• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Adaptive Control for Robotic Systems With Input Time-Varying Delay Using Hamiltonian Method

    2018-07-31 09:50:02YongRenandWeiweiSun
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Yong Ren and Weiwei Sun

    Abstract—This paper addresses the problem of robust adaptive control for robotic systems with model uncertainty and input time-varying delay.The Hamiltonian method is applied to develop the stabilization results of the robotic systems.Firstly,with the idea of shaping potential energy and the pre-feedback skill,the n degree-of-freedom(DOF)uncertain robotic systems are realized as an augmented dissipative Hamiltonian formulation with delay.Secondly,based on the obtained Hamiltonian system formulation and by using of the Lyapunov-Krasovskii(L-K)functional method,an adaptive controller is designed to show that the robotic systems can be asymptotically stabilized depending on the input delay.Meanwhile,some sufficient conditions are spelt out to guarantee the rationality and validity of the proposed control law.Finally,study of an illustrative example with simulations shows that the controller obtained in this paper works very well in handling uncertainties and input delay in the robotic systems.

    I.INTRODUCTION

    A S we all know,time delay in the control input is a pervasive problem in various control applications.Robotic systems with no exception encounter delays which make the control systems more complicated.With the widespread application of communication networks in interconnecting robotic systems and controllers,the flexibility of the robotic systems and the communication distance is increasing,which can lead to the emergence of time delay in the acting force.The presence of time delay in control input is often attributed to deteriorate the effectiveness of associated control systems and is often a cause of instability.Therefore,it is necessary to evaluate the impact of time delay on robotic systems.During the last few decades,the study of control design for the timedelay robotic systems has drawn a great deal of attention and many nice results have been proposed(see[1]-[7]and the references therein).A control law for teleoperators was presented in[1]which overcame the instability caused by time delay.Using the method of proportional-differential(PD)fractional control,Lazarevi in[4]studied the problem of finite time stability for robotic time delay systems.The classical set-point control problem for rigid robots with inputoutput communication delays was addressed in[5].The paper demonstrates that if there are transmission delays between the robotic system and the controller,then the use of the scattering variables can stabilize an unstable system with arbitrary unknown constant delays.

    In addition to time delay,there always exist a variety of uncertainties in the robotic control systems[8]-[11].These uncertainty factors can be divided into two kinds:one is internal uncertainty,such as parametric uncertainties,payload uncertainties,model uncertainty,unmodeled dynamics characteristics and so on;the other is external uncertainty,such as external disturbance,etc.These uncertainties may pose significant impediments to the stabilization problem and potentially degrade the performance of the closed loop system.Therefore,in order to get a better performance of control,these factors cannot be ignored.By using adaptive fuzzy logic,Kim[10]studied output feedback tracking control of robotic systems with model uncertainty.The tracking control problem was concerned in[11]for robotic systems perturbed by timevarying parameters,unmodelled dynamics and external force(and moment)disturbances.Other important research progresses about robotic system control subject to uncertainties can be found in[12]-[14]and the references therein.

    In recent years,Hamiltonian method has been one of effective methods in studying stability and the problem of control for some practical systems,including robotic systems.And many good results have been achieved[15]-[20].A key step in using Hamiltonian strategy is to express the system under consideration as a dissipative Hamiltonian system which was firstly put forward by Maschke and Van der Schaft in[21].The method,in general,can thoroughly use the internal structure properties of real systems during control designs,and the controllers designed by this method are relatively simple in form,easy and effective in operation[22]-[24].To obtain the dissipative Hamiltonian system,we first need to express the system as a generalized Hamiltonian system,which is the so-called generalized Hamiltonian realization and then eliminate the non-dissipative part of the obtained generalized Hamiltonian realization by a suitable state feedback.Wang and Ge in[24]provided an augmented dissipative Hamiltonian structure for both fully actuated and underactuated uncertain mechanical systems.Besides,[24]has also investigated the energy-based robust adaptive control for the uncertain mechanical systems by using the new Hamiltonian formulation.But[24]did not consider the effect when delays inevitably appear in the systems.

    Hence,in order to solve the problem of time delay,this paper investigates a robust stabilization problem for a class of uncertain robotic systems with input time-varying delay based on the Hamiltonian method.Firstly,we find a nice delayed Hamiltonian system structure to describe the dynamic action of the robotic systems with time-varying delay.Secondly,we show how to design an adaptive controller based on the obtained Hamiltonian systems which makes the resultant feedback system asymptotically stable.Moreover,the adaptive feedback controller for the uncertain delayed robotic systems is also given.Finally,an illustrative example is presented to show the effectiveness of the method proposed in this paper.

