• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Study of Different Decoupling Schemes for TITO Binary Distillation Column via PI Controller

    2018-07-31 09:50:06MohamedHamdyAbdalhadyRamadanandBelalAbozalam
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Mohamed Hamdy,Abdalhady Ramadan,and Belal Abozalam

    Abstract—This paper presents a comparative study of different decoupling control schemes for a two-input,two-output(TITO)binary distillation column via proportional-integral(PI)controller.The key idea behind this paper is designing two novel fuzzy decoupling schemes that depend on human knowledge,instead of the system mathematical model used in conventional decoupling schemes.Based on conventional and inverted decoupling schemes,fuzzy and inverted fuzzy decoupling schemes are developed.The control effect is compared using simulation results for the proposed two schemes with conventional decoupling and inverted decoupling.The proposed fuzzy decoupling schemes are easy to realize and simple to design,besides they have a good decoupling capability.Two methods are used to prove asymptotic stability of each loop and the entire closed-loop system by applying the proposed fuzzy decoupling-based PI controller.The Wood and Berry model of a binary distillation column is used to illustrate the applicability of the proposed schemes.

    I.INTRODUCTION

    M ANY researchers have focused on control methods for multiple-input and multiple-output(MIMO)systems.MIMO with N input/output processes are characterized by significant interactions between their inputs and outputs.The control of MIMO processes is usually implemented using sets of single-input single-output(SISO)control loops.Interaction is a phenomenon that the loop gain in one loop depends on the loop gain in another loop,this interaction between controlled loops leads to deterioration in the control performance of each loop[1]-[3].The control of MIMO processes requires proper input-output pairing and development of decoupling compensator unit.Decoupling control has emerged as one of the most popular techniques in the industrial process.The basic idea is to weaken,or even eliminate,the interactions between different input and output signals by decoupling methods.Then,the modern and advanced control methods could be applied to the separate SISO subsystems.And it is easy for industry engineers to use various advanced control strategies into practical works.

    A survey on theory and developments of decoupling control has been discussed by[4].Some of the decoupling control methods found in literatures could be classified under the following topics,showing the interest that rose in the last years:[5]-[8]based their design on decomposing the problem into two parts:1)decoupling the system using conventional decoupling to decrease interaction,and 2)designing the controllers using some decentralized method.[9]-[11]included work that discusses a methodology of multivariable centralized control based on the structure of inverted decoupling.This method has presented for general n×n processes by obtaining very simple inclusive expressions for the controller elements with a complexity independent from the system size.The last two methods are easy but require a complete model of the system.Usually operator’s knowledge plays an important role in complex industrial processes.This knowledge may be integrated in the control system by the fuzzy inference system(FIS),independent of model-based analysis.FIS allows getting the control actions from input variables by using linguistic formulated rules,so their conception is more simplified.Fuzzy control has long been applied to industry with several important theoretical results and successful ones[12]-[17].In recent years,many schemes of fuzzy decoupling have been developed in[18]-[22],such as the proposed fuzzy compensator of interactions in[19]acts as a feedforward controller.The outputs of the monovariable controllers are considered as the inputs of the fuzzy compensator,which produces compensation signals added to the single loop control signals for minimizing the effect of interactions.In[20],based on the conventional decoupling,fuzzy decoupling elements are developed to get the purpose of decoupling,the inputs of each fuzzy decoupling element are the output of PI controller and its differential,each element produces a compensation signal which is added to the single loop control signal for minimizing the effect of interactions.

    Distillation column is one of the most important operation units in terms of control in chemical engineering.It is used in chemical industry to separate liquid mixtures into their pure components by the application and removal of heat[23].It consumes a huge amount of energy in both heating and cooling operations.A robust control of distillation column’s operation is important,due to reduction of energy consumption during operation,but the robust control implementation is difficult due to the phenomenon of interaction or coupling,which exists between various control loops of the distillation column[24],[25].In addition,distillation column is usually nonlinear,multivariable,and it is subject to constraints and disturbances.

    In this paper,a control system for a binary distillation column which,dynamically,behaves as a TITO system has been implemented.The emphasis is to determine a decoupling control,where specific inputs and outputs are paired.This decoupling control is achieved using fuzzy logic,to reduce the reliance on model-based analysis.Also,a comparative study is done using different decoupling schemes with two PI controllers to control the two composition control loops of the binary distillation column.Based on conventional and inverting decoupling schemes,fuzzy and inverting fuzzy decoupling schemes are developed.To the authors’best knowledge,there are no results considering inverted decoupling using fuzzy logic.The proposed schemes are simple and easy in driving fuzzy rules.

