• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Matrix Approach to the Modeling and Analysis of Networked Evolutionary Games With Time Delays

    2018-07-31 09:49:54GuodongZhaoYuzhenWangandHaitaoLi
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Guodong Zhao,Yuzhen Wang,and Haitao Li

    Abstract—Using the semi-tensor product method,this paper investigates the modeling and analysis of networked evolutionary games(NEGs)with finite memories,and presents a number of new results.Firstly,a kind of algebraic expression is formulated for the networked evolutionary games with finite memories,based on which the behavior of the corresponding evolutionary game is analyzed.Secondly,under a proper assumption,the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium.Finally,an illustrative example is worked out to support the obtained new results.

    I.INTRODUCTION

    I N the last two decades,a great deal of interest has gone into the research of evolutionary games on graphs,namely,networked evolutionary games(NEGs)[1]-[4].NEGs can be applied to investigate some practical problems,where each individual just plays game with some specific players(for example,trading partners)other than all players on a network.The network,whose nodes and edges represent,respectively,players and interaction relationship among players,depicts the topological structure of the corresponding NEG.Hence,in an NEG,a player’s reward,or payoff,depends on the strategies taken by both his neighbors and himself.

    One of the most important issues,among the investigation of NEGs,is to analyze each player’s behavior when the evolution proceeds.Many excellent works focus on this problem.The original work[5]considered the spatial game and studied the cooperation emergence and persistence of Prisoner’s Dilemma Game on two-dimensional lattices.The networked adaptive dynamics of Prisoner’s Dilemma Game was investigated by[6].Recently[7]has proposed a new theoretical framework for NEGs by the semi-tensor product(STP)of matrices,which was established in[8]and[9].It is worth noting that this method has been successfully applied to game theory and networked evolutionary game theory,and many essential results have been obtained.[10]gave a neat algorithm to calculate potential functions for potential games.Evolutionarily stable strategy of NEGs was considered by[11].In addition to that,[12]and[13]investigated the optimization and control for the NEGs,respectively.[14]provided a method to convert the payoff functions of the given game to logical functions with structural matrices.

    It is noticed that the above results just considered the NEGs with one memory,that is,in the NEGs,each individual determines its own strategy choice of the next move only based on its neighbors’strategies at the last step.However,many economic activities imply an obvious fact that every participator can remember more than one action of its neighbors.In this case,all the players make their strategy choices in the next move according to their neighbors’strategies in the last finite steps(τ steps),where 1≤ τ< ∞.Therefore,the hypothesis that all the players in the NEGs can remember their neighbors’strategies in the past τ steps is reasonable.Without the network[15],[16]investigated the optimization and identification,separately,in evolutionary games with τmemory.Although there were some excellent results on the study of NEGs with one memory and evolutionary games with τ-memory,there are,to our best knowledge,no results available on NEGs with τ memories.

    In this paper,we model the NEGs with τ memories and construct an algebraic formulation for the given systems based on τ-memory version of fictitious play process.The main contributions of this paper are as follows:1)The STP method is firstly applied to the study of the NEGs with τ memories,and a new theoretical framework is established via this method;2)A general procedure is proposed to design a free-type strategy sequence for the convergence of the Nash equilibrium,which can be easily realized with the help of MATLAB toolbox established in[8].

    The remainder of the paper is organized as follows.Section II contains some necessary preliminaries on the semi-tensor product and game theory.Section III presents the main results of this paper,and Section IV gives an illustrative example to show the effectiveness of our main results,which is followed by a brief conclusion in Section V.

    Notations:Rm×ndenotes the set of m×n real matrices.denotes the set of m × n nonnegative real matrices.whereis the i th column of the identity matrix In.An n×t matrix M is called a logical matrix,ifand M is briefly denoted by M= Δn[i1i2...it].Define the set of n×t logical matrices as Ln×t.C oli(L)(Rowi(L))is the i th column(row)of matrix L.For a set E,|E|denotes the number of elements in E.

    II.PRELIMINARIES

    In this section,we present some necessary preliminaries,which will be used in the sequel.

    Definition 1[8]:The semi-tensor product of two matrices A∈Rm×nand B ∈Rp×tis defined as Awhere α=lcm(n,p)is the least common multiple of n and p,and?is the Kronecker product.

    It is noted that the semi-tensor product is a generalization of the ordinary matrix product,and thus we can simply call it“product”and omit the symbol“x”without confusion.

    Definition 2:Let M ∈ Rq×sand N ∈ Rp×s.Define the Khatri-Rao product of M and N,denoted by M?N,as M?N=[C ol1(M)C ol1(N)C ol2(M)Col2(N)...C ols(M) C ols(N)]∈ Rpq×s.

    The semi-tensor product of matrices has the following fundamental properties.

    Lemma 1[8]:1)Let X∈Rmand Y∈Rnbe two column vectors.Then,W[m,n]X Y=Y X,where W[m,n]is called the swap matrix.Especially,W[n,n]=W[n].2)(Pseudocommutative property)Let X ∈Rtand A∈Rm×n.Then,X A=(It?A)X holds.