    The rest of the paper is organized as follows.Section II presents the problem formulation and some preliminaries.In Section III,we study the augmented delayed Hamiltonian formulation for uncertain robot manipulators with time-varying delays.The analysis of robust adaptive control of the delayed Hamiltonian system is presented in Section IV.Section V illustrates the obtained results by a two-link robot manipulator example,which is followed by the conclusion in Section VI.

    Notations:R stands for the set of real numbers;Rndenotes the n-dimensional Euclidean space and Rn×mis the real matrix space with dimension n×m;‖·‖stands for either the Euclidean vector norm or the induced matrix 2-norm.The notation X≥0(X>0)means that the matrix X is positive semidefinite(X is positive definite).?represents the Kronecker product.[·]0denotes the derivative of the variable inside the square bracket.A class-K function α :[0,a) → [0,∞)means that it is strictly increasing and α(0)=0.H ess(H(x))represents the Hessian matrix of H(X).What’s more,for the sake of simplicity,we denoteby ?H(x)andby?H(xt),respectively.Throughout the paper,a time-dependent delayed function is denoted by ζ(t-d(t))or ζt.

    II.PROBLEM FORMULATION

    Consider the following n-DOF robotic system described by the Euler-Lagrange equation in the horizontal plane[25],[26]

    where q(t)∈Rnis the vector of generalized configuration coordinates,˙q∈Rnis the velocity vector,τ∈Rnis the control torque vector acting on the system,M(q) ∈ Rn×nis the positive definite inertia matrix,G(q)∈Rndescribes the potential forces and C(q,˙q)˙q∈Rndescribes the vector of Coriolis and centripetal forces.M(q),C(q,˙q),G(q)are assumed to have unknown constant parameters.G(q)is subject to the following assumption.

    Assumption 1:The unknown part in G(q)depends linearly on a constant vector θ ∈ Rl,i.e.,there exist matrices Λ ∈ Rn×nand Λ1(q)∈ Rn×lsuch that

    where q0is the target position.

    Moreover,the above equations exhibit certain fundamental properties due to their Lagrangian dynamic structure.

    Property 1:The inertia matrix M(q)is symmetric positive definite and there exist positive constants m and M such that

    We consider the existence of time-varying delays in the input signals applied to the robot joints.Let d(t)be the time delay involved in every component of the input vector which satisfies

    and

    where h andμare positive scalars.The input delay is denoted by τ(t-d(t))which illustrates the impacts of local input signals and remote signals.Thus,under the presence of time delay,the control model of the robotic system(1)can be rewritten as follows:

    Our aim in this paper is to investigate the robust adaptive control problem of system(6)in the presence of input delay such that all signals in the closed-loop system are bounded and all bounded trajectories converge to the largest invariant set where˙q(t)≡0 and consequently limt→∞(q(t)-q0)=0.The robustness of the closed-loop system is intended to be obtained under the Hamiltonian system framework.The methodology is also called the energy-based approach and should contain the following two procedures:1)Hamiltonian realization,i.e.,to express the robotic system with input delay as the form of a time-delay dissipative Hamiltonian system,and 2)analysis and synthesis of the obtained time-delay Hamiltonian system.

    Under Assumption 1,we consider a Hamilton function for system(6)as follows:

    where

    is the system’s kinetic energy,

    is the so-called virtual potential energy,Λ ∈ Rn×nand Γ0∈Rl×lare constant positive definite matrices;?θ is the estimate of θ,q0∈ Rnis the target position which is to be designed,p∈Rnis the generalized momenta.It is easy to see that H(q,p,?θ)is positive definite with respect to(q,p,?θ)and H(q,p,?θ)=0 if and only if q=q0,p=0,?θ=θ.

    Obviously,we have

    which means

    Let X=(qTpT)T∈R2n+l,we can verify that the choice of H(X)above satisfies the following property.

    Property 2:H(X) ∈ C2and ?1(‖X‖) ≤ H(X) ≤?2(‖X‖).Besides,the Hessian matrix H ess(H(X))of H(X)satisfies ν21≤ ‖H essT(H(X))·H ess(H(X))‖ ≤,where ?1,?2are class-K functions,ν1,ν2are positive scalars.