    This paper is organized as follows.The distillation column model description is given in Section II.Section III presents the design of decoupling control schemes.Section IV presents the two PI controller designs with stability analysis.The simulation results are given in Section V.Finally,the conclusion is given in Section VI.

    II.DISTILLATION COLUMN MODEL

    There are many types of distillation columns based on different classifications such as:batch,continuous,binary,multi-product,tray and packed[25].Consider an MIMO binary distillation column with a given feed shown in Fig.1,which has five manipulated inputs U=[L V D B VT]T.These are reflux flow rate,boil up vapour flow rate,top product flow rate,bottom product flow rate and overhead vapour flow rate,respectively,and five controlled outputs Y=[XDXBMDMBP]T.These are top and bottom compositions,condenser and re-boiler levels and column pressure.

    Different control configurations result from different pairing between controlled and manipulated variables[26].The distillation column configuration to be studied is LV control configuration as shown in Fig.1.In this configuration,the manipulated variables are{L and V}and the controlled output variables are{XDand XB}.The Wood and Berry distillation column is a TITO system that has been studied extensively.It is described by the following model[1]:

    Fig.1.Binary distillation column with LV configuration.

    III.DECOUPLING CONTROL SCHEME DESIGN

    Consider a TITO system described in transfer function matrix G(s),the purpose of the decoupling matrix D(s)is to transform the process as seen by the controller from G(s),a full block matrix,to Q(s)which is a diagonal matrix,and then each diagonal controller deals with each loop as SISO loop where

    and

    A.Scheme 1(Conventional Decoupling)

    To eliminate the effect of the coupling between loops in the distillation column,a conventional decoupling is added before the distillation column as shown in Fig.2.The transfer function between inputs and outputs is given by

    where C1and C2are flow rate control output signals from each loop PI controller,anda decoupling matrix,where R12(s),R22(s)are the elements of the decoupling matrix.

    Fig.2.Distillation column with conventional decoupling scheme.

    Equation(4)can be written as

    To remove the interaction,the following terms in(5)should be equal zero

    From(6)and(7)

    The disadvantage of this approach is that the decoupling matrix will be complex with n×n models.

    B.Scheme 2(Fuzzy Decoupling)

    A fuzzy decoupling scheme consists of two elements:Fuzzy1and Fuzzy2as shown in Fig.3,each one has two inputs and one output.Fuzzy1has inputs(C1,dXB)and output signal F1,Fuzzy2has inputs(C2,dXD)and output signal F2where C1and C2are the outputs of two PI controller loops,also dXDand dXBare the rates of change of the top and bottom product composition,respectively.The output signals F1and F2are used as a flow rate compensation signal for the other loop,where L=(C1+F2),and V=(C2+F1).From the concept of fuzzy logic,each fuzzy decoupling element consists of the following four major components:Fuzzification,inference engine,rule base and defuzzification.Fuzzification comprises the process of transforming crisp values into grades of membership for linguistic terms of fuzzy sets.The membership function is used to associate a grade to each linguistic term.To the best of our understanding,the triangular membership function is simple to implement and fast for computation.So,three symmetrical triangular membership functions for Fuzzy1and Fuzzy2variables are named as Small(S),Medium(M),and High(H)as shown in Fig.4.The inference engine is considered as the decisionmaking-logic that determines how the fuzzy logic operations are performed based on the knowledge base(rule base),the inference engine of Fuzzy1and Fuzzy2is based on Mamdani inference system.The general form of the rule base is based on IF-THEN rule,for example

    input1is S AND input2is S THEN output is S.

    Fig.3.Block diagram of fuzzy decoupling scheme.

    The transformation from a fuzzy set to a crisp number is done through defuzzification;center of gravity method is used for defuzzification.

    The derivation of the fuzzy decoupling control rules can be obtained directly from the dynamic behavior of binary distillation column[27],as follows:increasing L will increase XDand XB,and increasing V will decrease XDand XBand vice versa,so changes in L and V will counteract each other.So:

    1)When the input of a certain loop is medium(steady state region)then its compensation signal to the other loop will be medium.For example

    If C1is M and dXBis(S or M or H)then F1is M.

    Fig.4.Triangular membership function.

