• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Sliding-Mode Control of an Automotive Electronic Throttle in the Presence of Input Saturation Constraint

    2018-07-31 09:50:08RuiBai
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Rui Bai

    Abstract—In modern vehicles,electronic throttle(ET)has been widely utilized to control the air flow into gasoline engine.To solve the control difficulties with an ET,such as strong nonlinearity,unknown model parameters and input saturation constraints,an adaptive sliding-mode tracking control strategy for an ET is presented.Compared with the existing control strategies for an ET,input saturation constraints and parameter uncertainties are adequately considered in the proposed control strategy.At first,the nonlinear dynamic model for control of an ET is described.According to the dynamical model,the nonlinear adaptive sliding-mode tracking control method is presented,where parameter adaptive laws and auxiliary design system are employed.Parameter adaptive law is given to estimate the unknown parameter with an ET.An auxiliary system is designed,and its state is utilized in the tracking control method to handle the input saturation.Stability proof and analysis of the adaptive sliding-mode control method is performed by using Lyapunov stability theory.Finally,the reliability and feasibility of the proposed control strategy are evaluated by computer simulation.Simulation research shows that the proposed sliding-mode control strategy can provide good control performance for an ET.

    I.INTRODUCTION

    I N vehicles powered by gasoline engines,the accelerator pedal actuated by the driver is linked to the engine throttle.Engine throttle plays an important role in vehicle’s engine.The throttle plate opening regulates air flow into the intake manifold of engine system,which will affect the engine operating efficiency[1],[2].In the past,the accelerator pedal and the throttle were connected by mechanical equipment.Nowadays,many important functions of vehicles are shifting from a purely mechanical to an electromechanical execution,commonly known as an “X-by-wire”system.This electromechanical system is utilized as an interface between the driver and the directed automotive subsystem(e.g.,engine throttle,brakes,etc.)[3]-[6].The mechanical connection between the accelerator pedal and the engine throttle is replaced by an electronic linkage,commonly known as an electronic throttle(ET)in modern vehicles.An ET is essentially a valve driven by a servo dc-motor,which regulates the air in flow into the engine system.By using an ET,the engine control unit can control the throttle valve angle according to the specific engine operation condition and mode.Therefore,the fuel economy,drivability,and emission of vehicle can be significantly improved[7],[8].ET has been widely used in automotive engine for its above mentioned advantage.

    The control objective of an ET is to control the actual valve angle track a reference signal with the fast and accurate property[8].The main difficult problem of ET control is the presence of the strong nonlinearity caused by the transmission friction and return spring,unknown system parameters,external disturbance,and input saturation constraint.For the past few years,this challenging and important automotive control issue has attracted more and more attention in the research community and vehicle industry,and some control methods for ET have been presented[8]-[16],including Proportionalintegral-derivative(PID)control,state feedback control,optimal control,adaptive control,robust control,sliding control,intelligent control,and so on.[8]presented the dynamical model and unknown parameters identification of an industrial automotive ET control system.A nonlinear closed-loop control system based on the input-output liberalization approach is designed for an ET.In[9],a PID controller with a feed for word compensator was presented for the ET control system.In[10],based on the theory of linear quadratic regulator(LQR)control,a scheme of discrete-time optimal preview position control algorithm for an ET was designed.In[11],an adaptive servo control method was presented for an ET.In[12],a robust H∞control strategy with mixed-sensitivity synthesis method was designed for an ET.In[13],at first,some observers were designed to estimate the unmeasured states in an ET and a sliding-mode controller was designed to control an ET.In[14],an adaptive control strategy with the inverse model was presented for an ET.The unknown functions in an ET were approximated by using two RBF neural networks.In[15],an explicit Luenberger-sliding mode observer was designed,and a sliding-mode control with fuzzy double loop was presented for an ET.[16]proposed a robust terminal sliding-mode control method,and the uncertainty in an ET was approximated by using a neural network.