    We conclude this section by recalling some auxiliary results to be used in Hamiltonian realization of system(6)and the robust controller designed in this paper.

    Lemma 1[24]:Assume that A(x)∈ Rn×n(x ∈ Rn)is a function matrix,α,β ∈ Rnare constant vectors.Then,

    Lemma 2[27]:For any positive-definite matrix Z ∈ Rn×nand vector function w:[-h,∞)→Rn,the following integrals are well defined

    Lemma 3[28]:The linear matrix inequality(LMI)

    is equivalent to Λ1(x)-Λ2(x)Λ-13(x)> 0 and Λ3(x)> 0,where Λ1(x)=(x),Λ3(x)=(x)and Λ2(x)depends affinely on x.

    Remark 1:The derivative of the time-varying delay d(t)satisfies 0≤˙d(t)≤μ<1 which has its own physical meaning.It means that the changing rate of delay is slower than that of time.In practice,it is impossible that the increasing of delay is faster than the moving of time.The condition is standard as shown in the time-delay system stabilization analysis(see e.g.,[29]-[33]).

    III.DELAYED HAMILTONIAN FORMULATION

    According to Lemma 1 and(7),we get

    From system(6)and(11),the derivative of p along the time t satisfies

    In order to get a nice Hamiltonian structure for system(6),we design a pre-feedback law as follows:

    Substituting(15)into(6)and considering(10)-(14),we obtain

    where

    Since

    holds,we can prove that Kc(q,p)≡0 by using the properties of the Kronecker product.The details of the proof can be found in[24].

    Thus,system(6)can be transformed into the following delayed port-controlled Hamiltonian system

    where X=(qTpT?θT)T∈R2n+l;Xt:=X(t-d(t));φ(t)is a continuous vector-valued initial function,

    Obviously,J(X)=-JT(X),J1(X)=-(X);R(X),R1(X)≥0.

    Summarizing the above,we have the following theorem.

    Theorem 1:Consider the robotic system(6)with input delay and Assumption 1.With the Hamilton function(7)and the adaptive pre-feedback law(15),system(6)can be transformed into a delayed Hamiltonian system described as(17).

    IV.ADAPTIVE CONTROL

    In this section,we study the adaptive control problem of the uncertain robotic system(6)with input delay by using the equivalent delayed Hamiltonian formulation(17).

    Considering a feedback controller ut=-K gT?H(xt)for system(17),we have the following result:

    Theorem 2:For a given scalar h>0,if there exists a matrix K=KTwith proper dimension such that

    where

    then the delayed Hamiltonian system(17)under the output feedback control ut=-K gT?H(xt)is asymptotically stable.

    Proof:Substituting ut=-K gT?H(xt)into(17),the closed-loop system can be written as

    For the sake of simplicity,we denoteby ?H(X)andby?H(Xt)in the sequel.

    Construct a Lyapunov functional candidate as follows:

    where

    Since the Hamilton function H(X)defined in(7)is positive definite and Property 2 holds,we can get

    According to the Newton-Leibniz formula,we have

    Then system(19)can be rewritten as

    Computing the derivatives of V1and V2along the trajectory of the closed-loop system(23)respectively,we obtain

    According to Property 2,by replacingwith(J-R)×?H(x)+(J1-R1-g K gT)?H(xt)and using Lemma 2,we can get

    Then the following inequality about(Xt)holds

    with

    further obtain

    Due to Ξ < 0,we can easily prove that Θ < 0 by using Lemma 3.Thus we obtain Hamiltonian system;and 2)how to design the adaptive controller for the delayed robot systems under Hamiltonian system framework.A planar two-link manipulator with two nodes in the vertical plane is considered as shown in Fig.1,where we assume that the mass mpof payload is unknown,miand liare the mass and length of link i,respectively,lciis the distance from node i-1 to the center of mass of link i,Iiis the moment of intertia of link i about an axis orthogonal to page through the center of the mass of link i,i=1,2[35].

    where ρ= λmin(-Θ).

    By Lyapunov-Krasovskii stability theorem[34],we can conclude that system(17)under the output feedback control law ut=-K gT?H(Xt)is asymptotically stable.

    From Theorem 1,since(17)is an equivalence transformation of uncertain delayed robotic system(6)under the pre-feedback law(15),the controller ut=-K gT?H(Xt)is a part of asymptotically stable control law of system(6)provided Assumption 1 holds.We summarize the result by the following corollary.

