• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite Frequency Fuzzy H∞Control for Uncertain Active Suspension Systems With Sensor Failure

    2018-07-31 09:49:44ZhenxingZhangHongyiLiSeniorMemberIEEEChengweiWuandQiZhou
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Zhenxing Zhang,Hongyi Li,Senior Member,IEEE,Chengwei Wu,and Qi Zhou

    Abstract—This paper investigates the problem of finite frequency fuzzy H∞control for uncertain active vehicle suspension systems,in which sensor failure is taken into account.Takagi-Sugeno(T-S)fuzzy model is established for considered suspension systems.In order to describe the sensor fault effectively,a corresponding model is introduced.A vital performance index,H∞performance,is utilized to measure the drive comfort.In the framework of Kalman-Yakubovich-Popov theory,the H∞norm from external perturbation to controlled output is optimized effectively in the frequency domain of 4 Hz-8 Hz to enhance ride comfort level.Meanwhile,three suspension constrained requirements,i.e.,ride comfort level,manipulation stability,suspension deflection are also guaranteed.Furthermore,sufficient conditions are developed to design a fuzzy controller to guarantee the desired performance of active suspension systems.Finally,the proposed control scheme is applied to a quarter-vehicle active suspension,and simulation results are given to illustrate the effectiveness of the proposed approach.

    I.INTRODUCTION

    NOWADAYS,vehicles have become common traffic tools,and it is of great importance to guarantee the comfort and safety of vehicles.There exists a vital part in every vehicle,i.e.the vehicle suspension system,which can isolate the vibration between its chassis and the road surface effectively to make people feel comfortable when they drive[1]-[3].A vehicle suspension system consists of a fluctuation absorber,spring and damper.The function of a fluctuation absorber is to filter the vibration between human body and road surface.The spring is responsible for bearing the weight of car body,the weight of passengers and isolating the road disturbance.Therefore,it contributes to improving ride comfort.The damper’s purpose is to reduce the destabilization between the human body and the wheels.Since ride comfort level is a crucial index to evaluate a vehicle,developing appropriate control approaches for the suspension systems has become an active research field[4],[5].

    With regards to suspension systems,ride comfort level,manipulation stability,suspension deflection and actuator saturation are crucial problems,which should be tackled with control strategies.However,the requirements mentioned above are incompatible.For instance,improving drive comfort level will lead to larger suspension deflection and smaller damping in wheel bounce.Active suspension systems provide a way to address these requirements.For example,intelligent approaches,such as,adaptive method[6]-[9],neural networks/fuzzy systems[10],[11],and sliding mode control[12],[13]have been applied to such systems.Gao et al.in[14]employed the input delay method to transform the sampled suspension systems into a delayed continuous version and presented a sampled control scheme.For the unavailable states case,an output-feedback control strategy has been proposed for active suspension systems in[15],in which road holding,ride comfort,maximum actuator control force and suspension deflection were regarded as the control objectives to be satisfied.By integrating the adaptive approach into the self-organizing fuzzy sliding mode controller,the author in[16]presented an effective control strategy to ameliorate the performance of the suspension systems.The authors in[17]proposed a robust adaptive control algorithm for suspension systems in the presence of input saturation.In the framework of adaptive backstepping control,the authors in[18]designed an adaptive controller for uncertain active suspension systems and improved the system performance.Using both adaptive technique and neural networks,both a state-feedback controller and an observer-based adaptive neural controller were designed in[19].By constructing an extended sate observer,a nonlinear tracking control scheme was developed for active suspension systems in[20].

    Due to the existence of uncertainty in the payload or the amount of passengers and the coupling phenomenon,the suspension systems have become complex nonlinear systems.Takagi-Sugeno(T-S)fuzzy model is a valid approach and practical tool for depicting complex nonlinear systems[21]-[26].By using T-S fuzzy model,nonlinear systems can be regarded as a summation of a set of linear subsystems with associated membership functions,which can be further analyzed by employing the linear system theory.Compared with other kinds control schemes[27],[28],T-S fuzzy model can approximate controlled systems with arbitrary accuracy.Using the fuzzy modeling approach,a sliding mode controller with adaptive parameters was designed for suspension systems in[29].To simultaneously address both input delay and actuator fault problems,the active suspension system was described as a T-S fuzzy model in[30],and a reliable fuzzy controller was designed to ensure the desired performance.