    2)The direction of the change in the compensation signal should follow the direction of the change in the input signal,taking into account the change in the output direction of the other loop.For example

    If C1is S and dXBis S then F1is S.

    In this rule,in which dXBis small,this will be an indication that C2is high,i.e.,opposite to the required compensation signal F1.So,F1must be small.

    If C1is S and dXBis H then F1is M.

    In this rule,in which dXBis high,this will be an indication that C2is small,i.e.,similar to the required compensation signal F1.So,F1must be medium.

    Therefore,the fuzzy decoupling control rules can be easily obtained as shown in Tables I and II.

    TABLE IFUZZY1 RULES FOR FUZZY DECOUPLING CONTROL

    TABLE IIFUZZY2 RULES FOR FUZZY DECOUPLING CONTROL

    C.Scheme 3(Inverted Decoupling)

    With inverted decoupling approach the decoupling transfer function complexity is independent of the system size[9].As shown in Fig.5,the decoupling matrix D(s)is split into two matrices:a matrix Dd(s)in the direct path(between controller outputs C and process inputs U)and a matrix Do(s)in a feedback loop(between process inputs U and controller outputs C).The matrix Dd(s)must have only nonzero diagonal elements,since there must be only a direct connection for each process input.Note that these relationships are not required in the matrix Do(s).Additionally,since the signal flow direction in Do(s)is opposite to that of Dd(s),the corresponding elements of Do(s)are opposite to that of Dd(s),the corresponding elements of Do(s)must equal zero and are the same as transposing non-zero elements of Dd(s).For instance,in a 2×2 process,if element Dd(2,1)is specified as a direct path between U2and C1,there will be no feedback from U2toward C1,and thus,the element Do(1,2)must be zero.Following the decoupling representation shown in Fig.6,the expression of the decoupling matrix D(s)is obtained as follows:

    Fig.5.Matrix representation of inverted decoupling for SISO.

    Fig.6.Distillation column with inverted decoupling.

    From(3)and(11),one can get

    Depending on the system size,there are different configurations with different cases for the choice of inverted decoupling elements;the proper configuration with proper case depends on the realizability of the decoupling elements.In this work,case 1 from configuration(1-2)[9]is used as follows:

    Configuration (1-2): In this configuration elements Dd(1,1),Dd(2,2),diagonal elements in Dd,and Do(1,2),Do(2,1),off diagonal elements of Do,are selected,other elements equal zero.

    From(12),one can get

    Thus d11=q1/g11,do12=-g12/q1,do21=-g21/q2,d22=q2/g22.

    Two of these elements are set to unity,and so only two elements need to be implemented.Usually,the two elements chosen to be equal to one are the elements in the direct way,that is,the elements of the matrix Dd.However,this case is only one of the four possible cases according to the two elements chosen to be equal to unity.Fig.6 shows case 1 scheme which is applied to binary distillation column.

    D.Scheme 4(Inverted Fuzzy Decoupling)

    From Case 1,configuration(1-2)of inverted decoupling and the concept of fuzzy decoupling,the fuzzy inverted decoupling is developed as shown in Fig.7.Inverted fuzzy decoupling consists of two elements:Fuzzy1and Fuzzy2,each one has two inputs and one output.Fuzzy1has inputs(U1,dXB)and output signal F1,Fuzzy2has inputs(U2,dXD),and output signal F2,where U1=L=(C1+F2)and U2=V=(C2+F1).Each output signal(F1or F2)is used as a compensation signal for the other loop.The membership functions of input and output variables for Fuzzy1and Fuzzy2are shown in Fig.4,also according to the dynamic behavior of distillation column mentioned in previous section.The inverted fuzzy decoupling control rules are shown in Tables III and IV.Inverted fuzzy decoupling has the advantage of simplicity in design for n×n processes and using fuzzy logic in designing decoupling elements.

    Fig.7.Block diagram of inverted fuzzy decoupling.

    TABLE IIIFUZZY1 RULES FOR INVERTED FUZZY DECOUPLING CONTROL

    TABLE IV FUZZY2 RULES FOR INVERTED FUZZY DECOUPLING CONTROL

    IV.CONTROLLER DESIGN

    The controller design consists of two steps,1)the decoupling elements based on Wood and Berry distillation column mathematical model are calculated,2)the PI controller parameters for each loop are designed individually according to stability analysis.