    Lemma 2[8]:Let X=(xi1,i2,...,ik)be a column vector with its elements arranged by the ordered multi-index I d(i1,...,ik;n1,...,nk)(Definition 2.3 on Page 23 of[8]).Then

    is a column vector consisting of the same elements,arranged by the ordered multi-index I d(i1,...,it+1,it,...,ik;n1,...,nt+1,nt,...,nk).

    Lemma 3[8]:Define the retrievers as

    then x2=Ψl,kx holds,where is the base-k power-reducing matrix satisfying z2=Mr,kz,z∈Δk,and 0k∈Rkis a zero vector.

    Lemma 5[13]:Assume X ∈ Δpand Y ∈ Δq.Define two dummy matrices,named by“front-maintaining operator(FMO)”and “rear-maintaining operator(RMO)”respectively,as

    An n-ary pseudo-logical(or logical)function f(x1,x2,...,xn)is a mapping fromto R(or fromto Δm).The following result shows how to express a pseudo-logical(or logical)function into its algebraic form.

    In the following,we recall some notation in game theory.

    A normal finite game(N,S,P),considered in this paper,consists of three factors[17]:1)n players N={1,2,...,n};2)Player i has strategy set Si,is the set of strategy profiles,i∈N;3)Player i has its payoff function piS→R,P={p1,p2,...,pn}is the set of payoff functions,i∈N.

    Definition 3[17]:In an n-player normal form finite game G={S1,...,Sn;p1,...,pn},the strategy profile(,...,)is a Nash equilibrium(NE)if,for each player i,is(at least tied for)player i’s best response to the strategies specified for the n-1 other players,that is,

    for every feasible strategy si∈Si,where Siis the set of strategies of player i and piis the corresponding payoff function.

    Definition 4[13]:1)A normal game with two players is called a fundamental network game(FNG),if S1=S2=S0= {1,2,...,k}and player i’s payoff function is ci=ci(x,y),where x is player 1’s strategy,y is player 2’s strategy,and i=1,2.Namely,N={1,2},S=S0×S0,and P={c1,c2};2)An FNG is symmetric,if c1(x,y)=c2(y,x),?x,y∈ S0.

    III.MAIN RESULTS

    This section firstly describes the definitions of NEGs with τ memories and τ-memory version of fictitious play process.Then,based on the above definitions,a kind of algebraic expression is formulated for the given NEGs.Finally,by adding a pseudo-player to the game,a free-type strategy sequence is designed to guarantee the convergence of Nash equilibrium.

    A.Modeling of NEG With τ Memories

    Without loss of generality,we assume that the FNG of the given corresponding NEG is symmetric and the game can repeat in finitely.Consider a networked evolutionary game with τ memories,which consists of the following three ingredients:

    1)A network:its topological structure is a connected undirected graph(N,E),where N={1,2,...,n}is the set of all players,and E={(i,j)|there exists interaction between players i and j}is the set of edges.

    2)An FNG:if(i,j)∈E,then i and j play the FNG in the network with strategies xi(t)and xj(t)at time t,respectively.

    3)Players’strategy updating rules:these rules can be expressed as

    where xj(l)∈S0is the strategy of player j at time l,l=t- τ+1,t-τ+2,...,t,Niis the neighborhood of player i,that is,j∈Niif and only if(i,j)∈E,i∈N.Obviously,i/∈Niand j∈Ni?i∈Nj.

    In the given NEG,at each time,player i only plays with its neighbors,and its aggregate payoff pi:Sn0→R is the sum of payoffs gained by playing with all its neighbors,i.e.,

    where x-i=(x1,...,xi-1,xi+1,...,xn)and c is the payoff function of the FNG.

    The evolutionary process of the game proceeds according to some specialized strategy adjustment rule,which is used to describe how a player chooses a proper strategy in the next step.The rest of this subsection depicts that how to design the strategy adjustment rule step by step.

    In this paper,we consider the τ-memory version of fictitious play process[18].

    For player i∈N,define the empirical frequency,qji(t),as the percentage of stages at which player i has chosen the strategy j∈S0from time t-τ+1 to time t,i.e.,

    where xi(l) ∈ S0is player i’s strategy chosen at time l=t- τ+1,t-τ+2,...,t,and I{·}is indicator function.Now,define the empirical frequency vector for player i at time t as

    The strategy chosen by player i at time t+1 is based on the presumption that other players are playing randomly and independently according to empirical frequency vector qj(t),where j=1,...,i-1,i+1,...,n.Under this presumption,the expected payoff function for the strategy xi∈S0of player i is

    where q-i(t)=(q1(t),...,qi-1(t),qi+1(t),...,qn(t))and x-i=(x1,...,xi-1,xi+1,...,xn).In the τ-memory version of fictitious play process,player i used the expected payoff(4)to select a strategy at time t+1 from the set

    which is called player i’s best response to q-i(t).Based on this,we have

    It is noted that player i may have more than one best responses,that is,|E Pi(q-i(t))|>1.In this case,we define a priority for the strategy choice as follows:for x,y∈S0,x has priority over y,if and only if x>y.Then,player i chooses its strategy according to the following way:

    Thus,(5)leads to a pure strategy dynamics.