    Although these existing works have obtained the acceptable control performance for the specified operation condition,there are some important issues for an ET that should be further discussed,especially,the input saturation constraint with an ET.In many industrial systems,due to the physical saturation constraint on hardware including the actuator,the magnitude of the control command signal is often limited to a specified range.Input saturation is an important issue for the control system,which often severely affects control system performance and can reduce control accuracy and system stability[17],[18].The control strategy of an uncertain nonlinear system under the input saturation constraint has been extensively researched in recent years.For example,in[18],an adaptive control method of the nonlinear dynamical system with input saturation was proposed.In the proposed adaptive control method,the Nussbaum function was introduced to compensate for the influence of the input saturation.In[19],by employing an neural network,an adaptive control method was designed for an n-link robotic manipulator with an input saturation constraint.The proposed control method can obtain satisfactory tracking control performance.In[20],to analyze the effect of input saturation,an auxiliary design system was introduced.The state of auxiliary design system was used to design the control method for handling input saturation.In[21],[22],the novel symmetric and asymmetric barrier Lyapunov functions(BLFs)are adopted to guarantee that the states do not violate their constraints.

    Due to limited power supply capacity in vehicles,the driving-motor voltage in an ET has a limited range.In general,the limited range of the driving-motor voltage is 0 to 5 volts.Thus,there is an input saturation constraint in the control system of ET.Input saturation severely degrades the control performance of ET,including the position accuracy and closed-loop stability.However,in the aforementioned existing control methods for ET,the input saturation problem is rarely considered.To improve the control performance of ET,an adaptive sliding-mode tracking control method for ET is proposed in this paper.The innovations and contributions of this paper are summarized and listed as follows.

    1)To solve the nonlinearity,unknown parameter,and external disturbance,we have presented an adaptive sliding-mode control for an ET.Parameter adaptive law is used to estimate the unknown parameter on ET.Compared with the existing control methods for ET,sliding-mode control with parameter adaptive laws is firstly used to control ET.

    2)To solve the input saturation constraint,we have designed an auxiliary design system to analyze the effect of input saturation on an ET.For handling the input saturation constraint,the state of auxiliary design system is used in the presented adaptive sliding-mode control.Furthermore,the stability of closed-loop system is ensured using Lyapunov stability theorem.Compared with the existing control methods for an ET,input saturation is considered and solved in the proposed control method.

    The rest of this paper is organized as follows.The uncertain nonlinear dynamic model of an ET is described in Section II.The adaptive sliding-mode controller with input saturation for an ET is designed in Section III.Section IV is the presentation and analysis of the simulation results.At last,some conclusions are given in Section V.

    The following nomenclature is used throughout the paper:Nomenclature:

    θdReference angle of the throttle valve

    θ(t) Actual angle of the throttle valve

    θ0Static angle of the throttle valve

    ω(t) Angular speed of the throttle valve

    ia(t) Armature current

    RaArmature resistance

    Ua(t) Input voltage of the driving motor

    Ea(t) Counter electromotive force

    LaInductance of the armature loop

    Te(t) Electromagnetism torque

    TL(t) Load torque of the driving motor

    Ts(t) Return spring torque

    Tf(t) Friction torque

    KtTorque constant

    KaElectromotive force constant

    KsElastic coefficient in the return spring

    KmTorque compensation coefficient in the return spring

    KdSliding friction coefficient in the friction torque

    KkCoulomb friction coefficient in the friction torque

    JREquivalent moment of inertia

    j Gear ratio

    II.DESCRIPTIONS AND MODELING OF ET

    An ET is a valve driven by the servo dc motor in modern vehicles.The ET can control the air flow into the vehicle’s engine by adjusting the opening angle of the valve plate.The schematic control structure of ET is described in Fig.1.The main components of Fig.1 include the controller and electronic throttle body.An electronic throttle body is assembled with a dc motor,a gear unit,a valve plate,a return spring and a position sensor.The driving motor and throttle valve plate are connected by a gear unit.The throttle valve plate determines the load on the driving motor.By changing the input voltage of driving motor,the electromagnetic torque of driving motor is changed,and the angle of the throttle valve plate is regulated at the same time.The return spring is a mechanical protection device introduced with an ET.The return spring ensures that when the driving motor fails to work,the throttle valve plate maintains a certain safety angle,named the limp-home(LH)angle.The position sensor detects the angle of the throttle valve in real time,and delivers the angle to the controller.The control objective of ET is to achieve the fast and accurate tracking control performance of the opening angle.