    A.Calculating Decoupling Elements

    The conventional and inverted decoupling consists of two terms D12(s)and D21(s).From(1),(8),(9)and(14),these terms can be written as

    Fuzzy and inverted fuzzy decoupling schemes are designed in the following.The suggested fuzzy rules of Fuzzy1and Fuzzy2are shown in Tables I-IV,three symmetrical triangular membership functions for the Fuzzy1and Fuzzy2inputs,and output variables are chosen as shown in Fig.4.The low and high limits of the universe of discourses for these variables are as follows.

    For the fuzzy decoupling elements:C1=[0.18 0.33]T,C2=[-0.042 0]T,dXB=[-0.2 0.1]T,and dXD=[-0.025 0.025]T,F1=[0.01 0.172]T,and F2=[-0.05 0]T.

    For the inverted fuzzy decoupling elements:U1=[0.1 0.22]T,U2=[0 0.09]T,dXB=[-0.012 0.006]T,and dXD=[-0.01 0.08]T,F1=[0 0.01]T,and F2=[0 0.12]T.

    B.PI Parameters Design

    The design of PI parameters of each loop has been done using signal constraint block from MATLAB library(Simulink design optimization),by specifying the desired signal response and attaching the signal constraint block to the feedback signal to optimize the model response to known inputs.Simulink design optimization software tunes parameters in the model to meet specified constraints.Each loop has been designed individually with closing the other loop.Trial and error was used to reach the optimum performance by making little changes in the parameters.The parameters of the two PI controllers are shown in Table V.The top composition PI controller is chosen as the direct action controller which means that the controller output rises if the measurement increases,but the bottom composition PI controller is chosen as the reverse action controller which means that the controller output drops if the measurement increases.PI controllers are chosen since the flow control is considered as a fast process,and using derivative action with a fast process usually leads to instability.

    TABLE VPI CONTROLLER PARAMETERS

    B.1 Stability Analysis

    Two different methods are used to perform stability analysis.In the first method,multivariable systems are decomposed into n SISO subsystems using system structural decomposition,and then stability analysis is performed for each loop independently.In the second one,stability analysis is performed using TITO tool.

    B.1.1 System Structural Decomposition

    For system structural decomposition in[8]stability analysis is done without using decoupling element as follows:

    The steady state transfer function of the proposed system“seen”from the free input L to the free output XDis

    Also,the steady state transfer function of the proposed system “seen”from the free input V to the free output XBis

    where K1,K2are the transfer functions of PI controllers for loop1and loop2,respectively,and formulated as

    where i=1,2.

    Applying Nyquist theorem to each individual loop transfer function in(16)and(17)which is multiplied by the transfer function of the controller(18)of the same loop is shown in Figs.8 and 9.According to Theorem 1 in[8],each individual element of G(s)and its SISO independent subsystems do not have poles in the right hand plane,so the system with the decentralized PI controller is stable as the Nyquist contour of each equivalent open loop transfer function does not encircle point(-1,0),i.e.,

    Fig.8.Nyquist diagram for loop1.

    Fig.9.Nyquist diagram for loop2.

    B.1.2 TITO Tool

    TITO tool is a tool developed by[8]to design decentralized PID controllers for multivariable systems with conventional decoupling,and specifications analysis and time response simulations can also be obtained using this tool.In this work TITO tool is used to obtain the structural direct Nyquist arrays(SDNA)for the proposed distillation column model with the designed conventional decoupling elements as shown in Fig.10.The system with two designed decentralized PI controllers is stable as the Nyquist contour of each loop does not encircle point(-1,0).

    V.SIMULATION RESULTS

    The decoupling schemes proposed in previous section have been tested on Wood and Berry binary distillation column mathematical model.Simulation work has been done in Simulink and Fuzzy toolbox in the environment of MATLAB.

    Fig.10.DNA diagram using TITO tool(left)loop1 and(right)loop2.

    The simulation results are obtained for the closed loop response of each loop,by changing the decoupling scheme with the same PI controller parameters.Figs.11 and 12 show the response of top and bottom compositions for changing the top composition set point and keeping bottom composition without change(r1=1,r2=0)at simulation time(0 to 500).From the results,the performance of the top composition obtained with inverted fuzzy decoupling is better than those obtained with other schemes as shown in Fig.11.Moreover,bottom composition has smaller change with inverted fuzzy decoupling than others as shown in Fig.12.The control signals of two PI controllers are shown in Figs.13 and 14.The final control signals(U1,U2)are shown in Figs.15 and 16.

    Fig.11.Response of top composition with different decoupling.