    The goal of designing a control scheme for active suspension systems to enhance drive comfort level is to design a robust controller that rejects the vertical disturbance between passengers and the road surface[31].The authors in[32]applied the H∞control theory to a full-vehicle suspension model and derived sufficient conditions that ensured the robust performance of suspension systems.In[33],by utilizing a parameter-dependent controller design method,both a statefeedback controller and an output-based controller were designed,which achieved good active suspension performance.Note that these design approaches are merely considered in entire frequency domain.According to the standard ISO2361,the vertical vibration in the finite frequencies from 4 Hz-8 Hz is the most sensitive range for human body.Since H∞control is an effective approach to guarantee constrained requirements of suspension systems,therefore,how to apply the H∞control approach to active suspension systems in finite frequency domain is a significant work.Until now,there have been several techniques used for finite frequency domain control,e.g.the weighting function approach[34],and the grid frequency axis method[35].The weighting function approach is quite useful,but additional weight leads to increased complexity of systems and selecting appropriate wight functions needs much time and energy.Although the grid frequency axis method performs well in practice,it cannot guarantee the desired system performance in the design process.Another technique that addresses finite frequency problem is the generalized Kalman-Yakubovic-Popov(KYP)lemma,which builds bridges between the frequency inequality of transfer function and the linear matrix inequality(LMI)associated with state space[36],[37].It allows us to utilize the LMI to depict frequency characteristics of dynamic systems.Sun et al.in[38]presented an H∞control method for active suspension systems in finite frequency range,where the actuator input delay was taken into consideration.Considering partial unmeasurable states in suspension systems,a dynamic output-feedback control scheme was developed to stabilize the suspension systems and achieve constrained requirements in finite frequency domain[39].

    It should be pointed out that it is inevitable for active suspension systems to suffer from failure due to the sensor aging and driving for a long time,which should not be neglected.Many related results have been published,see for example,[40]-[42]and the references therein.Feng et al.in[43]established a sensor failure model and proposed a dissipative reliable filtering approach to guarantee performance of filtering error systems.By constructing a reaction force observer,the fault-tolerant control problem for a flexible arm with sensor fault was solved in[44].The authors in[45]established a fault detection scheme and designed a sliding mode controller for full-vehicle suspension systems with sensor failure.However,to the authors’best knowledge,the problem of fuzzy state-feedback control for active suspension systems in finite frequency domain has not been investigated in existing literature,which is an interesting yet challenging issue.

    Motivated by the discussion aforementioned,this paper focuses on the finite frequency fuzzy H∞control problem for uncertain active vehicle suspension systems.The considered active suspension system is described as a T-S fuzzy model.In the framework of generalized KYP lemma,a fuzzy statefeedback control scheme is proposed to improve drive comfort level and guarantee suspension constrained requirements.The main contributions of this paper can be summarized as follows:

    1)Compared with the results in[46],T-S fuzzy model,which is an effective strategy to describe complex nonlinear systems,is applied to modeling active suspension systems in the framework of finite frequency control.Moreover,the uncertain parameters are described effectively.

    2)Sensor failure,a ubiquitous issue,which can decrease,and even deteriorate the system performance,is taken into consideration to guarantee the reliability of the active vehicle suspension systems.

    3)Sufficient conditions are derived to design the controller to improve the drive comfort level in concerned finite frequency domain and guarantee active suspension constrained requirements.

    Finally,simulation results are provided to demonstrate the usefulness of the control scheme proposed in this paper.

    The rest of this paper is as follows.Section II provides problem formulation.The main results are presented in Section III.Simulation results are given in Section IV to demonstrate the validity of the control method.The conclusion is given in Section V.

    Notations:The superscripts T and-1 are employed to denote the matrix transposition and inverse,respectively.The orthogonal complement of matrix P is represented by P⊥.The block diagonal matrix is expressed by diag{...}.The symbol[A]sis equivalent to A+AT.I and 0 stand for the identity and zero matrix with appropriate dimensions,respectively.P>0 is adopted to represent that P is a positive definite matrix.The mark(?)is utilized to denote the term which has a symmetric property.{·}θ(θ=1,2,...)means the θ-th line of a matrix.If the dimension of a matrix is not described in details,we assume that it has an appropriate dimension.

    II.PROBLEM FORMULATION

    Targeted at proposing a reliable fuzzy finite frequency control strategy,this section introduces some lemmas which will be utilized in this paper,describinges a quarter-vehicle model,models uncertain vehicle suspension systems,establishes a sensor failure model and provides control objectives of active suspension systems.Next,the corresponding descriptions will be presented.

    The following lemmas correspond to the Generalized KYP lemma,Projection theorem and Reciprocal Projection theorem.