    In addition to the idea of setting priority,there exists another option.Namely,when|E Pi(qi(t))|>1 holds,we randomly choose one with equal probability.That is,

    Thus,(6)leads to a mixed strategy dynamics.However,this paper concentrates on the study of the pure strategy dynamics.

    There are two cases for the final dynamical behavior of pure strategy dynamics.One is that all players’strategies remain stationary at one strategy profile,which is called a fixed point,and the other is that several strategy profiles are chosen periodically with period s≥2,which is called a cycle with length s.

    The aim of this paper is to study the algebraic formulation and Nash equilibrium of the given NEG as a pure strategy dynamics.

    B.Algebraic Formulation of NEGs With τ Memories

    This subsection investigates the algebraic formulation of the NEG given in Section III-A described as a pure strategy dynamics.First,we convert the dynamics of the NEG into an algebraic form.

    From(5),the dynamics of the NEG with τ memories can be regarded as a logical network,based on which the dynamics can be converted into an algebraic form by using the STP.According to the τ-memory version of fictitious play process depicted in Section III-A,the strategy of player i at time t+1 is the best response against its empirical frequency vector(3)generated from its neighbors at time t.Thus,to obtain the algebraic formulation of the NEG with τ memories,one can take the following three steps:1)convert the payoff function of each player into an algebraic form;2)convert the expected payoff function(4)of each player into an algebraic form;3)identify the best strategy for every player by the algebraic form of its expected payoff function(4).

    In Step 1,using the vector form of logical variables,we identify S0~ Δk,where“~”denotes that the strategy j∈S0is equivalent to∈ Δk,j=1,2,...,k.Then,by Lemma 1,Lemma 5,Lemma 6,and(1),the payoff function of player i can be expressed as

    where Mc∈ R1×k2is the structural matrix of the FNG’s payoff function and Mi∈ R1×kn is the structural matrix of pi,xi(t)∈Δkis the strategy of player i at time t,and x-i(t)=x1(t) ··· xi-1(t) xi+1(t) ···xn(t)∈ Δkn-1.

    In Step 2,using a vector form,we define

    where zi(t)∈ Δkτ,z(t)∈ Δknτ,and z-i(t)∈ Δk(n-1)τ.

    The following proposition gives the formulation of expected payoff function(4)for player i and constructs its corresponding structural matrix,i∈N.

    Proposition 1:For?i∈ N,let Mi∈ R1×kn be the structural matrix of the payoff function of player i.Then,the expected payoff function(4)can be rewritten as Ui(xi,q-i(t))=Miq-i(t)xi=MiC z-i(t)xi:=Mciz-i(t)xi,where Mciis the structural matrix of expected payoff function(4)for player i,

    Proof:By Lemma 3 and(8),one gets

    and

    which denote all the strategies adopted by player j from time t-τ+1 to time t,where j=1,...,i-1,i+1,...,n.Thus,we have

    and

    where j=1,...,i-1,i+1,...,n.By virtue of Lemma 1,Lemma 4,(12),and(13),we obtain

    Thus,by(7)and(14),(4)is rewritten as

    In Step 3,we construct the structural matrices for the updating rules based on the τ-memory version of fictitious play process for all players.

    By virtue of Proposition 1,for player i∈N,divideinto k(n-1)τequal blocks as

    where the elements in the l th block ofre all the possible benefits of player i under other players’strategy profile

    Next,we search for the best response of player i making its benefit maximum,that is, find the column index of the largest element for each block of.For all l=1,2,...,k(n-1)τ,let ξi,lbe the column index such that

    If there are more than one maximum columns,one can pick out the unique column index ξi,laccording to the priority of strategy choice given in Section III-A,that is,choose the largest column index.

    Letting?Li=δk[ξi,1,ξi,2,...,ξi,k(n-1)τ],by Lemma 1 and Lemma 5,we can obtain the algebraic form of the updating rule for player i as

    where i∈N.By virtue of Lemma 1,Lemma 5,Lemma 4,(8),and(15),we get

    Based on the above analysis,we have the following algorithm to construct the algebraic form of NEGs with τ memories.

    Algorithm 1:This algorithm contains three steps:

    1)Calculate the structural matrix,Mi,of the payoff function of player i∈N by

    2)Construct the structural matrix of expected payoff function of player i∈N,=MiC,where C is defined as in Proposition 1.Then,divide the matrixinto k(n-1)equal blocks as

    and for all l=1,2,...,k(n-1)τ, find the column index ξi,lsuch that

    3)Construct the algebraic form of NEGs with τ memories as

    where

    and i∈N.

    Remark 1:It is important to note that the initial state z(0)∈ Δknτ,which represents the strategies adopted by all players from time-τ+1 to 0,is prior knowledge for NEGs with τ memories.

    It is obvious that the matrix L can reveal all the characteristics of the given NEG completely.Thus,the dynamics of the NEG with τ memories is equivalent to the algebraic form(17).