    VI.CONCLUSION

    Fig.12.Response of bottom composition with different decoupling.

    Fig.13.Loop1 PI control signal.

    Fig.14.Loop2 PI control signal.

    Fig.15.Response of U1.

    Fig.16.Response of U2.

    In this paper,applying decoupling control using different decoupling schemes for a binary distillation column is presented,besides the PI controller is designed for each loop after decoupling.The key idea of the design procedure is to introduce decoupling elements in cascade with the distillation column to reduce the interactions that occur between their strategic variables.The main advantage of using decoupling control is the simplicity in determining the controller parameters since each loop is treated independently.The problem of mathematical models is solved by using fuzzy methods in implementing decoupling elements.Fuzzy and inverted fuzzy decoupling schemes are developed based on conventional and inverted decoupling ones.A comparison between fuzzy and inverted fuzzy decoupling schemes and other decoupling schemes is presented.The obtained simulation results show that the performances obtained with fuzzy and inverted fuzzy decoupling schemes are better than those obtained by using other decoupling schemes.Future research will extend the results of this paper to develop adaptive fuzzy and inverted adaptive fuzzy decoupling schemes.

    欧美在线一区亚洲| 在线观看免费日韩欧美大片| 丝袜人妻中文字幕| 欧美色欧美亚洲另类二区| 国产在线精品亚洲第一网站| 成年版毛片免费区| 啦啦啦免费观看视频1| 久久久水蜜桃国产精品网| 在线观看午夜福利视频| 国产久久久一区二区三区| 国产免费男女视频| 国产亚洲精品第一综合不卡| or卡值多少钱| 国产真实乱freesex| 最新美女视频免费是黄的| 亚洲欧美日韩东京热| av天堂在线播放| 亚洲国产精品sss在线观看| 欧美性猛交黑人性爽| 真人一进一出gif抽搐免费| 蜜桃久久精品国产亚洲av| 国产熟女xx| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久,| 禁无遮挡网站| 久久久精品大字幕| 亚洲精品在线美女| 久久久久久久久久黄片| 黄片大片在线免费观看| 欧美大码av| 婷婷精品国产亚洲av| 18禁黄网站禁片免费观看直播| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 成人一区二区视频在线观看| 午夜视频精品福利| 国产午夜精品久久久久久| 欧美乱妇无乱码| 一本精品99久久精品77| 久久香蕉精品热| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| 国产亚洲欧美98| 午夜日韩欧美国产| 神马国产精品三级电影在线观看 | 99国产精品99久久久久| 999久久久国产精品视频| 国产精品久久久久久精品电影| 精品免费久久久久久久清纯| 91麻豆av在线| 久久久久国产精品人妻aⅴ院| 久久国产乱子伦精品免费另类| 精品久久久久久久毛片微露脸| 免费在线观看黄色视频的| 看免费av毛片| 日韩免费av在线播放| 99在线人妻在线中文字幕| 毛片女人毛片| 欧美久久黑人一区二区| 妹子高潮喷水视频| 亚洲av成人av| 在线观看免费午夜福利视频| 一区二区三区国产精品乱码| 国产三级中文精品| 成在线人永久免费视频| 国产成人欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利18| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 在线国产一区二区在线| 午夜福利18| 51午夜福利影视在线观看| www国产在线视频色| 亚洲自偷自拍图片 自拍| 精品久久久久久,| 在线看三级毛片| 国产探花在线观看一区二区| 国产爱豆传媒在线观看 | 搞女人的毛片| 草草在线视频免费看| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 夜夜躁狠狠躁天天躁| 亚洲精品在线美女| 