    Lemma 1[47]:Given a linear system( A, B, C, D)and a symmetric matrix Γ,the following conditions are equivalent,

    1)The following finite frequency inequality holds,

    2)There exist a symmetric matrix P and a positive definite matrix Q such that

    where

    Lemma 2[48]:For the given matrices Θ,Γ,Λ,there is a matrix F such that

    if and only if the following inequalities hold,

    Lemma 3[48]:The inequality Υ+?+?T< 0 is equivalent to the following form

    where P is a given positive definite symmetric matrix.

    A.Description Of A Quarter-Vehicle Model

    Fig.1.Quarter-vehicle model with an active suspension.

    In this paper,the quarter-vehicle model depicted in Fig.1 is considered,which is governed via the following equations,

    where the sprung mass msand the unsprung mass mudenote the car chassis and the mass of the wheel assembly,respectively.u(t)is the actuator force.cs,ks,kt,ct,zsand zudenote damping and stiffness of the suspension system,compressibility and damping of the tyre,and the movements of the sprung and unsprung masses,respectively.zrrepresents the road movement input.

    In order to facilitate describing the above equations in the state space form,define the following variables,

    where x1(t)is the suspension deflection,x2(t)stands for the tyre deflection,x3(t)and x4(t)denote sprung mass speed and unsprung mass speed,respectively.By choosing speed input as disturbance input,we have w(t)=˙zr(t).Define

    Thus,the quarter-vehicle model can be described as

    where

    B.T-S Fuzzy Modelling

    The vehicle mass is regarded as a varying parameter since vehicle load is often uncertain due to variation in the payload or the number of passengers.Based on the mechanical structure,the unsprung mass is assumed to be a varying parameter.Accordingly,the vehicle suspension system including both the sprung mass msand the unsprung mass muin(1)is an uncertain model.Assuming that they vary in a given range,that is

    the following equalities can be obtained,

    where φ1(t)=denote premise variables,and

    In order to establish the fuzzy model,the membership functions can be described as

    The membership functions named Heavy,Light,Heavy and Light are depicted in Fig.2.The following T-S fuzzy model depicts the active suspension systems with uncertainty.

    Fig.2.(a)Membership functions M1(φ1(t))and M2(φ1(t));(b)Membership functions N1(φ2(t))and N2(φ2(t)).

    Model Rule i:IF φ1(t)is Mθ(φ1(t)),and φ2(t)is Nθ(φ2(t)),THEN

    where θ=1,2,i=1,...,4.M1(φ1(t))represents Heavy and M2(φ1(t))represents Light;N1(φ2(t))represents Heavy and N2(φ2(t))represents Light.

    According to fuzzy blending,the whole fuzzy model can be shown as follows:

    where

    ωi(φ(t))represents the grade of membership satisfying

    For brevity,we define ωi= ωi(φ(t)),i=1,...,4,in the following analysis.

    C.Sensor Failure

    Due to the extreme working environment,aging of machinery and overtime operation,it is inevitable for active suspension systems to undergo failure.To address it thoroughly and improve the reliability,the failure model is described as[23],

    where

    with 0 ≤ βεj≤ 1.βεjdenoting the sensor failure coefficient.

    Remark 1:For the lower and upper boundsthe details can be consulted from[23],[40].

    Then,one can obtain

    where

    D.Fuzzy State-Feedback Control

    This subsection constructs a fuzzy controller for system(1)in the framework of T-S fuzzy model.

    Control Rule i:IF φ1(t)is Mθ(φ1(t)),and φ2(t)is Nθ(φ2(t)),THEN

    The overall fuzzy controller is shown as follows,

    Based on(2),(3)and(4),the closed-loop system can be obtained,

    where

    E.Control Objectives

    In the process of designing an active suspension system controller,the ride comfort is the first factor which should be considered.According research of body acceleration,the frequency between 4 Hz-8 Hz is the most sensitive range for human body.Therefore,it is necessary to minimize the the transfer function from disturbance w(t)to the controlled output z1(t)to improve the drive comfort.Denote the transfer function from w(t)to z1(t)as Ψ(jσ).Thus,the finite frequency H∞control problem is to propose a fuzzy control scheme such that the following inequality holds for all nonzero w(t)∈ L2[0,∞),

    where γ means a predefined positive constant,and define the upper and lower bounds of the concerned frequency asandrespectively.Meanwhile,the following three constrained requirements should be guaranteed:

    1)In order to improve drive stability,the dynamic load is less than static load

    2)Considering the limitation of vehicle mechanical structure,the suspension deflection is allowed to change in a specified range,that is

    3)Considering the limitation of vehicle engine power,there exists output saturation in the actuator.Thus,the output force must be restricted within

    III.MAIN RESULTS

    In this section,sufficient conditions are provided to guarantee that the closed-loop system(5)is asymptotically stable and satisfies the desired performance requirements.