    Fig.1.Schematic diagram of electronic throttle control.

    The dynamical characteristic of the dc motor in ET is shown as

    The electrical balance equations of the armature loop are

    According to(2)and(3)and ignoring the inductance La,we have

    According to the electromagnetic torque expression,we have

    Substituting(4)into(5),we have

    The nonlinear toque of return spring in ET is

    where θ is the initial angle of the valve plate.

    The nonlinear friction torque in ET consists of a viscous and a Coulomb torque.The nonlinear friction torque is[11]

    Substituting(6)-(8)into(1),the dynamic equation of ET is given by

    Defining state variables x1(t)= θ(t)- θ0,x2(t)= ω(t),control variable u(t)=Ua(t),and considering the external disturbance d(t),the aforementioned dynamic equation can be simplified as

    where

    In(10),d(t)is the unknown external disturbance.d(t)satisfies the following constraint inequality:

    where D is a known constant,indicates the maximum value of d(t).

    Therefore,(10)is the nonlinear state-space model of ET.The major control difficulties for ET are discussed as follows:

    1)Strong nonlinear dynamics caused by the return spring and friction.

    2)In the electronic throttle system,Kt,Ka,JRand Raare known parameters.Ks,Km,Kdand Kkare unknown parameters.Therefore,in(10),μ0is a known parameter,andμ1,μ2,μ3as well asμ4are unknown parameters.

    3)The driving voltage of the dc motor in ET has a limited range.Therefore,there is an input saturation constraint in the control system of ET.

    III.TRACKING CONTROL METHOD FOR ET

    To solve the control difficulties listed in the end of Section II,an adaptive sliding-mode control method for an ET is designed in this section.Fig.2 illustrates the proposed control method of an ET.According to the dynamical model,the nonlinear adaptive sliding-mode tracking control method is designed,where the parameter adaptive laws and auxiliary design system are employed.?μiis the estimation of unknown parameter in an ET.ξ is the state variable of auxiliary design system.Parameter adaptive laws are designed to estimate the unknown parameters in the dynamical model of an ET.To analyze the effect of input saturation in ET,an auxiliary design system was introduced.The state variable of the auxiliary design system is introduced into the proposed tracking controller to handle the input saturation.

    Fig.2.Schematic diagram of electronic throttle control.

    To get a better description of the proposed control method,at first,we design a sliding-mode control for ET without considering the unknown parameters and input saturation in Section III-A.Based on the control method in Section IIIA,an adaptive sliding-mode control for ET is designed in Section III-B,where unknown parameters and input saturation are considered.

    A.Sliding-Mode Control for ET

    The tracking error of valve plate angle is defined as

    where xd(t)= θd(t)- θ0.

    s(t)is the sliding-mode surface,which is described as

    where c is a positive constant.

    The sliding-mode control signal consists of two parts,including the equivalent control signal and the switching control signal[23].The equivalent control signal is the control which keeps the trajectories of the dynamical system on the slidingmode surface.It can be solved from˙s(t)=0.A switching control signal makes the trajectories of the dynamical system move towards the sliding-mode surface.

    The sliding-mode control signal is

    where ueq(t)is the equivalent control signal.usw(t)is the switching control signal.

    Neglecting the external disturbance,the derivative of s(t)is given by

    Letting˙s(t)=0,u(t)in(15)is the equivalent control signal ueq(t).From(15),ueq(t)is computed as

    According to designing principle of the sliding-mode control[21],the switching control signal usw(t)is designed as

    where K is a positive constant.K satisfies the following condition:

    Therefore,sliding-mode control is

    B.Adaptive Sliding-Mode Control With Input Saturation for ET

    As described in Section II,μ1,μ2,μ3and μ4are unknown parameters.Therefore,the control law(20)cannot be applied in engineering practice.In this section,to estimate the unknown parameters with an ET,parameter adaptive laws are designed.An auxiliary design system is designed which is utilized to analyze the effect of the input saturation.