    Corollary 1:Consider the uncertain delayed robotic system(6).Suppose Assumption 1 holds.For a given scalar h>0,if there exists a matrix K=KTwith proper dimension such that(18)holds,then the adaptive feedback controller

    can asymptotically stabilize system(6),where X=(qTpT)T;the Hamilton function H(X)is defined as(7);other notations and significances are the same as those in(15)and(17).

    Remark 2:It is necessary to point out that the result obtained in this paper is different from that in[34].Apart from the differences of the delays,there exist essential differences between the two controllers in[34]and this paper.In[34],the control signals under consideration include two parts:the local control signal and the remote one.However,we only need the information(t-d(t))to solve the control input proposed in this paper.Compared with[34],the control strategy in this paper is more reasonable.

    V.ILLUSTRATIVE EXAMPLE

    In this section,we give an example to show:1)how to transform the robot manipulator with time delay into delayed

    Fig.1. Planar two-link manipulator with payload.

    Assume there exist delays in the input signals,

    where q=(q1q2)T∈ R2is the angular position vector,τt∈R2is the control torque.

    Because the payload’s mass mpis unknown,we can see that M(q),C(q,˙q)and G(q)are not exactly known.Next,we transform system(33)into a delayed Hamiltonian system according to Theorem 1.

    Let θ:=mp,which denotes the unknown parameter,then G(q)can be written as

    where

    Consider

    as the Hamilton function and

    The pre-feedback law can be designed as follows:

    where KD1=diag{kd11,kd22}>0.

    According to Theorem 1,by the Hamilton function(35)and the pre-feedback law(36),system(33)can be transformed into the following delayed Hamiltonian system

    where X=(q1q2p1p2T∈R5,R(X)=0,

    Obviously,J(X)=-JT(X),J1(X)=-(X),R(X)≥ 0,R1(X)≥ 0,J35=(m1lc2+m2l1)/λ0,J53=-(m1lc2+m2l1)/λ0.

    It is easy to verify that the Hamilton function in system(37)satisfies Assumption 1.In addition,according to Properties 1 and 2,the Hessian matrix of H(X)satisfies‖H essT(H(X))×H ess(H(X))‖≤(λ+4M2‖˙q‖2)2m-4,so we can choose ν2=(λ+4M2‖˙q‖2)λ0m-2,where λ=max{m1lc2+m2l1,m2lc2}.

    In the following,we illustrate whether the output feedback controller ut=-K gT?H(Xt)can stabilize system(37)according to Theorem 2.Choosing KD1=diag{kd11,kd22},we obtain,

    where

    Thus,the stabilization controller can be expressed as

    where

    Therefore,an adaptive controller of system(33)

    can be expressed as follows:

    In order to show the effectiveness of controller(39),simulation is carried out for system(33)whose physical parameters are the same as those in[35].The target point q0=(4.05 3.75)Tis considered.X0=(4.0 2.0)Tis considered as the initial condition of system(33).

    A time-varying delay is considered as d(t)=(3+2 sin t)/6.Obviously,0≤d(t)≤5/6 and 0≤˙d(t)≤1/3<1.Therefore,we may choose h=0.84,μ=0.34.

    Figs.2-5 are the responses of the system with the timevarying delay d(t)=(3+2 sin t)/6.Fig.2 shows the conver-gence of the joint angle position q;Figs.3 and 4 depict the control signal τ used here and the estimate of the payload mp,respectively;Fig.5 shows the control signal u for system(37).

    Fig.2. Responses of joint angle position q1 and q2.

    Fig.3.Control τ with the delay d(t)=(3+2 sin t)/6.

    Fig.4.Estimate with the delay d(t)=(3+2 sin t)/6.

    Fig.5.New control u with the delay d(t)=(3+2 sin t)/6.

    The above simulation results demonstrate that the energybased robust adaptive controller(39)is effective for the control of position and velocity,and for dealing with both unknown parameters and time delays.Furthermore,fast convergence of the controller τ can give us an evidence that it is effective for the control of the delayed robotic systems described as(6).