    Theorem 1:For the given scalars γ,η,δ and control gain Ki,provided that there exist symmetric matrixes P,P1>0,Q>0 and general matrix F,such that the following conditions hold for i,j=1,...,4,

    where

    Proof:Consider the following Lyapunov function

    where P1is a positive definite symmetric matrix.Its derivative can be obtained as follows,

    By employing the Schur complement,inequality(10)can be converted into

    Defining matrix W-1=F,and utilizing the congruence transformation on(17)by diagit can be found that

    Letting

    by adopting Lemma 3,it is easy to find that the following inequality holds,

    then

    which implies

    According to(16)and(19),we can obtain that˙V(t)<0.Accordingly,the closed-loop system(5)with w(t)=0 is asymptotically stable.

    Next,the proof of finite frequency H∞performance is shown.

    According to Schur complement,(11)can be rewritten as

    where

    Based on Lemma 2,through(20),the following two inequalities hold,

    where

    Based on(21),the following inequality can be obtained,

    Thus,the following inequality holds,Utilizing Schur complement,(22)can be transformed into the following form,

    According to Lemma 1,(23)is equivalent to the expression in(6).

    Computing the derivative of the Lyapunov function yields

    Due to

    by employing(18)and(24),the following inequality holds,

    Integrating(25)on both sides from 0 to t,it can be obtained that

    Therefore,the following inequality can be obtained,

    Consider the control input

    and the constrained output

    where λmax{·}is the maximum eigenvalue.Then,the constrained requirements(7),(8)and(9)are guaranteed if the following two inequalities hold,

    Using the Schur complement,(12)and(13)are equivalent to(26)and(27),respectively.

    Note that in(14)and(15),the term FTcontains coupling term FTBiKj,and it cannot be directly solved by MATLAB LMI tool.Hence,the synthesis conditions are proposed in the following content.

    Theorem 2:For the given constants γ,η,δ,and,provided that there exist symmetric matrixes>0,?Q>0 and general matrixsuch that the following inequalities hold for i,j=1,...,4,

    where

    Moreover,the control gain Kj,j=1,...,4 is given by

    Proof:Define J1= diag{Θ-1,Θ-1,I,Θ-1},J2=diag{Θ-1,Θ-1,I,I},J3=diag{I,Θ-1}.Pre-and postmultiplyand the transpositions of(10)-(19),respectively.Define

    Thus,(28)-(31)can be obtained.

    Remark 2:It should be pointed out that the work[14],[17],[38],[39]failed to address the fuzzy control problem of active suspension systems in finite frequency domain.Until now,there are few relevant results.Combining T-S fuzzy model and finite frequency domain approach,Theorem 2 gives the sufficient conditions to design a state-feedback controller for active suspension systems,and the performance of the active suspension system can be improved effectively.

    Remark 3:Obviously,the inequalities in(28)-(31)cannot be solved directly because there exist complex variables in(29).Inspired by the results in[50],the inequality with complex variables can be converted into a real variable with distensible dimension.This implies

    is equivalent to

    which means that(29)can be addressed by the above approach.

    IV.SIMULATION RESULTS

    In this section,the proposed fuzzy H∞control strategy in finite frequency domain is applied to a quarter-vehicle model to demonstrate its validity.

    Consider the quarter-vehicle model shown in Fig.1.Its parameters are presented in Table I.Assume sprung mass msis defined as[780 kg,1020 kg]and unsprung mass is defined as[45 kg,55 kg].Given the scalarsσ1=4 Hz(8π rad/s),σ2=8 Hz(16π rad/s),δ=1,η=1×103,zmax=0.1 m,umax=2000 N.The failure matrix is defined as follows:

    TABLE IQUARTER-VEHICLE MODEL PARAMETERS

    By solving LMIs(28)-(31),in the case of optimal γ(γmin=3.9984),the control gains can be obtained as

    After obtaining control gains,we illustrate the effectiveness of the control method proposed in this paper.Fig.3 describes the responses of body vertical acceleration in the frequency domain in the open and closed-loop system.Obviously,compared with the frequency response in the open-loop system,the counterpart in the closed-loop system(5)under control has the minimum value of H∞norm between the frequency range 4-8 Hz,which clearly illustrates that ride comfort level has been improved.