    For the input saturation constraint,we define

    where Uminand Umaxare known constants.

    Therefore,the control input signal u is

    In(23),v is the control command,which will be designed in the following steps.

    The following auxiliary design system is used to analyze and reduce the saturation effect[19],[20]:

    where ξ is the state variable of the auxiliary design system.ε is a small positive design parameter.b> μ0> 0.

    The Lyapunov function candidate V(t)is given as

    where γ1,γ2,γ3,and γ4are positive constants,respectively.

    The time derivative of V(t)is

    Substituting(12),(13),(21),(24)into(27),we have

    Noting the following fact

    we have

    In this section,parameter adaptive laws are designed as

    Invoking(30)-(34),the derivative of V(t)is

    In this section,the control command v is designed as

    where c2>0 is a design parameter.

    In this section,design parameters c1and c2are specified to satisfy the following inequality constraint:

    Remark 1:For stability,K is usually chosen to be conservatively large.This is not very desirable due to the chattering introduced.To improve the response time,c should be chosen to be conservatively large.

    Theorem 1:For the nonlinear dynamical electronic throttle system described by(10),under the control law(36)with the parameter adaptation laws(31)-(34),with the specified inequality(37)for design parameters,the closed-loop control system of ET is stable.

    The proof process of Theorem 1 is provided in the Appendix.

    IV.SIMULATION RESULTS

    Some simulations are executed to evaluate the reliability and feasibility of the proposed adaptive sliding-mode controller with input saturation for ET.According to the actual power supply capacity in engine control unit,the limited range of driving-motor voltage is[0,5].In the simulation,some main parameters of ET are j=18,JR=5×10-4,Ra=4.5,Ka=0.0193,Kt=0.019,Ks=0.046,Km=0.15,Kd=4×10-4,Kk=4.8×10-3,d(t)=0.5 sin(t),Umax=5,Umin=0.

    Simulation results are given in Figs.4-6.In the simulation,the reference valve angle in ET is 60 degrees.Both the control command v and the control input variable u are shown in Fig.3.In the initial stage of Fig.3,the input voltage(i.e.,the control command v)exceeds its maximum limit.This input voltage can not be applied in practice due to limitation of the power supply capacity.Using the proposed method in this paper,the control variable u is limited into its range,which can be applied in the actual engine control unit.

    Fig.3.Control input u and control command v.

    Fig.4.Reference angle θd and actual angle θ.

    In Fig.3,the oscillation of the control variable u is caused by the action of the switching control signal.In Fig.4,the actual angle θ of ET can track its reference value θd.In Fig.5,the angle speed ω(t)is also regulated to zero.The closed-loop control system is stable and the tracking accuracy is satisfactory.

    Fig.5.Angle speed ω.

    In the actual control unit,the PI control method is widely used in an ET.Comparison simulation results with the conventional PI control method and the proposed control method are given in Fig.6 and Fig.7.According to Fig.6 and Fig.7,we know that the proposed control method will result in better control performance than the conventional PI control method.Therefore,we provide a new option for ET control in the vehicle industry.

    Fig.6.Comparison of angle with PI control and the proposed control.

    Remark 2:In the control system of automotive electronic throttle,the control input variable is the input voltage of the driving motor.The magnitude of the voltage is affected by the actual power supply capacity,that is,it must be within a certain range.In general,the certain range is[0 5].However,in the existing control methods for ET,the input signal limitation is not considered.If the input signal is too large,it cannot be applied even though the control performance is satisfactory.

    V.CONCLUSIONS

    In this paper,the dynamical model including the nonlinear characteristics of the return spring and friction of ET is presented.Based on the nonlinear dynamical model,an adaptive sliding-mode control strategy of ET is proposed.During the controller design process,parametric uncertainties,unknown disturbances,and input saturation constraint are adequately considered and solved.Stability of the closed-loop control system is proved via the Lyapunov stability method.From the simulation results,we know that the proposed control method can obtain satisfactory control performance with a control input that does not exceed the saturation constraint.

    Fig.7.Comparison of angle speed with PI control and the proposed control.