    However,unlike the definitions of logical variable in[8],

    we define logical variables in this paper as(8).The following proposition shows that these two definitions are equivalent so that we can use the results in[8]to investigate the properties of L.

    Proposition 2:Define logical variableswhere xij∈Δk,i=1,2,...,n,and j=1,2,...,m.Then,there exists a nonsingular matrixsuch that

    holds.

    Proof:We prove it by induction.When n=1 and m=1,it is obvious that z=x11=Ikz,namely,T1,1G=Ik.

    Suppose(19)is true for n=s and m=v,then for n=s+1 and m=v we have

    Using induction assumption for(20)and Lemma 2,we have

    Similarly,for n=s and m=v+1,by Lemma 2,we have

    Using induction assumption for(22),we have

    Therefore,by(21)and(23),when n=s,m=v+1 and n=s+1,m=v,(19)holds.

    Remark 2:With the help of Proposition 2,(8)can be turned into(18)by a proper coordinate transformation.So,the high-order logical network theory in[8]is also applicable to investigate the given NEG with algebraic formulation(17)in this paper.This is the main advantage to study the dynamical behavior of the game via the algebraic formulation.For example,using the results in[8],one can obtain all the final behaviors of NEGs with τ memories,including the fixed points and cycles.

    1)The number of cycles of length s for the dynamics of NEGs with τ memories,denoted by Ns,is inductively determined by

    where P(s)denotes the set of proper factors of s,the proper factor of s is a positive integer k<s satisfying s/k∈Z+,and Z+is the set of positive integers.

    2)The set of elements on cycles of length s,denoted by Cs,is

    where Da(L)is the set of diagonal nonzero columns of L.

    C.Existence and Convergence of NE for NEGs With τ Memories

    In this subsection,we design a free-type strategy sequence for a pseudo-player in the given NEG to guarantee the convergence of NE.Without loss of generality,we assume that the first player is the pseudo-player who can take strategies freely.Let x1(t)∈Δkbe the strategy of the pseudo-player at time t,and xi(t)∈Δkbe the strategy of the player i∈{2,3,...,n}at time t.

    First of all,using(16),one has

    where y(t)=z2(t)z3(t) ··· zn(t),v(t)=z1(t),Lv=L2?L3? ···?Ln,and y(0)∈ Δk(n-1)τ.In addition to that,by Lemma 5 and(8),v(t)satisfies

    Thus,by(26)and(27),we can obtain the algebraic form of the given NEG as

    The following is a basic assumption for the given NEG.

    Assumption 1:In the given NEG,the FNG has an NE(k,k),namely,

    Remark 3:For convenience of calculation,Assumption 1 picks out(k,k)as the FNG’s NE.There is no difficulty to generalize it to the case that the NE is not(k,k).

    The following result reveals the relationship between the FNG’s NEs and the corresponding NEG’s NEs.

    Theorem 1:Under Assumption 1,the corresponding NEG has an NE

    Proof.With(1)and(29)in hands,since the FNG under study is symmetric,for player i,one hasThus,x?is the given NEG’s NE.

    In the following,we present a result on the fixed point of(17).

    Theorem 2:Under Assumption 1,the algebraic form(17)of the given NEG has a fixed pointnamely,

    and i∈N.By virtue of Theorem 1 and(30),one has

    where i∈N.Thus,by(5)and(31),one has

    where i∈N.Then,it is easy to see that xi(t+k)=Δkk,k>1,and

    where i∈N.Because of(32),we get

    where i∈N.So,by(8)and(33),it reaches

    Corollary 1:Consider the given NEG with its algebraic form(28).Under Assumption 1,

    holds.

    Proof:From Theorem 1,substituting the fixed point v(t)into(28),we have

    Finally,we study how to design a free-type strategy sequence to guarantee the convergence of the Nash equilibrium and present the following result.

    Theorem 3:Consider the NEG with the algebraic form(28),and assume that Assumption 1 holds.Then,the evolutionary dynamics of the game globally converges to the NE=by a free-type strategy sequence,if there exist the integersμ>0 and 1≤α≤kμ,such that

    and

    Proof:Firstly,using Lemma 1 and(28),one has

    However,(27)implies that{v(t)}t≥-τ+1is not a free-type sequence.Then,define u(t)=x1(t),by Lemma 1 and Lemma 4,v(μ -1) v(μ -2) ··· v(0)can be rewritten as

    Thus,by virtue of(37),we rewrite(36)as

    Because of(34),(41),and(38),for?y(0)∈ Δk(n-1)τ,we have

    By(35),(41)and the definition of v(t),one has

    Assuming that Assumption 1 holds,using(39),(40),and Corollary 1,one can see that for?y(0)∈ Δk(n-1)τ,

    and

    that is,by the definition of v(t)and y(t),it is easy to prove that the evolutionary process of the game globally converges to the NEIn addition to that,by Lemma 3,we get the free-type strategy sequence(41).

    From the proof of Theorem 3,one can easily design a freetype strategy sequence for player 1 as follows.