    VI.CONCLUSION

    In this paper,the stabilization of uncertain robotic systems in the presence of input delay has been investigated.A new delayed Hamiltonian formulation has been proposed for the uncertain robotic systems under consideration.Based on the obtained delayed Hamiltonian formulation,the stabilization problem has been investigated by using Lyapunov-Krasovskii technique.The output feedback control law,by which the asymptotic stability of the obtained time delay Hamiltonian system is guaranteed,is determined by LMI constraints.Simulation has shown the effectiveness of the controller in handling time delays and unknown parameters in delayed robot manipulator.In the future work,the stabilization and trajectory tracking control problems will be considered for the general robotic systems and teleoperation systems under input/output delays.In this topic,the crucial difficulty may lie in the realization of the suitable delayed Hamiltonian formulation of the system under consideration.

    男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 亚洲精品国产av蜜桃| 久久毛片免费看一区二区三区| 亚洲成人av在线免费| 国产真实伦视频高清在线观看| 免费久久久久久久精品成人欧美视频 | 久久久久久久久久久丰满| 少妇的逼水好多| 精品国产露脸久久av麻豆| 91aial.com中文字幕在线观看| 国产成人免费观看mmmm| 好男人视频免费观看在线| 欧美丝袜亚洲另类| 人人妻人人看人人澡| 国产av码专区亚洲av| 国产一区二区在线观看日韩| 激情五月婷婷亚洲| 五月天丁香电影| 丝瓜视频免费看黄片| kizo精华| 自拍偷自拍亚洲精品老妇| 日本wwww免费看| 成人漫画全彩无遮挡| 热99国产精品久久久久久7| 久久久久久人妻| 熟女av电影| 男的添女的下面高潮视频| 亚洲综合色惰| 丰满少妇做爰视频| 十八禁高潮呻吟视频 | 精品久久久精品久久久| 中文字幕人妻熟人妻熟丝袜美| 国产成人freesex在线| 在线观看av片永久免费下载| 少妇人妻久久综合中文| 亚洲高清免费不卡视频| 中文字幕亚洲精品专区| 日本黄色日本黄色录像| 国产一区二区在线观看日韩| 免费观看性生交大片5| 免费黄色在线免费观看| 青春草视频在线免费观看| 国产av精品麻豆| 精华霜和精华液先用哪个| 中国国产av一级| 亚洲国产色片| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 国产男人的电影天堂91| 日韩亚洲欧美综合| 中文在线观看免费www的网站| 久久久久久久久久久免费av| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 国产精品伦人一区二区| 伊人久久精品亚洲午夜| 深夜a级毛片| a级毛片免费高清观看在线播放| 在线 av 中文字幕| 一级毛片aaaaaa免费看小| 日本免费在线观看一区| 啦啦啦在线观看免费高清www| videossex国产| 中文字幕亚洲精品专区| 老司机影院毛片| 少妇丰满av| 亚洲精品久久午夜乱码| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| 久久久精品94久久精品| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 大话2 男鬼变身卡| 亚州av有码| 亚洲精品国产av成人精品| 超碰97精品在线观看| 日韩成人伦理影院| 免费观看a级毛片全部| 久久久久人妻精品一区果冻| 超碰97精品在线观看| 在线精品无人区一区二区三| 黄片无遮挡物在线观看| 久久国产亚洲av麻豆专区| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 国产一区亚洲一区在线观看| 久久久久精品性色| 久久久精品免费免费高清| 高清黄色对白视频在线免费看 | 久久这里有精品视频免费| 日本黄大片高清| 日韩中文字幕视频在线看片| 亚洲四区av| 乱码一卡2卡4卡精品| 老司机影院毛片| av免费在线看不卡| 春色校园在线视频观看| 在线观看免费视频网站a站| 