    APPENDIX

    Substituting(36)into(35),the time derivative of V(t)is

    According to the following inequality

    we have

    Considering K≥D≥d(t),c2>0,the inequality(37)for c1and c2,we have

    Therefore,the closed-loop control system is stable according to the Lyapunov stability theory.

    精品一区二区三区av网在线观看| 99热6这里只有精品| 嫩草影院入口| 男女视频在线观看网站免费| 一区二区三区免费毛片| 国产成人aa在线观看| 欧美黑人巨大hd| 精品熟女少妇八av免费久了| 日韩欧美在线二视频| 可以在线观看毛片的网站| 老司机深夜福利视频在线观看| 国产极品精品免费视频能看的| 国产一区二区在线观看日韩| 婷婷六月久久综合丁香| 国产av不卡久久| 综合色av麻豆| 精品久久久久久久末码| 色精品久久人妻99蜜桃| 可以在线观看的亚洲视频| 精品午夜福利视频在线观看一区| 成人美女网站在线观看视频| 麻豆一二三区av精品| 免费av不卡在线播放| 亚洲 国产 在线| 国产主播在线观看一区二区| 少妇的逼好多水| 久久亚洲精品不卡| 久久人人精品亚洲av| 国产黄片美女视频| 久久99热6这里只有精品| 色播亚洲综合网| 床上黄色一级片| 久久欧美精品欧美久久欧美| 在线观看舔阴道视频| 很黄的视频免费| 午夜亚洲福利在线播放| 成人av一区二区三区在线看| 亚洲专区国产一区二区| 国产精品野战在线观看| 成年女人毛片免费观看观看9| 欧美激情在线99| 97超视频在线观看视频| 小说图片视频综合网站| 日韩大尺度精品在线看网址| 女人被狂操c到高潮| 精品无人区乱码1区二区| 国产日本99.免费观看| 一个人观看的视频www高清免费观看| 国产精品爽爽va在线观看网站| 欧美精品国产亚洲| 中文字幕人成人乱码亚洲影| 一夜夜www| 久久草成人影院| 欧美+日韩+精品| 午夜免费成人在线视频| or卡值多少钱| 久久草成人影院| 日韩国内少妇激情av| 精品久久久久久,| 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出| 非洲黑人性xxxx精品又粗又长| 久久久久久久久中文| 大型黄色视频在线免费观看| 免费大片18禁| 啪啪无遮挡十八禁网站| 国产精品久久久久久久久免 | 午夜福利在线观看免费完整高清在 | 性色avwww在线观看| 国产精品永久免费网站| 99视频精品全部免费 在线| 丰满的人妻完整版| 青草久久国产| 国产亚洲精品av在线| 午夜免费成人在线视频| av视频在线观看入口| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 色吧在线观看| 俺也久久电影网| 久久人妻av系列| 欧美三级亚洲精品| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 成人一区二区视频在线观看| 国产三级中文精品| 一夜夜www| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 天堂动漫精品| 可以在线观看的亚洲视频| 欧美高清成人免费视频www| 欧美日本亚洲视频在线播放| 偷拍熟女少妇极品色| 久久久久性生活片| 亚洲国产精品合色在线| 亚洲片人在线观看| 日本一二三区视频观看| 赤兔流量卡办理| 亚洲精品在线观看二区| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 小说图片视频综合网站| 天堂动漫精品| 又爽又黄无遮挡网站| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| 欧美bdsm另类| 久久午夜亚洲精品久久| 色综合婷婷激情| 国产三级在线视频| 国产伦人伦偷精品视频| 高清在线国产一区| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区| 婷婷丁香在线五月| 1000部很黄的大片| or卡值多少钱| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 一区二区三区四区激情视频 | 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 99视频精品全部免费 在线| 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 亚洲欧美日韩东京热| 一区福利在线观看| 国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 午夜精品一区二区三区免费看| 