    Corollary 2:Consider the NEG with the algebraic form(28),and assume that Assumption 1 holds.If there exist integersμ > 0 and 1≤ α ≤ kμ,such that(34)and(35)hold,then the free-type strategy sequence which the pseudoplayer adopts can be designed as

    IV.AN ILLUSTRATIVE EXAMPLE

    In this section,we give an illustrative example to show how to use our results to investigate networked evolutionary games with τ memories.

    Example 1:Consider an NEG with the following basic factors:

    1)A network topological structure,denoted by(N,E),as in Fig.1,where N={1,2,3},and E={(1,2),(1,3),(2,3)};

    Fig.1.The network.

    2)The FNG’s payoff bi-matrix shown in Table I;

    TABLE IPAYOFF BI-MATRIX

    3)The evolutionary rule is τ-version of FP process depicted in Section III-A,where τ=2.

    With the help of Algorithm 1,the algebraic form of the game is given as z(t+1)=Lz(t),where

    Then,from(42),by(24)and(25),one can see that 1)the fixed points areand,that is,all players adopt the same strategy M or F;2)two cycles with length 3 are{,,}and{,,},namely,the strategy profile sequences({M,F,M},{M,M,F},{F,M,M})and({M,M,F},{F,M,M},{M,F,M})are two cycles adopted by the three players;3)Ns=0,s=2 and 4≤s≤64.

    The rest of this section studies the strategy sequence design of the given NEG.Using Algorithm 1 and considering player 1 as a pseudo-player,we have y(t+1)=Lvv(t)y(t),where

    By virtue of(43),a simple calculation shows that

    Then,from Theorem 3 and(44),the evolutionary process converges to the NE{F,F,F}by the strategy sequence{u(t)=}t≥-τ+1,that is,player 1 adopts the strategy sequence{x1(t)=F}t≥-τ+1.Fig.2 demonstrates the effectiveness of the free-type strategy sequence,when we pick up x2(-1)=F,x2(0)=M,x3(-1)=M,and x3(0)=F as initial states for the given NEG.

    Fig.2.The responses strategy sequence of three players of the NEG under the given free-type strategy sequence.

    V.CONCLUSION

    In this paper,we have investigated the modeling and analysis for a class of networked evolutionary games with finite memories based on τ-memory version of fictitious play process.The dynamics of the given NEG has been converted into an algebraic form via the semi-tensor product.A proper algorithm has been established to construct its corresponding structural matrices.A free-type strategy sequence has been designed to guarantee the NE reachable globally.The study of an illustrating example has shown that the new results presented in this paper are very effective.It is worth noting that this paper considers NEGs with τ memories as discrete-time games.We can study NEGs with τ memories as differential games in the further research just like in[19].

