久精品久久久久久久性| 亚洲电影在线观看av| 免费观看性生交大片5| 欧美潮喷喷水| 99热网站在线观看| 国产精品伦人一区二区| 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放 | 18禁动态无遮挡网站| 欧美精品一区二区大全| 一二三四中文在线观看免费高清| 人人妻人人看人人澡| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 国产三级中文精品| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 97在线视频观看| 国产综合懂色| 久久精品国产自在天天线| av女优亚洲男人天堂| 波野结衣二区三区在线| 舔av片在线| 一级毛片aaaaaa免费看小| 色吧在线观看| 久久人人爽人人片av| 国产成人精品久久久久久| 亚洲aⅴ乱码一区二区在线播放| 久久亚洲国产成人精品v| 国产精品人妻久久久影院| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 国产精品美女特级片免费视频播放器| 国产高清不卡午夜福利| 久久久a久久爽久久v久久| 免费看a级黄色片| av女优亚洲男人天堂| 九九在线视频观看精品| 综合色丁香网| 亚洲精华国产精华液的使用体验| 七月丁香在线播放| 18禁动态无遮挡网站| 久久精品人妻少妇| 久久久久九九精品影院| 国产精品乱码一区二三区的特点| 欧美一区二区国产精品久久精品| 久久人妻av系列| 午夜a级毛片| 极品教师在线视频| 日本色播在线视频| 三级国产精品片| 91久久精品电影网| 日韩亚洲欧美综合| 精品国产露脸久久av麻豆 | 少妇人妻一区二区三区视频| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 欧美激情在线99| 少妇熟女aⅴ在线视频| 亚洲av电影在线观看一区二区三区 | 国产精品.久久久| 免费大片18禁| 亚洲欧美成人精品一区二区| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 少妇的逼好多水| av专区在线播放| 精品久久国产蜜桃| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 午夜久久久久精精品| 美女国产视频在线观看| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 婷婷色av中文字幕| 国产亚洲5aaaaa淫片| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 欧美三级亚洲精品| 一级毛片我不卡| 黄色日韩在线| 国产精品久久视频播放| 精品国产一区二区三区久久久樱花 | 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 十八禁国产超污无遮挡网站| 国产三级在线视频| 99久久精品国产国产毛片| 日本免费在线观看一区| 一个人免费在线观看电影| 尤物成人国产欧美一区二区三区| 草草在线视频免费看| 亚洲欧美精品综合久久99| 深夜a级毛片| 极品教师在线视频| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 国产成人91sexporn| 色尼玛亚洲综合影院| www.色视频.com| 国产亚洲av片在线观看秒播厂 | 女人久久www免费人成看片 | 不卡视频在线观看欧美| 欧美激情在线99| 亚洲国产精品合色在线| 69av精品久久久久久| 国产精品一区二区在线观看99 | 国产一区二区在线观看日韩| 极品教师在线视频| 精品久久久久久久久亚洲| 蜜桃久久精品国产亚洲av| 久久亚洲精品不卡| 尤物成人国产欧美一区二区三区| 亚洲国产欧美在线一区| 精品国内亚洲2022精品成人| 久久精品综合一区二区三区| 免费av观看视频| 我要搜黄色片| 伦理电影大哥的女人| 99久久无色码亚洲精品果冻| 在线观看66精品国产| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 久久久色成人| 国产三级中文精品|