    In view of the evaluation of active suspension characteristics with respect to the three performance requirements(7),(8)and(9),the road disturbance signal is given as follows,

    with A,f,and T denoting amplitude,frequency and period,respectively.Define A=0.1 m,f=5 Hz(in the frequency range 4 Hz-8 Hz)and T=0.2 s(T=1/f).Fig.4 shows the body vertical acceleration for active suspension systems,and it can be obtained that the body acceleration under control in finite frequency is less than that of the open-loop system.Fig.5 demonstrates the ratio of suspension deflection where the maximum limitation is less than 1,which satisfies the performance constrained requirements.Fig.6 plots the ratio of dynamic tyre load and static load,which shows that the ratio is strictly less than 1.Fig.7 shows that the actuator force is less than the umax=2000 N.In order to highlight the advantage of finite frequency control strategy,we give comparisons of vertical body acceleration between the entire frequency range and the finite frequency that are presented in Fig.8.It can be observed from Fig.8,vertical body acceleration under finite frequency control is more stable than entire frequency control,which demonstrates the effectiveness of the proposed strategy.

    According to these simulation results,it is obvious that the finite frequency fuzzy H∞control design algorithm not only guarantees the stability of active suspension systems,but also improves drive comfort level and achieves suspension constrained requirements effectively.

    Fig.3.Responses of body vertical acceleration in frequency domain.

    Fig.4.The body acceleration for active suspension system.

    V.CONCLUSION

    This paper has studied the fuzzy H∞control problem for uncertain active suspension systems subject to sensor failure in the finite frequency domain.Using T-S fuzzy model,active suspension systems with uncertainty have been described as a fuzzy model.The H∞performance index has been adopted to measure drive comfort level.Based on the KYP lemma,the optimized objective,that is,to minimize the H∞norm from disturbance to controlled output has been achieved.At the same time,three suspension constrained requirements have also been ensured.Moreover,sufficient conditions have been derived to design the fuzzy controller that guarantees the desired performance of the active suspension systems.Finally,simulation results have been presented to validate the effectiveness of the proposed control method.

    Fig.5.The ratio of suspension deflection and the maximum limitation.

    Fig.6.The ratio of dynamic tyre load and static load.

    Fig.7.The actuator force.

    Fig.8.The time-domain response of body acceleration.