    亚洲伊人久久精品综合| 亚洲欧美日韩高清在线视频 | 首页视频小说图片口味搜索 | 波野结衣二区三区在线| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 日韩免费高清中文字幕av| 亚洲专区中文字幕在线| 亚洲成人国产一区在线观看 | 国产亚洲av高清不卡| 欧美性长视频在线观看| 99精国产麻豆久久婷婷| 国产精品国产av在线观看| 国语对白做爰xxxⅹ性视频网站| 国产视频首页在线观看| 男女边吃奶边做爰视频| 多毛熟女@视频| 欧美中文综合在线视频| 又粗又硬又长又爽又黄的视频| 免费av中文字幕在线| 午夜免费鲁丝| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区久久| 国产老妇伦熟女老妇高清| 狂野欧美激情性bbbbbb| 纯流量卡能插随身wifi吗| 精品亚洲成a人片在线观看| av在线app专区| 国产精品久久久人人做人人爽| 99国产精品免费福利视频| 看十八女毛片水多多多| 精品国产乱码久久久久久男人| 中国美女看黄片| 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍图片 自拍| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 在线观看国产h片| 一本久久精品| 妹子高潮喷水视频| 熟女av电影| 汤姆久久久久久久影院中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 国产伦理片在线播放av一区| 青草久久国产| 久久人人爽av亚洲精品天堂| 午夜两性在线视频| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区91| 少妇的丰满在线观看| 一本久久精品| 国产精品久久久av美女十八| 美女高潮到喷水免费观看| 香蕉国产在线看| 久久热在线av| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 久久久久久久久久久久大奶| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 亚洲第一青青草原| 精品免费久久久久久久清纯 | 99热网站在线观看| 50天的宝宝边吃奶边哭怎么回事| 我的亚洲天堂| av不卡在线播放| 亚洲av综合色区一区| 日韩制服丝袜自拍偷拍| 另类亚洲欧美激情| 日韩,欧美,国产一区二区三区| 黄色一级大片看看| 韩国高清视频一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产又爽黄色视频| 宅男免费午夜| 波野结衣二区三区在线| 婷婷色麻豆天堂久久| 老司机午夜十八禁免费视频| 国产亚洲午夜精品一区二区久久| 日日夜夜操网爽| www日本在线高清视频| 天堂俺去俺来也www色官网| 精品人妻一区二区三区麻豆| 欧美黄色片欧美黄色片| 国产免费福利视频在线观看| 69精品国产乱码久久久| 亚洲欧洲精品一区二区精品久久久| 一区二区三区乱码不卡18| 老司机靠b影院| 国产欧美日韩精品亚洲av| 欧美日韩福利视频一区二区| av不卡在线播放| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 好男人视频免费观看在线| 久久久精品区二区三区| 纯流量卡能插随身wifi吗| 十分钟在线观看高清视频www| 欧美中文综合在线视频| 免费在线观看视频国产中文字幕亚洲 | 免费看av在线观看网站| 极品少妇高潮喷水抽搐| 国产主播在线观看一区二区 | 日日爽夜夜爽网站| 在现免费观看毛片| 久久久久久久大尺度免费视频| 国产亚洲av高清不卡| 巨乳人妻的诱惑在线观看| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 水蜜桃什么品种好| 狠狠精品人妻久久久久久综合| 久热这里只有精品99| 国产精品久久久人人做人人爽| 亚洲av美国av| 中文字幕人妻丝袜制服| 嫁个100分男人电影在线观看 | 无限看片的www在线观看| 久久精品国产综合久久久| 久久国产精品影院| 精品亚洲乱码少妇综合久久| 十八禁网站网址无遮挡| 99国产精品一区二区蜜桃av | 亚洲午夜精品一区,二区,三区| 亚洲 国产 在线| 国产又色又爽无遮挡免| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 国产在视频线精品| 黄色 视频免费看| 亚洲少妇的诱惑av| 成年人免费黄色播放视频| 男女免费视频国产| 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 亚洲国产精品成人久久小说| 91字幕亚洲| 亚洲伊人色综图| 十八禁网站网址无遮挡| 69精品国产乱码久久久| 亚洲精品久久午夜乱码| 国产爽快片一区二区三区| kizo精华| 在线看a的网站| 亚洲欧洲国产日韩| 啦啦啦中文免费视频观看日本| 亚洲自偷自拍图片 自拍| 国产一级毛片在线| 国产在线观看jvid| 国产一区二区激情短视频 | 麻豆国产av国片精品| 久久久国产一区二区| av电影中文网址| 中文字幕亚洲精品专区| 熟女av电影| 亚洲精品自拍成人| 人成视频在线观看免费观看| 中文字幕人妻熟女乱码| 亚洲精品国产色婷婷电影| 高清欧美精品videossex| 99久久人妻综合| 久久久国产精品麻豆| 精品福利永久在线观看| av一本久久久久| 精品福利观看| 波野结衣二区三区在线| 日韩av免费高清视频| 在现免费观看毛片| av有码第一页| 欧美精品av麻豆av| 亚洲欧美色中文字幕在线| 十八禁人妻一区二区| 欧美久久黑人一区二区| 欧美精品啪啪一区二区三区 | 纯流量卡能插随身wifi吗| www.999成人在线观看| 日日夜夜操网爽| 少妇猛男粗大的猛烈进出视频| 青青草视频在线视频观看| 夜夜骑夜夜射夜夜干| 国产亚洲av片在线观看秒播厂| 久久国产精品大桥未久av| 各种免费的搞黄视频| av电影中文网址| 亚洲国产看品久久| 一级,二级,三级黄色视频| 美女扒开内裤让男人捅视频| av不卡在线播放| 人人澡人人妻人| 夜夜骑夜夜射夜夜干| tube8黄色片| 亚洲精品美女久久av网站| 男女之事视频高清在线观看 | 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美激情在线| 青春草视频在线免费观看| 日本a在线网址| 