国产高清视频在线播放一区| 最近中文字幕高清免费大全6 | 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 日韩欧美在线乱码| 亚洲美女视频黄频| 精品人妻熟女av久视频| 国产毛片a区久久久久| 丰满的人妻完整版| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 亚洲精品粉嫩美女一区| 老司机福利观看| 熟女电影av网| 极品教师在线免费播放| 一本精品99久久精品77| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放| 国产在视频线在精品| 1000部很黄的大片| 亚洲国产精品成人综合色| av在线老鸭窝| 成人三级黄色视频| 一本一本综合久久| 又黄又爽又免费观看的视频| 天堂√8在线中文| 老司机午夜十八禁免费视频| 小说图片视频综合网站| 欧美一区二区亚洲| 男女那种视频在线观看| 日韩欧美国产一区二区入口| 亚洲欧美日韩卡通动漫| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 国产成人福利小说| 高清在线国产一区| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 亚洲欧美日韩东京热| 精品乱码久久久久久99久播| 国产单亲对白刺激| 精品国产亚洲在线| 欧美zozozo另类| 天堂网av新在线| 日本五十路高清| 免费搜索国产男女视频| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 在线看三级毛片| .国产精品久久| 琪琪午夜伦伦电影理论片6080| 久久草成人影院| 欧美三级亚洲精品| 欧美一区二区亚洲| 欧美潮喷喷水| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 人妻制服诱惑在线中文字幕| 国产成年人精品一区二区| 国产69精品久久久久777片| .国产精品久久| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 性色avwww在线观看| 国产亚洲精品综合一区在线观看| 97超视频在线观看视频| 国产单亲对白刺激| 在线观看av片永久免费下载| 亚洲精品久久国产高清桃花| 国产免费男女视频| 久久中文看片网| 国内精品久久久久久久电影| 国产极品精品免费视频能看的| 制服丝袜大香蕉在线| 国产综合懂色| 一区福利在线观看| 国产精品亚洲av一区麻豆| 动漫黄色视频在线观看| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 美女高潮的动态| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 国产激情偷乱视频一区二区| 久久中文看片网| 成人鲁丝片一二三区免费| 欧美三级亚洲精品| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 成人三级黄色视频| 免费在线观看成人毛片| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 在线观看免费视频日本深夜| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 久久久国产成人精品二区| 永久网站在线| 老鸭窝网址在线观看| 亚洲成av人片在线播放无| 国产精品一及| 99热这里只有精品一区| 国产野战对白在线观看| 18禁黄网站禁片午夜丰满| 婷婷精品国产亚洲av| 99国产综合亚洲精品| 精品一区二区三区av网在线观看| 欧美午夜高清在线| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 1024手机看黄色片| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久人妻精品电影| 午夜免费男女啪啪视频观看 | 中文字幕人成人乱码亚洲影| 三级毛片av免费| 国产视频一区二区在线看| 美女xxoo啪啪120秒动态图 | 一级毛片久久久久久久久女| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| av女优亚洲男人天堂| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 在线播放无遮挡| 国产精品一区二区三区四区久久| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 国产精品伦人一区二区| av在线观看视频网站免费| 精品欧美国产一区二区三| 婷婷精品国产亚洲av| 午夜亚洲福利在线播放| 午夜免费男女啪啪视频观看 | 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 