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 色网站视频免费| 亚洲av.av天堂| 国产亚洲精品久久久com| 丝袜喷水一区| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 成年人午夜在线观看视频| 国产成人精品一,二区| 国产成人精品久久久久久| 日韩三级伦理在线观看| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 91午夜精品亚洲一区二区三区| 欧美国产精品一级二级三级 | 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| av视频免费观看在线观看| 欧美精品人与动牲交sv欧美| 免费av中文字幕在线| 国产成人aa在线观看| 国产淫语在线视频| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 在线亚洲精品国产二区图片欧美 | 99热网站在线观看| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 最新的欧美精品一区二区| 久久精品久久精品一区二区三区| 丝袜喷水一区| 深夜a级毛片| 久久午夜福利片| 高清在线视频一区二区三区| 欧美区成人在线视频| 国产成人免费观看mmmm| 国产黄色视频一区二区在线观看| 日韩在线高清观看一区二区三区| 美女主播在线视频| 国产在视频线精品| 成人美女网站在线观看视频| 在线观看av片永久免费下载| 久久97久久精品| 高清毛片免费看| 99精国产麻豆久久婷婷| 高清av免费在线| 午夜激情福利司机影院| 亚洲,欧美,日韩| 69精品国产乱码久久久| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 深夜a级毛片| 国产成人a∨麻豆精品| av线在线观看网站| 天堂中文最新版在线下载| 九色成人免费人妻av| 少妇熟女欧美另类| 欧美激情极品国产一区二区三区 | 日韩av不卡免费在线播放| 久久久久人妻精品一区果冻| 亚洲不卡免费看| 大陆偷拍与自拍| av又黄又爽大尺度在线免费看| 国产淫片久久久久久久久| 视频区图区小说| 在线观看免费高清a一片| 国产日韩欧美亚洲二区| 午夜日本视频在线| 国产精品久久久久久av不卡| 精品一区二区三卡| 69精品国产乱码久久久| 在现免费观看毛片| 大香蕉久久网| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 肉色欧美久久久久久久蜜桃| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 制服丝袜香蕉在线| 日本av手机在线免费观看| 自线自在国产av| 国产成人精品久久久久久| 国产亚洲最大av| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费 | 欧美日韩av久久| 国产伦在线观看视频一区| 99热国产这里只有精品6| 午夜91福利影院| 在线观看免费视频网站a站| 亚洲精品,欧美精品| 国产免费视频播放在线视频| 午夜视频国产福利| 美女主播在线视频| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 久久人妻熟女aⅴ| 精品一区二区免费观看| 亚洲精品国产成人久久av| 女性生殖器流出的白浆| 一区在线观看完整版| 欧美少妇被猛烈插入视频| 日日爽夜夜爽网站| 性色av一级| 亚洲性久久影院| 亚洲精品久久久久久婷婷小说| 一级a做视频免费观看| 丰满少妇做爰视频| 亚洲国产成人一精品久久久| 免费大片黄手机在线观看| 91午夜精品亚洲一区二区三区| www.色视频.com| 美女福利国产在线| 欧美日韩亚洲高清精品| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| 18禁在线播放成人免费| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 精品一品国产午夜福利视频| 99国产精品免费福利视频| 天堂中文最新版在线下载| 国产精品成人在线| 久久久久久久久大av| 狂野欧美激情性xxxx在线观看| 中国三级夫妇交换| 国产亚洲欧美精品永久| 亚洲国产欧美在线一区| 国产视频首页在线观看| 毛片一级片免费看久久久久| 精品久久久精品久久久| 国产精品久久久久久精品古装| 国产一区有黄有色的免费视频| 精品少妇黑人巨大在线播放| 亚洲电影在线观看av| 只有这里有精品99| 99热网站在线观看| 亚洲欧洲日产国产| 黄色毛片三级朝国网站 | 久久精品熟女亚洲av麻豆精品| 伊人久久精品亚洲午夜| 中文字幕人妻丝袜制服| 天天操日日干夜夜撸| 免费高清在线观看视频在线观看| 伦精品一区二区三区| 午夜免费男女啪啪视频观看| 高清黄色对白视频在线免费看 | 欧美 日韩 精品 国产| 在线精品无人区一区二区三| .国产精品久久| 午夜福利网站1000一区二区三区| 婷婷色麻豆天堂久久| 最新中文字幕久久久久| 国国产精品蜜臀av免费| 国产成人免费无遮挡视频| 水蜜桃什么品种好| 老熟女久久久| 蜜桃在线观看..