一本—道久久a久久精品蜜桃钙片| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 脱女人内裤的视频| 国产亚洲一区二区精品| 午夜免费男女啪啪视频观看| 久久精品成人免费网站| 一本—道久久a久久精品蜜桃钙片| 国产高清国产精品国产三级| 国产黄色视频一区二区在线观看| 午夜福利一区二区在线看| 久久中文字幕一级| 国产成人精品无人区| 亚洲精品乱久久久久久| √禁漫天堂资源中文www| 欧美日韩精品网址| 午夜免费观看性视频| 亚洲一区二区三区欧美精品| 欧美大码av| 国产精品国产三级国产专区5o| 国产精品久久久av美女十八| 男女之事视频高清在线观看 | 成年人午夜在线观看视频| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 日韩中文字幕视频在线看片| 不卡av一区二区三区| 美女午夜性视频免费| 亚洲av欧美aⅴ国产| 国产成人啪精品午夜网站| 女人精品久久久久毛片| netflix在线观看网站| 精品人妻1区二区| 国产av精品麻豆| 七月丁香在线播放| 日本欧美国产在线视频| 丁香六月天网| 中文字幕人妻丝袜制服| 亚洲欧洲日产国产| 麻豆乱淫一区二区| 精品免费久久久久久久清纯 | 黄色视频不卡| 国产高清国产精品国产三级| 精品视频人人做人人爽| 99热网站在线观看| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 男男h啪啪无遮挡| 午夜福利一区二区在线看| 老司机午夜十八禁免费视频| 亚洲国产成人一精品久久久| 国产色视频综合| 夜夜骑夜夜射夜夜干| 一二三四社区在线视频社区8| 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 久久精品成人免费网站| 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| 免费av中文字幕在线| 新久久久久国产一级毛片| 香蕉国产在线看| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 啦啦啦在线免费观看视频4| 久热这里只有精品99| av片东京热男人的天堂| 999久久久国产精品视频| 美女大奶头黄色视频| 亚洲成人手机| 亚洲中文av在线| 国产高清国产精品国产三级| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 97精品久久久久久久久久精品| 香蕉丝袜av| 久久久久久久精品精品| 深夜精品福利| 国产精品一区二区在线不卡| 免费少妇av软件| 亚洲av电影在线观看一区二区三区| 亚洲精品中文字幕在线视频| 国产极品粉嫩免费观看在线| 亚洲欧美成人综合另类久久久| 日本wwww免费看| 国产精品一国产av| 脱女人内裤的视频| 久久久久久人人人人人| 亚洲,欧美,日韩| 国产亚洲一区二区精品| 九草在线视频观看| 各种免费的搞黄视频| 国产精品免费视频内射| 99re6热这里在线精品视频| 精品熟女少妇八av免费久了| 亚洲av片天天在线观看| 搡老岳熟女国产| 女人精品久久久久毛片| 亚洲国产精品成人久久小说| 国产成人一区二区在线| 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 亚洲成人免费电影在线观看 | 久久ye,这里只有精品| 国产又爽黄色视频| xxx大片免费视频| 亚洲精品一区蜜桃| 精品一区二区三区四区五区乱码 | 久久免费观看电影| 国产精品一区二区精品视频观看| 中文字幕另类日韩欧美亚洲嫩草| 一本综合久久免费| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合www| 国产三级黄色录像| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区| 亚洲欧美日韩高清在线视频 | 99香蕉大伊视频| 9热在线视频观看99| 黄片小视频在线播放| 在线精品无人区一区二区三| 99国产精品免费福利视频| 99久久精品国产亚洲精品| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 熟女少妇亚洲综合色aaa.| 精品福利观看| www.av在线官网国产| 精品久久久久久电影网| 午夜两性在线视频| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 国产高清视频在线播放一区 | 亚洲久久久国产精品| 啦啦啦在线观看免费高清www| 韩国高清视频一区二区三区| 天天添夜夜摸| 一级片'在线观看视频| 国产无遮挡羞羞视频在线观看| 国产成人欧美| 久久精品人人爽人人爽视色| 中国国产av一级| videos熟女内射| 国产成人影院久久av| 女人爽到高潮嗷嗷叫在线视频| 青春草视频在线免费观看| 久久性视频一级片| 国产免费一区二区三区四区乱码| 久久精品aⅴ一区二区三区四区| 美女主播在线视频| 老司机影院成人| 91精品三级在线观看| 成年女人毛片免费观看观看9 | 一级黄色大片毛片| 日韩,欧美,国产一区二区三区| 女人精品久久久久毛片| 性色av一级| 在线看a的网站| 久久 成人 亚洲| 热99久久久久精品小说推荐| 国产国语露脸激情在线看| 国产精品免费视频内射| 桃花免费在线播放| 人人妻,人人澡人人爽秒播 | 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 午夜两性在线视频| 男人操女人黄网站| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 精品久久蜜臀av无| 午夜福利乱码中文字幕| 国产人伦9x9x在线观看| 1024视频免费在线观看| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 蜜桃国产av成人99| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 午夜影院在线不卡| 日本猛色少妇xxxxx猛交久久| 久热这里只有精品99| 国产片内射在线| 欧美激情 高清一区二区三区| 久久综合国产亚洲精品| 国产三级黄色录像| 一区二区三区乱码不卡18| 欧美激情高清一区二区三区| 老司机亚洲免费影院| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 国产精品 国内视频| 美女国产高潮福利片在线看| 