一本久久中文字幕| 波野结衣二区三区在线| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 国产一区二区激情短视频| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 婷婷丁香在线五月| 五月伊人婷婷丁香| 99久国产av精品| 日韩免费av在线播放| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看电影| 在线国产一区二区在线| 精品久久国产蜜桃| 啦啦啦观看免费观看视频高清| 亚洲综合色惰| 久久伊人香网站| 久久人人精品亚洲av| 午夜激情欧美在线| 此物有八面人人有两片| 一本一本综合久久| 国产精品一区二区性色av| 精品久久久久久久末码| 网址你懂的国产日韩在线| 我要搜黄色片| 色5月婷婷丁香| 色哟哟·www| 又黄又爽又刺激的免费视频.| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 99热这里只有是精品在线观看 | 久久草成人影院| 最好的美女福利视频网| 久久久色成人| 不卡一级毛片| 国模一区二区三区四区视频| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费| 免费av不卡在线播放| 91久久精品国产一区二区成人| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 亚洲最大成人中文| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 在线观看美女被高潮喷水网站 | 99在线人妻在线中文字幕| 亚洲在线自拍视频| 深夜精品福利| 亚洲精品乱码久久久v下载方式| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 午夜福利欧美成人| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 毛片女人毛片| 日本黄色视频三级网站网址| 亚洲最大成人手机在线| 精品一区二区三区人妻视频| 能在线免费观看的黄片| 国产精品久久久久久亚洲av鲁大| av女优亚洲男人天堂| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 亚洲经典国产精华液单 | 夜夜看夜夜爽夜夜摸| a在线观看视频网站| 免费av不卡在线播放| 亚洲精华国产精华精| 黄色日韩在线| 亚洲精品久久国产高清桃花| 亚洲精品在线美女| 欧美色视频一区免费| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区三区| 18禁在线播放成人免费| 日本熟妇午夜| 亚洲精品影视一区二区三区av| 少妇高潮的动态图| 一边摸一边抽搐一进一小说| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 国产午夜精品久久久久久一区二区三区 | 日韩精品青青久久久久久| 亚洲人成电影免费在线| 婷婷精品国产亚洲av在线| 美女 人体艺术 gogo| 人人妻,人人澡人人爽秒播| 无人区码免费观看不卡| 国产乱人视频| 最新在线观看一区二区三区| 一级a爱片免费观看的视频| 一级av片app| 久久国产乱子免费精品| 免费黄网站久久成人精品 | 中文字幕久久专区| 综合色av麻豆| 免费看光身美女| 亚洲aⅴ乱码一区二区在线播放| 亚洲av五月六月丁香网| 性色avwww在线观看| 欧美三级亚洲精品| 国产美女午夜福利| 国产午夜精品久久久久久一区二区三区 | 草草在线视频免费看| 欧美国产日韩亚洲一区| 黄片小视频在线播放| 精品久久久久久久久久免费视频| 久久人人爽人人爽人人片va | 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 我要看日韩黄色一级片| 又黄又爽又免费观看的视频| 国产成人影院久久av| 国产一区二区三区视频了| 好男人在线观看高清免费视频| 欧美一区二区精品小视频在线| 午夜激情福利司机影院| av中文乱码字幕在线| 最新在线观看一区二区三区| 日本 av在线| 丰满人妻熟妇乱又伦精品不卡| 一进一出好大好爽视频| 日日夜夜操网爽| 久久久久久久午夜电影| 91狼人影院| 精品免费久久久久久久清纯| 小说图片视频综合网站| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 91麻豆av在线| 我的女老师完整版在线观看| 国产av麻豆久久久久久久| 舔av片在线| 搞女人的毛片| 日本 欧美在线| 99视频精品全部免费 在线| 国产精品嫩草影院av在线观看 | 3wmmmm亚洲av在线观看| 国产大屁股一区二区在线视频| 亚洲熟妇中文字幕五十中出| 亚洲成av人片在线播放无| 51午夜福利影视在线观看| 