琪琪午夜伦伦电影理论片6080| 女警被强在线播放| 中文资源天堂在线| 搡老岳熟女国产| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 亚洲欧美日韩东京热| av欧美777| 亚洲五月天丁香| 久久人妻av系列| 悠悠久久av| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 亚洲精品一区av在线观看| 国产精品精品国产色婷婷| 亚洲免费av在线视频| 久久精品亚洲精品国产色婷小说| 国产高清激情床上av| 精品久久久久久久末码| 亚洲人成网站高清观看| 午夜视频精品福利| 欧美日韩乱码在线| 成人18禁在线播放| 女同久久另类99精品国产91| 亚洲自拍偷在线| 国产亚洲精品久久久久5区| 俄罗斯特黄特色一大片| 十八禁网站免费在线| 香蕉久久夜色| 国产人伦9x9x在线观看| 波多野结衣巨乳人妻| 日韩精品中文字幕看吧| 悠悠久久av| 国产欧美日韩一区二区三| 天堂动漫精品| 亚洲精品中文字幕一二三四区| 免费在线观看黄色视频的| 黑人欧美特级aaaaaa片| 国产亚洲精品综合一区在线观看 | 免费高清视频大片| 亚洲国产精品成人综合色| aaaaa片日本免费| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 亚洲精华国产精华精| 亚洲av成人精品一区久久| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 国产97色在线日韩免费| www日本在线高清视频| 国产主播在线观看一区二区| 亚洲欧美日韩高清专用| 91九色精品人成在线观看| 国产又色又爽无遮挡免费看| 禁无遮挡网站| 久久久久免费精品人妻一区二区| avwww免费| a在线观看视频网站| 精品国产乱子伦一区二区三区| 身体一侧抽搐| 90打野战视频偷拍视频| 老司机午夜福利在线观看视频| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 成人av在线播放网站| 黑人操中国人逼视频| av国产免费在线观看| 久久精品91无色码中文字幕| 国产激情欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| www.自偷自拍.com| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 波多野结衣高清无吗| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| 日韩中文字幕欧美一区二区| av有码第一页| 亚洲一区高清亚洲精品| 国产乱人伦免费视频| 深夜精品福利| 国产97色在线日韩免费| 麻豆成人av在线观看| АⅤ资源中文在线天堂| 欧美丝袜亚洲另类 | av欧美777| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 给我免费播放毛片高清在线观看| 亚洲午夜理论影院| 草草在线视频免费看| 麻豆成人午夜福利视频| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 亚洲国产看品久久| 可以在线观看的亚洲视频| 一本综合久久免费| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 午夜两性在线视频| 欧美日韩乱码在线| 精品国内亚洲2022精品成人| 国产一区在线观看成人免费| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 亚洲专区国产一区二区| 老汉色∧v一级毛片| 俄罗斯特黄特色一大片| 亚洲在线自拍视频| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| www日本在线高清视频| 国产精品一区二区三区四区久久| 成人三级做爰电影| 国产精品综合久久久久久久免费| cao死你这个sao货| 亚洲国产欧美网| 久久这里只有精品中国| 午夜老司机福利片| 一级黄色大片毛片| or卡值多少钱| 夜夜躁狠狠躁天天躁| 天天躁狠狠躁夜夜躁狠狠躁| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 国产精品av久久久久免费| 国产片内射在线| 久久精品人妻少妇| 亚洲五月婷婷丁香| 黑人操中国人逼视频| 宅男免费午夜| 少妇的丰满在线观看| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清 | 国产又色又爽无遮挡免费看| 99热6这里只有精品| av福利片在线观看| av在线天堂中文字幕| 最新美女视频免费是黄的| 色在线成人网| 久久久国产成人免费| 成人国产综合亚洲| 露出奶头的视频| www.熟女人妻精品国产| 午夜福利18| 国产av又大| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 午夜精品在线福利| 成人国产综合亚洲| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 2021天堂中文幕一二区在线观| 啦啦啦韩国在线观看视频| 亚洲色图av天堂| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 中文字幕精品亚洲无线码一区| 看片在线看免费视频| 日本免费一区二区三区高清不卡| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 可以在线观看毛片的网站| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 