    久久精品国产自在天天线| 日本爱情动作片www.在线观看| 亚洲va在线va天堂va国产| 日韩一区二区三区影片| 国产色婷婷99| 国产伦在线观看视频一区| 国产 一区 欧美 日韩| 少妇丰满av| 在线观看av片永久免费下载| 男的添女的下面高潮视频| 九九在线视频观看精品| 99久久九九国产精品国产免费| 国产探花极品一区二区| 日韩在线高清观看一区二区三区| 日韩成人伦理影院| 国产一区二区三区综合在线观看 | 成人漫画全彩无遮挡| 久久6这里有精品| 精品一区二区三区视频在线| 青春草视频在线免费观看| 高清午夜精品一区二区三区| 中国三级夫妇交换| 五月天丁香电影| 国产大屁股一区二区在线视频| 国产欧美亚洲国产| 免费播放大片免费观看视频在线观看| 六月丁香七月| 最近最新中文字幕大全电影3| 国产av不卡久久| videossex国产| 熟妇人妻不卡中文字幕| .国产精品久久| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 久热久热在线精品观看| 亚洲成色77777| 深夜a级毛片| 青春草亚洲视频在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩一本色道免费dvd| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 国内精品宾馆在线| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 在线观看三级黄色| 一级毛片我不卡| 国产在线一区二区三区精| 精品酒店卫生间| 美女主播在线视频| 国模一区二区三区四区视频| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 久久久精品94久久精品| 欧美丝袜亚洲另类| www.av在线官网国产| 欧美日韩在线观看h| av在线天堂中文字幕| 国产片特级美女逼逼视频| 又黄又爽又刺激的免费视频.| 国产精品一区二区三区四区免费观看| 久久精品国产亚洲av涩爱| 丝袜美腿在线中文| 搡老乐熟女国产| 久久精品久久精品一区二区三区| 卡戴珊不雅视频在线播放| 大片免费播放器 马上看| 日韩免费高清中文字幕av| 国模一区二区三区四区视频| 秋霞在线观看毛片| 亚洲精品乱码久久久v下载方式| 又黄又爽又刺激的免费视频.| 97超碰精品成人国产| 成人亚洲精品一区在线观看 | 少妇人妻精品综合一区二区| 久久精品国产a三级三级三级| 国产成人精品福利久久| 美女国产视频在线观看| 国产免费一区二区三区四区乱码| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 国产成人精品婷婷| 狂野欧美白嫩少妇大欣赏| 波多野结衣巨乳人妻| 精品人妻偷拍中文字幕| 青春草亚洲视频在线观看| 美女高潮的动态| 在线精品无人区一区二区三 | 欧美日韩视频高清一区二区三区二| 国产视频内射| 精品酒店卫生间| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 在线天堂最新版资源| 免费不卡的大黄色大毛片视频在线观看| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 亚洲精品自拍成人| 欧美激情在线99| 99久久人妻综合| 九九在线视频观看精品| 一级片'在线观看视频| 久久久久精品性色| 91狼人影院| 精品久久久久久久久亚洲| 午夜福利视频精品| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产中年淑女户外野战色| 91狼人影院| 26uuu在线亚洲综合色| 六月丁香七月| 一级爰片在线观看| 国产亚洲5aaaaa淫片| 国产综合精华液| 久热久热在线精品观看| 成人亚洲欧美一区二区av| 免费电影在线观看免费观看| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| av国产精品久久久久影院| 国产亚洲一区二区精品| 成年av动漫网址| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 欧美区成人在线视频| 天天躁夜夜躁狠狠久久av| 国产成人精品婷婷| 男人狂女人下面高潮的视频| 熟女电影av网| 久久ye,这里只有精品| 成人二区视频| 熟女电影av网| 18禁在线播放成人免费| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 欧美极品一区二区三区四区| 边亲边吃奶的免费视频| 久久97久久精品| 国产在线一区二区三区精| 大话2 男鬼变身卡| 超碰av人人做人人爽久久| 亚洲精品国产av蜜桃| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 最近2019中文字幕mv第一页| 国产白丝娇喘喷水9色精品| 亚洲精品中文字幕在线视频 | 一个人观看的视频www高清免费观看| 久久精品国产亚洲av天美| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| www.色视频.com| 丝袜脚勾引网站| 欧美+日韩+精品| 久久99热这里只有精品18| 亚洲精品日本国产第一区| 在线播放无遮挡| 国产免费一级a男人的天堂| 七月丁香在线播放| 插阴视频在线观看视频| 在线观看一区二区三区激情| 国产精品久久久久久久久免| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 十八禁网站网址无遮挡 | 香蕉精品网在线| 一级爰片在线观看| 一个人看的www免费观看视频| 九九在线视频观看精品| 国产精品无大码| 一级毛片电影观看| 免费观看的影片在线观看| 青春草国产在线视频| 中文精品一卡2卡3卡4更新| 一级a做视频免费观看| 91久久精品国产一区二区成人| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 国产av不卡久久| 亚洲精品456在线播放app| 在线a可以看的网站| 国产黄a三级三级三级人| 热re99久久精品国产66热6| 国产白丝娇喘喷水9色精品| 大片电影免费在线观看免费| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 搡老乐熟女国产| 亚洲不卡免费看| 国产免费一级a男人的天堂| 观看美女的网站| av在线app专区| 亚洲精品视频女| 嫩草影院入口| 亚洲av中文字字幕乱码综合| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 