| 亚洲一区二区三区欧美精品| 国产欧美另类精品又又久久亚洲欧美| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区| 免费看日本二区| 夜夜爽夜夜爽视频| av有码第一页| 在线看a的网站| 精品国产乱码久久久久久小说| 日韩av免费高清视频| 大片免费播放器 马上看| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 内射极品少妇av片p| 免费观看av网站的网址| 日韩伦理黄色片| 丰满乱子伦码专区| 男男h啪啪无遮挡| 男人和女人高潮做爰伦理| 色视频www国产| videos熟女内射| 熟女av电影| 大陆偷拍与自拍| 国产一区有黄有色的免费视频| 国产精品99久久久久久久久| 亚洲电影在线观看av| 亚洲av国产av综合av卡| 草草在线视频免费看| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 一级毛片我不卡| 最近的中文字幕免费完整| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 永久免费av网站大全| 99热网站在线观看| av在线播放精品| 在线免费观看不下载黄p国产| 一个人免费看片子| 国产一区二区三区综合在线观看 | 成年人午夜在线观看视频| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区 | av国产久精品久网站免费入址| 亚洲成人一二三区av| 日韩精品免费视频一区二区三区 | 天天操日日干夜夜撸| 大片电影免费在线观看免费| 亚洲高清免费不卡视频| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 久久久午夜欧美精品| 有码 亚洲区| 亚洲人与动物交配视频| 大又大粗又爽又黄少妇毛片口| 欧美精品人与动牲交sv欧美| 色哟哟·www| 99久久精品国产国产毛片| 国产在线一区二区三区精| 九草在线视频观看| 免费高清在线观看视频在线观看| 成人特级av手机在线观看| 亚洲欧美中文字幕日韩二区| 日本91视频免费播放| 大陆偷拍与自拍| 草草在线视频免费看| 精品卡一卡二卡四卡免费| 三上悠亚av全集在线观看 | 免费久久久久久久精品成人欧美视频 | 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 久久人人爽人人爽人人片va| 国产亚洲精品久久久com| 黄色欧美视频在线观看| 久久免费观看电影| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 亚洲电影在线观看av| 国产成人91sexporn| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 看免费成人av毛片| 日本av免费视频播放| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 日韩,欧美,国产一区二区三区| 亚洲精品久久久久久婷婷小说| 国产亚洲午夜精品一区二区久久| 成年人午夜在线观看视频| 日本欧美视频一区| av网站免费在线观看视频| 亚州av有码| 亚洲欧美清纯卡通| av在线app专区| 亚洲成色77777| 各种免费的搞黄视频| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 麻豆成人av视频| 街头女战士在线观看网站| 久久人人爽人人爽人人片va| 插阴视频在线观看视频| 国产精品久久久久久久久免| a级片在线免费高清观看视频| 男人舔奶头视频| 九色成人免费人妻av| 老司机影院成人| 国产成人精品一,二区| 我的老师免费观看完整版| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 成人综合一区亚洲| 亚洲av日韩在线播放| 亚洲av福利一区| 老司机亚洲免费影院| 亚洲国产成人一精品久久久| 国产在线免费精品| 视频区图区小说| 日日摸夜夜添夜夜爱| 中文字幕制服av| 国产白丝娇喘喷水9色精品| 69精品国产乱码久久久| 久久 成人 亚洲| 亚洲美女搞黄在线观看| 精品酒店卫生间| 一区二区av电影网| 最后的刺客免费高清国语| 欧美成人午夜免费资源| 夫妻性生交免费视频一级片| 99热网站在线观看| 中文字幕精品免费在线观看视频 | 日韩精品有码人妻一区| 亚洲欧美日韩卡通动漫| 中文字幕制服av| 亚洲成色77777| 99久久中文字幕三级久久日本| 好男人视频免费观看在线| av一本久久久久| 久久精品国产亚洲网站| 久久久久久久久久成人| 五月伊人婷婷丁香| 少妇猛男粗大的猛烈进出视频| 日日啪夜夜爽| 插逼视频在线观看| 多毛熟女@视频| 国产美女午夜福利| h视频一区二区三区| 最新的欧美精品一区二区| 国产综合精华液| 女的被弄到高潮叫床怎么办| 在线精品无人区一区二区三| 日本午夜av视频| 99久久综合免费| 免费少妇av软件| 日韩一本色道免费dvd| 成人漫画全彩无遮挡| 纯流量卡能插随身wifi吗| av福利片在线观看| 一本色道久久久久久精品综合| 97精品久久久久久久久久精品| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 在线播放无遮挡| av免费观看日本| 国产精品嫩草影院av在线观看| 午夜福利,免费看| 少妇被粗大猛烈的视频| 丰满少妇做爰视频| 另类亚洲欧美激情| 一区二区三区精品91| av在线播放精品| av在线app专区| 在线看a的网站| 