亚洲九九香蕉| 丁香六月欧美| www.999成人在线观看| 久久ye,这里只有精品| 日韩欧美一区视频在线观看| 亚洲国产av新网站| 国产成人欧美| 18在线观看网站| 亚洲午夜精品一区,二区,三区| 亚洲九九香蕉| 国产成人精品久久久久久| 91老司机精品| 欧美精品一区二区大全| 国产av国产精品国产| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 韩国精品一区二区三区| 精品福利永久在线观看| 夜夜骑夜夜射夜夜干| 黄色视频不卡| 欧美精品av麻豆av| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩综合在线一区二区| 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 国产片内射在线| 欧美在线黄色| 亚洲伊人久久精品综合| 丝袜在线中文字幕| 久久99精品国语久久久| 曰老女人黄片| 男女之事视频高清在线观看 | 纯流量卡能插随身wifi吗| 国产精品成人在线| 欧美精品啪啪一区二区三区 | 黄片小视频在线播放| 亚洲国产中文字幕在线视频| 国产精品久久久av美女十八| 国产麻豆69| 日韩一区二区三区影片| 精品福利永久在线观看| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 精品少妇久久久久久888优播| 大码成人一级视频| 美女中出高潮动态图| 国产人伦9x9x在线观看| 国产一区二区激情短视频 | 精品人妻1区二区| 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 午夜福利免费观看在线| 久久久久网色| 亚洲美女黄色视频免费看| 丝瓜视频免费看黄片| 爱豆传媒免费全集在线观看| 蜜桃在线观看..| 亚洲,一卡二卡三卡| 精品国产乱码久久久久久男人| 精品福利观看| 69精品国产乱码久久久| 涩涩av久久男人的天堂| 午夜久久久在线观看| 久久天堂一区二区三区四区| 91精品国产国语对白视频| 黄频高清免费视频| 亚洲精品第二区| 中文欧美无线码| 老司机靠b影院| 国产97色在线日韩免费| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 国产精品九九99| 欧美性长视频在线观看| 91国产中文字幕| 嫩草影视91久久| 又粗又硬又长又爽又黄的视频| 亚洲,欧美精品.| 中文字幕高清在线视频| 精品福利永久在线观看| 晚上一个人看的免费电影| 亚洲免费av在线视频| 考比视频在线观看| 99国产精品99久久久久| 交换朋友夫妻互换小说| 国产精品一二三区在线看| 国产麻豆69| 欧美黑人精品巨大| 啦啦啦在线免费观看视频4| 欧美xxⅹ黑人| 超碰97精品在线观看| 两人在一起打扑克的视频| avwww免费| 精品一区二区三区av网在线观看 | 亚洲av成人不卡在线观看播放网 | 97人妻天天添夜夜摸| 后天国语完整版免费观看| 久久久国产欧美日韩av| 亚洲av电影在线观看一区二区三区| videosex国产| 亚洲欧美精品综合一区二区三区| bbb黄色大片| 国产精品香港三级国产av潘金莲 | 99精国产麻豆久久婷婷| 亚洲精品成人av观看孕妇| 一区二区av电影网| 午夜福利一区二区在线看| 啦啦啦视频在线资源免费观看| 满18在线观看网站| 国产在线视频一区二区| 欧美精品啪啪一区二区三区 | 日本vs欧美在线观看视频| 成人午夜精彩视频在线观看| 美女福利国产在线| 2018国产大陆天天弄谢| 欧美老熟妇乱子伦牲交| 国语对白做爰xxxⅹ性视频网站| 亚洲精品日韩在线中文字幕| 亚洲国产精品国产精品| 精品国产乱码久久久久久小说| 成人国产一区最新在线观看 | 老汉色av国产亚洲站长工具| 欧美国产精品va在线观看不卡| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人不卡在线观看播放网 | 一级a爱视频在线免费观看| 操出白浆在线播放| 在线观看免费视频网站a站| 日日摸夜夜添夜夜爱| 永久免费av网站大全| 午夜视频精品福利| 欧美中文综合在线视频| 国产91精品成人一区二区三区 | 大话2 男鬼变身卡| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av | 电影成人av| 男人爽女人下面视频在线观看| 国产熟女午夜一区二区三区| 波多野结衣av一区二区av| 欧美久久黑人一区二区| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 少妇的丰满在线观看| 99re6热这里在线精品视频| 免费日韩欧美在线观看| 99精品久久久久人妻精品| 国产淫语在线视频| 91精品伊人久久大香线蕉| 亚洲激情五月婷婷啪啪| 精品人妻一区二区三区麻豆| 久久热在线av| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 高清av免费在线| 成人免费观看视频高清| 精品少妇一区二区三区视频日本电影| 国产成人91sexporn| 欧美黄色片欧美黄色片| 热99国产精品久久久久久7| 99精品久久久久人妻精品| 久久精品aⅴ一区二区三区四区| 丝袜美足系列| 最新的欧美精品一区二区| 男女午夜视频在线观看| av天堂久久9| 免费女性裸体啪啪无遮挡网站| 老司机靠b影院| 欧美中文综合在线视频| 国产高清不卡午夜福利| 亚洲精品在线美女| av网站在线播放免费| videosex国产| 国产精品一二三区在线看| av又黄又爽大尺度在线免费看| 19禁男女啪啪无遮挡网站| 国产精品免费视频内射| 国产97色在线日韩免费| 捣出白浆h1v1| 一二三四在线观看免费中文在| 亚洲av男天堂| 久久久久精品人妻al黑| 日本av手机在线免费观看| 伊人亚洲综合成人网| 日本五十路高清| 两个人看的免费小视频| 99精国产麻豆久久婷婷| 欧美亚洲日本最大视频资源| 精品一区二区三区四区五区乱码 | 又粗又硬又长又爽又黄的视频| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 日韩中文字幕视频在线看片| 亚洲中文av在线| 国产精品国产三级国产专区5o| 婷婷丁香在线五月| 久久女婷五月综合色啪小说| 妹子高潮喷水视频| 亚洲欧洲日产国产| 久久中文字幕一级| 亚洲国产成人一精品久久久| 成人影院久久| 满18在线观看网站| 十八禁高潮呻吟视频| 国产成人av激情在线播放| 电影成人av|