国产区一区二久久| netflix在线观看网站| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片| 男男h啪啪无遮挡| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看 | 国产av又大| 手机成人av网站| 国产精品日韩av在线免费观看| 成人18禁在线播放| 亚洲国产看品久久| 久久久国产成人精品二区| 亚洲精品中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 中文资源天堂在线| 午夜福利免费观看在线| 国产av麻豆久久久久久久| 国产精品久久久久久精品电影| 免费看日本二区| 国产高清视频在线播放一区| 欧美乱妇无乱码| 国产精品一区二区精品视频观看| 露出奶头的视频| 50天的宝宝边吃奶边哭怎么回事| 国产91精品成人一区二区三区| 老司机福利观看| 亚洲精品一区av在线观看| 麻豆国产av国片精品| av福利片在线观看| 亚洲七黄色美女视频| 亚洲午夜理论影院| 黄色视频不卡| 亚洲天堂国产精品一区在线| av在线播放免费不卡| 国产亚洲欧美98| 久久久久久人人人人人| 麻豆成人午夜福利视频| 久久婷婷成人综合色麻豆| 国模一区二区三区四区视频 | 午夜a级毛片| 免费在线观看亚洲国产| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 一二三四在线观看免费中文在| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 国产91精品成人一区二区三区| 亚洲avbb在线观看| 97人妻精品一区二区三区麻豆| bbb黄色大片| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 不卡av一区二区三区| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 久久中文看片网| svipshipincom国产片| 中文字幕人成人乱码亚洲影| 免费看日本二区| 久久久久亚洲av毛片大全| 一级作爱视频免费观看| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 在线a可以看的网站| 两个人视频免费观看高清| 一本综合久久免费| 日本免费a在线| 中文资源天堂在线| 国内毛片毛片毛片毛片毛片| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 日日夜夜操网爽| 免费在线观看完整版高清| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 色综合欧美亚洲国产小说| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 色在线成人网| 精品欧美一区二区三区在线| 一级a爱片免费观看的视频| aaaaa片日本免费| www.自偷自拍.com| 国产视频内射| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区精品| 亚洲最大成人中文| 日韩国内少妇激情av| 国产精品影院久久| 国产精品九九99| 99久久综合精品五月天人人| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 久久久久久免费高清国产稀缺| 在线观看美女被高潮喷水网站 | 搡老妇女老女人老熟妇| 精品一区二区三区av网在线观看| 在线视频色国产色| 久9热在线精品视频| 免费在线观看视频国产中文字幕亚洲| 在线视频色国产色| 岛国在线免费视频观看| 黑人欧美特级aaaaaa片| 三级男女做爰猛烈吃奶摸视频| 午夜福利18| 欧美日韩中文字幕国产精品一区二区三区| 又大又爽又粗| 窝窝影院91人妻| 美女大奶头视频| 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 日本精品一区二区三区蜜桃| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| а√天堂www在线а√下载| 91老司机精品| 亚洲国产精品999在线| 99精品久久久久人妻精品| 亚洲午夜精品一区,二区,三区| 久久久水蜜桃国产精品网| www.精华液| 免费看a级黄色片| 午夜精品在线福利| 色老头精品视频在线观看| av有码第一页| www.熟女人妻精品国产| 亚洲美女黄片视频| 1024手机看黄色片| 岛国在线观看网站| 亚洲精品色激情综合| 精品第一国产精品| 黄色视频不卡| 久久久久免费精品人妻一区二区| av视频在线观看入口| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 动漫黄色视频在线观看| 欧美人与性动交α欧美精品济南到| 老汉色∧v一级毛片| av福利片在线| 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| 午夜福利欧美成人| 老司机福利观看| 好男人电影高清在线观看| 久久人人精品亚洲av| 国产免费av片在线观看野外av| 国产熟女午夜一区二区三区| 香蕉久久夜色| 大型av网站在线播放| 国产精品免费视频内射| 亚洲色图 男人天堂 中文字幕| 国内少妇人妻偷人精品xxx网站 | 黄色丝袜av网址大全| 欧美黄色片欧美黄色片| 成人精品一区二区免费| 精品国产乱码久久久久久男人| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 悠悠久久av| 免费在线观看成人毛片| 在线视频色国产色| 在线播放国产精品三级| 五月玫瑰六月丁香| 亚洲av片天天在线观看| 两个人视频免费观看高清| 亚洲精品一卡2卡三卡4卡5卡| 亚洲五月婷婷丁香| 