欧美少妇被猛烈插入视频| 在线观看www视频免费| 成人亚洲精品一区在线观看| xxx大片免费视频| 一级黄片播放器| 黄色日韩在线| 亚洲内射少妇av| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 亚洲av福利一区| 丰满饥渴人妻一区二区三| 久久女婷五月综合色啪小说| 久久久国产一区二区| 超碰97精品在线观看| 欧美三级亚洲精品| 在线观看国产h片| 久久精品国产a三级三级三级| 男女免费视频国产| 我要看日韩黄色一级片| 国产爽快片一区二区三区| 乱人伦中国视频| 黄色日韩在线| 国产精品三级大全| 久久久久久久国产电影| 精品人妻偷拍中文字幕| av不卡在线播放| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| 美女cb高潮喷水在线观看| 中国美白少妇内射xxxbb| 男女边吃奶边做爰视频| 纯流量卡能插随身wifi吗| 高清黄色对白视频在线免费看 | 日日啪夜夜爽| 在线观看av片永久免费下载| 日日摸夜夜添夜夜爱| 日韩电影二区| 精品久久久久久久久亚洲| 女性被躁到高潮视频| 色5月婷婷丁香| 亚洲欧洲国产日韩| 热99国产精品久久久久久7| 国产一区二区在线观看日韩| 人人妻人人爽人人添夜夜欢视频 | 日韩欧美一区视频在线观看 | 日本vs欧美在线观看视频 | 美女视频免费永久观看网站| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| 桃花免费在线播放| 久久久久精品性色| 人妻一区二区av| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 欧美3d第一页| 精品国产一区二区三区久久久樱花| 久久久久视频综合| 另类精品久久| 看十八女毛片水多多多| 美女大奶头黄色视频| 在线观看美女被高潮喷水网站| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| 自拍欧美九色日韩亚洲蝌蚪91 | 18+在线观看网站| 日本与韩国留学比较| 午夜老司机福利剧场| 久久久精品免费免费高清| 我的老师免费观看完整版| 人人澡人人妻人| 成人二区视频| 亚洲国产精品一区二区三区在线| 丰满乱子伦码专区| 少妇熟女欧美另类| 国产精品久久久久久久电影| 日韩av免费高清视频| 高清毛片免费看| 日韩一本色道免费dvd| 最近中文字幕高清免费大全6| 久热这里只有精品99| 精华霜和精华液先用哪个| 国产一级毛片在线| 三级国产精品欧美在线观看| 精品久久久精品久久久| 赤兔流量卡办理| 色吧在线观看| av不卡在线播放| 亚洲中文av在线| 在线观看三级黄色| 亚洲在久久综合| 国产国拍精品亚洲av在线观看| 2021少妇久久久久久久久久久| 99久久精品一区二区三区| 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说| 人妻制服诱惑在线中文字幕| 我的女老师完整版在线观看| 国产精品久久久久久精品古装| 久久久久国产网址| 只有这里有精品99| 久久久久网色| 国产成人一区二区在线| av福利片在线| 亚洲精品第二区| 久久av网站| a级毛片免费高清观看在线播放| 亚洲精品中文字幕在线视频 | 九九在线视频观看精品| 精品久久国产蜜桃| 80岁老熟妇乱子伦牲交| 国产伦精品一区二区三区视频9| 午夜激情福利司机影院| 波野结衣二区三区在线| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 丝袜在线中文字幕| 国产精品国产av在线观看| 丰满人妻一区二区三区视频av| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花| 看非洲黑人一级黄片| 国产伦精品一区二区三区视频9| 亚洲av二区三区四区| 免费少妇av软件| 亚洲真实伦在线观看| 99九九在线精品视频 | 国产有黄有色有爽视频| 国产精品免费大片| 极品少妇高潮喷水抽搐| 91午夜精品亚洲一区二区三区| 国产精品嫩草影院av在线观看| 欧美激情极品国产一区二区三区 | 国产精品女同一区二区软件| 久久久久久久久久久丰满| 最新中文字幕久久久久| 老司机亚洲免费影院| 免费观看在线日韩| 伦理电影免费视频| 免费人成在线观看视频色| 国产黄频视频在线观看| 欧美3d第一页| 日本免费在线观看一区| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| av免费观看日本| 热re99久久精品国产66热6| 国产精品.久久久| 久久6这里有精品| 久久狼人影院| 免费不卡的大黄色大毛片视频在线观看| 日韩 亚洲 欧美在线| 天堂中文最新版在线下载| 成人漫画全彩无遮挡| 女的被弄到高潮叫床怎么办| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 国产在线免费精品| 男男h啪啪无遮挡| 一个人看视频在线观看www免费| 黄色怎么调成土黄色| 男人添女人高潮全过程视频| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 汤姆久久久久久久影院中文字幕| 国产综合精华液| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看 | 激情五月婷婷亚洲| 亚洲情色 制服丝袜|