欧美激情久久久久久爽电影| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 中文字幕av成人在线电影| 亚洲aⅴ乱码一区二区在线播放| 国产免费又黄又爽又色| 精品久久久久久久久亚洲| 亚洲精品日本国产第一区| 日本熟妇午夜| 亚洲精品国产色婷婷电影| 蜜桃久久精品国产亚洲av| 国产永久视频网站| 成人无遮挡网站| 免费看不卡的av| 精品国产乱码久久久久久小说| 老司机影院成人| 99re6热这里在线精品视频| 国产欧美另类精品又又久久亚洲欧美| 国产v大片淫在线免费观看| 日本-黄色视频高清免费观看| 一级二级三级毛片免费看| av在线app专区| 亚洲真实伦在线观看| 欧美日韩国产mv在线观看视频 | 亚洲成色77777| 激情五月婷婷亚洲| 国产成人a区在线观看| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 日本熟妇午夜| av在线天堂中文字幕| 久久久a久久爽久久v久久| 亚洲自拍偷在线| 一区二区三区乱码不卡18| 国产免费又黄又爽又色| 久久久久久久久大av| 韩国av在线不卡| 插逼视频在线观看| 欧美zozozo另类| 亚洲av中文字字幕乱码综合| 大码成人一级视频| 中文字幕人妻熟人妻熟丝袜美| 蜜臀久久99精品久久宅男| 97热精品久久久久久| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 极品少妇高潮喷水抽搐| 免费观看a级毛片全部| 乱系列少妇在线播放| 大香蕉久久网| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 色视频www国产| 九九爱精品视频在线观看| 白带黄色成豆腐渣| 美女国产视频在线观看| 青春草国产在线视频| 大话2 男鬼变身卡| 插阴视频在线观看视频| 欧美激情久久久久久爽电影| 青青草视频在线视频观看| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 成年免费大片在线观看| 国产永久视频网站| 热99国产精品久久久久久7| 亚洲国产日韩一区二区| 欧美性猛交╳xxx乱大交人| 男女那种视频在线观看| 草草在线视频免费看| 国产乱来视频区| 免费观看在线日韩| 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| av在线天堂中文字幕| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| 欧美成人精品欧美一级黄| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 搞女人的毛片| 我要看日韩黄色一级片| 国产又色又爽无遮挡免| 国产亚洲91精品色在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲自拍偷在线| 久久精品夜色国产| 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频 | 午夜激情久久久久久久| tube8黄色片| 精品久久久久久久久亚洲| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 精华霜和精华液先用哪个| 韩国av在线不卡| 国产女主播在线喷水免费视频网站| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 91久久精品国产一区二区成人| 尾随美女入室| 丰满乱子伦码专区| 99热这里只有精品一区| 99久久九九国产精品国产免费| 成年免费大片在线观看| 免费看av在线观看网站| 久热这里只有精品99| 久久精品国产亚洲av涩爱| av在线观看视频网站免费| 69av精品久久久久久| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 国产淫语在线视频| 精品久久国产蜜桃| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 日韩一区二区视频免费看| 国产一区亚洲一区在线观看| av在线老鸭窝| 亚洲一级一片aⅴ在线观看| 亚洲美女搞黄在线观看| 亚洲国产av新网站| 尤物成人国产欧美一区二区三区| 免费播放大片免费观看视频在线观看| 国产91av在线免费观看| 日韩不卡一区二区三区视频在线| 亚洲美女搞黄在线观看| 99久久精品热视频| videos熟女内射| 一区二区av电影网| 伊人久久国产一区二区| 一级毛片 在线播放| 别揉我奶头 嗯啊视频| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| av免费观看日本| 婷婷色av中文字幕| 精品久久久久久久久亚洲| 一级av片app| 中文欧美无线码| 国产精品一二三区在线看| 中文字幕av成人在线电影| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 久久久久精品性色| 午夜日本视频在线| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 久久久久久九九精品二区国产| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 欧美日韩在线观看h| 热re99久久精品国产66热6| 国产黄频视频在线观看| 国产精品久久久久久久久免| 视频区图区小说| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂 | 黄色日韩在线| 少妇人妻久久综合中文| 日韩亚洲欧美综合| 特级一级黄色大片| 国产精品久久久久久精品电影| 在线免费十八禁| 波野结衣二区三区在线| 亚洲精品国产成人久久av| 中文字幕人妻熟人妻熟丝袜美| 在线观看av片永久免费下载| 日本爱情动作片www.