成人国产综合亚洲| 一本久久中文字幕| 嫩草影视91久久| 美女高潮的动态| 一区福利在线观看| 夜夜躁狠狠躁天天躁| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 欧美在线一区亚洲| 999久久久精品免费观看国产| 一进一出抽搐动态| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 久久精品影院6| 国产熟女xx| 亚洲av熟女| 成人特级黄色片久久久久久久| 最近在线观看免费完整版| 国产三级中文精品| 亚洲人成网站在线播| 黄片小视频在线播放| 男女那种视频在线观看| 噜噜噜噜噜久久久久久91| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 人妻夜夜爽99麻豆av| xxxwww97欧美| 一区福利在线观看| 啦啦啦韩国在线观看视频| or卡值多少钱| 网址你懂的国产日韩在线| 一本一本综合久久| 久久人人精品亚洲av| 欧美国产日韩亚洲一区| 国产精品三级大全| 内射极品少妇av片p| 欧美黑人巨大hd| 人妻夜夜爽99麻豆av| 美女高潮的动态| 精品一区二区免费观看| 天堂av国产一区二区熟女人妻| 国产黄色小视频在线观看| 亚洲av二区三区四区| 一本一本综合久久| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆 | 91字幕亚洲| 欧美中文日本在线观看视频| 亚洲综合色惰| 免费av观看视频| 久久久久久久精品吃奶| 我的老师免费观看完整版| 欧美丝袜亚洲另类 | 精品久久久久久久末码| 精品人妻偷拍中文字幕| 欧美另类亚洲清纯唯美| 国产国拍精品亚洲av在线观看| 韩国av一区二区三区四区| 夜夜爽天天搞| 悠悠久久av| 久久草成人影院| 久久久久久久久久黄片| 一本综合久久免费| 久久久久国内视频| av天堂在线播放| 黄色丝袜av网址大全| 亚洲精品粉嫩美女一区| 国产精品一区二区三区四区免费观看 | 亚洲av免费在线观看| 国产在线男女| 亚洲精品影视一区二区三区av| 久久久久久九九精品二区国产| 91麻豆av在线| АⅤ资源中文在线天堂| 一个人看视频在线观看www免费| 午夜福利视频1000在线观看| 亚洲自拍偷在线| av在线老鸭窝| 少妇裸体淫交视频免费看高清| 午夜两性在线视频| 日本黄色片子视频| 99热只有精品国产| netflix在线观看网站| 久久亚洲真实| 成人国产一区最新在线观看| 性欧美人与动物交配| 欧美黄色片欧美黄色片| 搞女人的毛片| 1024手机看黄色片| 中文字幕人成人乱码亚洲影| 成人欧美大片| 91久久精品国产一区二区成人| 国产高清视频在线播放一区| 欧美另类亚洲清纯唯美| 国产亚洲欧美在线一区二区| 婷婷亚洲欧美| 国产真实乱freesex| 美女免费视频网站| 天堂网av新在线| 狠狠狠狠99中文字幕| 亚洲成人久久性| 国产精品久久久久久久久免 | 国产在视频线在精品| 乱人视频在线观看| 午夜两性在线视频| 欧美中文日本在线观看视频| 一二三四社区在线视频社区8| 在线十欧美十亚洲十日本专区| 最近在线观看免费完整版| 午夜福利欧美成人| 麻豆一二三区av精品| 精品久久久久久久末码| 免费看a级黄色片| 国产色爽女视频免费观看| 我要搜黄色片| 人妻夜夜爽99麻豆av| 欧美极品一区二区三区四区| 国产精品三级大全| 免费av不卡在线播放| 在线看三级毛片| 亚洲av美国av| 老司机深夜福利视频在线观看| 好男人在线观看高清免费视频| 少妇被粗大猛烈的视频| 日日夜夜操网爽| 亚洲五月天丁香| av在线观看视频网站免费| 男女那种视频在线观看| 亚洲七黄色美女视频| ponron亚洲| www.熟女人妻精品国产| 免费看美女性在线毛片视频| av在线蜜桃| 亚洲不卡免费看| 欧美一区二区国产精品久久精品| 又紧又爽又黄一区二区| 成年免费大片在线观看| 亚洲av免费在线观看| 人妻制服诱惑在线中文字幕| 一进一出抽搐动态| 高清日韩中文字幕在线| 国产探花极品一区二区| 日韩 亚洲 欧美在线| 香蕉av资源在线| 两性午夜刺激爽爽歪歪视频在线观看| 简卡轻食公司| 欧美午夜高清在线| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品熟女少妇八av免费久了| 欧美xxxx黑人xx丫x性爽| 2021天堂中文幕一二区在线观| 老女人水多毛片| 亚洲av一区综合| 1000部很黄的大片| 国内久久婷婷六月综合欲色啪| 我要看日韩黄色一级片| 国产精品一区二区性色av| 日本三级黄在线观看| 亚洲无线在线观看| 国产视频一区二区在线看| 国产精品久久久久久久久免 | 午夜精品一区二区三区免费看| 免费人成视频x8x8入口观看| 午夜福利在线在线| 成人美女网站在线观看视频| 欧美成人a在线观看| 日韩欧美精品v在线| 亚洲av中文字字幕乱码综合| 嫁个100分男人电影在线观看| 欧美在线黄色| 中文字幕高清在线视频|