老熟妇仑乱视频hdxx| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| 亚洲avbb在线观看| 男女床上黄色一级片免费看| 麻豆一二三区av精品| 久久久精品欧美日韩精品| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲| 曰老女人黄片| 桃红色精品国产亚洲av| 国产精品综合久久久久久久免费| 又爽又黄无遮挡网站| 久久精品aⅴ一区二区三区四区| 精品第一国产精品| 午夜福利免费观看在线| 欧美激情久久久久久爽电影| 禁无遮挡网站| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| 国产欧美日韩一区二区三| 看免费av毛片| 香蕉丝袜av| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| www.熟女人妻精品国产| 亚洲国产欧美人成| 欧美精品啪啪一区二区三区| 91国产中文字幕| 老熟妇仑乱视频hdxx| 欧美丝袜亚洲另类 | 夜夜爽天天搞| 精品国产亚洲在线| 国产日本99.免费观看| 一a级毛片在线观看| 天堂影院成人在线观看| 亚洲无线在线观看| 欧美不卡视频在线免费观看 | 日韩欧美国产一区二区入口| 久久性视频一级片| 99久久久亚洲精品蜜臀av| 国产亚洲欧美98| 男女下面进入的视频免费午夜| 99热这里只有精品一区 | 90打野战视频偷拍视频| 成年版毛片免费区| 午夜精品久久久久久毛片777| av天堂在线播放| 亚洲精品国产一区二区精华液| 日韩欧美一区二区三区在线观看| 国产成人av激情在线播放| 嫩草影院精品99| 亚洲av五月六月丁香网| 久9热在线精品视频| 村上凉子中文字幕在线| 中文字幕最新亚洲高清| 亚洲国产欧美人成| 婷婷亚洲欧美| 两性夫妻黄色片| av中文乱码字幕在线| 国产久久久一区二区三区| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看 | 亚洲精品美女久久久久99蜜臀| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 他把我摸到了高潮在线观看| 久久 成人 亚洲| 性色av乱码一区二区三区2| 久久精品国产综合久久久| av超薄肉色丝袜交足视频| 色哟哟哟哟哟哟| xxxwww97欧美| 国产私拍福利视频在线观看| 黄色毛片三级朝国网站| 51午夜福利影视在线观看| 精品国产亚洲在线| 久久这里只有精品19| 18禁观看日本| 免费在线观看亚洲国产| 国产av一区二区精品久久| 国产激情欧美一区二区| 九九热线精品视视频播放| 日韩欧美在线乱码| 香蕉丝袜av| 夜夜看夜夜爽夜夜摸| 97超级碰碰碰精品色视频在线观看| 国产蜜桃级精品一区二区三区| 真人做人爱边吃奶动态| 国产精品 国内视频| 国产爱豆传媒在线观看 | АⅤ资源中文在线天堂| 少妇熟女aⅴ在线视频| 男插女下体视频免费在线播放| 国产男靠女视频免费网站| 欧美国产日韩亚洲一区| av有码第一页| 国产精品一区二区精品视频观看| 热99re8久久精品国产| 久久这里只有精品中国| 看黄色毛片网站| 18美女黄网站色大片免费观看| 日韩欧美国产一区二区入口| 国产高清videossex| 国产精品日韩av在线免费观看| 白带黄色成豆腐渣| 成人av在线播放网站| 午夜a级毛片| 看片在线看免费视频| 国产精品 国内视频| 超碰成人久久| 99在线视频只有这里精品首页| 精华霜和精华液先用哪个| 一级毛片女人18水好多| 欧美在线一区亚洲| 嫩草影视91久久| 法律面前人人平等表现在哪些方面| 久久精品综合一区二区三区| 在线a可以看的网站| xxxwww97欧美| 深夜精品福利| 又黄又爽又免费观看的视频| 久99久视频精品免费| 美女午夜性视频免费| 黄色毛片三级朝国网站| 麻豆av在线久日| 人人妻人人澡欧美一区二区| 久久久久久久久免费视频了| 狠狠狠狠99中文字幕| ponron亚洲| 日本在线视频免费播放| 成在线人永久免费视频| 久久久久久免费高清国产稀缺| 精品欧美一区二区三区在线| 亚洲精品粉嫩美女一区| 一二三四在线观看免费中文在| 国产日本99.免费观看| 在线免费观看的www视频| 日韩国内少妇激情av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清激情床上av| 黑人操中国人逼视频| 禁无遮挡网站| 中文字幕人成人乱码亚洲影| 麻豆一二三区av精品| www.www免费av| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清在线视频| 欧美在线一区亚洲| 神马国产精品三级电影在线观看 | 黄色视频,在线免费观看| 日本成人三级电影网站| 又爽又黄无遮挡网站| 国产黄a三级三级三级人| 国产精品免费视频内射| av福利片在线| 成人三级黄色视频| 国产av一区在线观看免费| 长腿黑丝高跟| 脱女人内裤的视频| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 又粗又爽又猛毛片免费看| 91麻豆av在线| 免费电影在线观看免费观看| 一级毛片高清免费大全| av视频在线观看入口| 国产午夜福利久久久久久| 成年免费大片在线观看| www日本黄色视频网| 50天的宝宝边吃奶边哭怎么回事| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 亚洲精品久久国产高清桃花| 老汉色∧v一级毛片| 成人国语在线视频| 黄片小视频在线播放| 国产午夜精品论理片| 俺也久久电影网| 国产亚洲精品第一综合不卡| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产精品久久久不卡|