在线观看| a级一级毛片免费在线观看| 久久久成人免费电影| 国产视频内射| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 免费少妇av软件| 日本色播在线视频| 最近手机中文字幕大全| 午夜免费观看性视频| 黄片wwwwww| 好男人视频免费观看在线| av线在线观看网站| 人妻夜夜爽99麻豆av| 激情 狠狠 欧美| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 国产成人精品婷婷| 水蜜桃什么品种好| 夫妻性生交免费视频一级片| 国产av不卡久久| 欧美 日韩 精品 国产| 网址你懂的国产日韩在线| 国产成人精品婷婷| 九九爱精品视频在线观看| 国产精品无大码| 亚洲av不卡在线观看| 久久精品国产自在天天线| 高清毛片免费看| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 成人美女网站在线观看视频| 婷婷色综合大香蕉| 偷拍熟女少妇极品色| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 免费电影在线观看免费观看| 嘟嘟电影网在线观看| 国产精品福利在线免费观看| 水蜜桃什么品种好| 大陆偷拍与自拍| 色视频在线一区二区三区| 国产伦精品一区二区三区四那| 一级毛片电影观看| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久| 欧美精品人与动牲交sv欧美| 热re99久久精品国产66热6| 精品久久久久久久久亚洲| 国产在线一区二区三区精| 亚州av有码| 久久这里有精品视频免费| 我要看日韩黄色一级片| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 亚洲天堂国产精品一区在线| 18禁裸乳无遮挡动漫免费视频 | 亚洲av.av天堂| 欧美一级a爱片免费观看看| 夫妻午夜视频| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 午夜福利在线在线| 狠狠精品人妻久久久久久综合| 菩萨蛮人人尽说江南好唐韦庄| 2021天堂中文幕一二区在线观| 国产精品国产三级国产专区5o| 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 97超视频在线观看视频| 成年女人在线观看亚洲视频 | 免费看光身美女| 91精品伊人久久大香线蕉| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 色吧在线观看| 国产午夜精品一二区理论片| 久久6这里有精品| 全区人妻精品视频| 久久人人爽人人片av| 日本色播在线视频| 在线观看人妻少妇| 国产一区二区亚洲精品在线观看| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 丝袜脚勾引网站| 黄片无遮挡物在线观看| 99久久人妻综合| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| 国模一区二区三区四区视频| 午夜福利高清视频| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| kizo精华| 免费观看无遮挡的男女| 我的老师免费观看完整版| 欧美xxxx性猛交bbbb| 亚洲天堂av无毛| 国产大屁股一区二区在线视频| 欧美国产精品一级二级三级 | 亚洲在线观看片| 久久久精品94久久精品| 国产成人精品福利久久| 中文乱码字字幕精品一区二区三区| 国产精品偷伦视频观看了| 亚洲av在线观看美女高潮| 亚洲自偷自拍三级| 熟女av电影| 六月丁香七月| 91久久精品电影网| 亚洲国产成人一精品久久久| 爱豆传媒免费全集在线观看| 欧美日本视频| 97热精品久久久久久| 久久久亚洲精品成人影院| 亚洲av不卡在线观看| 亚洲一级一片aⅴ在线观看| 国产精品人妻久久久久久| 男女国产视频网站| 成年女人在线观看亚洲视频 | 日日啪夜夜撸| 午夜爱爱视频在线播放| 欧美三级亚洲精品| 日韩欧美精品免费久久| 夫妻性生交免费视频一级片| 国产成人aa在线观看| 久久精品国产自在天天线| 夜夜爽夜夜爽视频| av国产精品久久久久影院| 人人妻人人澡人人爽人人夜夜| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 人妻一区二区av| 免费大片18禁| 免费看光身美女| 啦啦啦中文免费视频观看日本| 免费看光身美女| 综合色丁香网| 少妇的逼水好多| 特级一级黄色大片| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 国产中年淑女户外野战色| 国产亚洲5aaaaa淫片| 国产69精品久久久久777片| 国产精品成人在线| 少妇 在线观看| 日韩av在线免费看完整版不卡| 美女高潮的动态| 99热国产这里只有精品6| 成年av动漫网址| 99热网站在线观看| 男人添女人高潮全过程视频| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频 | 嘟嘟电影网在线观看| 日本午夜av视频| 午夜精品国产一区二区电影 | 久久久久九九精品影院| 永久免费av网站大全| 男人和女人高潮做爰伦理| 久久热精品热| 日本黄色片子视频| 亚洲自拍偷在线| 香蕉精品网在线| 国产成人91sexporn| 亚洲av成人精品一区久久| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| 国产成人免费无遮挡视频| 高清午夜精品一区二区三区| 成年人午夜在线观看视频| 亚洲真实伦在线观看| 香蕉精品网在线| 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| www.色视频.com| 国产欧美日韩精品一区二区| 青春草亚洲视频在线观看| 免费看光身美女| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 亚洲va在线va天堂va国产| 91久久精品电影网| 色视频www国产| 精品国产乱码久久久久久小说| 国产91av在线免费观看| 亚洲伊人久久精品综合| 亚洲美女搞黄在线观看| 亚洲av.av天堂| 成人综合一区亚洲| 九色成人免费人妻av| 人人妻人人看人人澡| 久久影院123| 国产精品99久久久久久久久| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 男人狂女人下面高潮的视频| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 又粗又硬又长又爽又黄的视频| 欧美高清成人免费视频www| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 91午夜精品亚洲一区二区三区| 干丝袜人妻中文字幕| 九九久久精品国产亚洲av麻豆| 国产高清三级在线| 91久久精品国产一区二区三区| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 边亲边吃奶的免费视频| 国产69精品久久久久777片| 99热国产这里只有精品6| 另类亚洲欧美激情| 亚洲最大成人手机在线| 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区|