• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyhedral Feasible Set Computation of MPC-Based Optimal Control Problems

    2018-07-31 09:49:42LantaoXieLeiXieHongyeSuSeniorMemberIEEEandJingdaiWang
    IEEE/CAA Journal of Automatica Sinica 2018年4期

    Lantao Xie,Lei Xie,Hongye Su,Senior Member,IEEE,and Jingdai Wang

    Abstract—Feasible sets play an important role in model predictive control(MPC)optimal control problems(OCPs).This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron(represented by linear matrix inequalities)and polyhedral(represented by a set of inequalities)constraints.According to the geometrical meaning of the inner product of vectors,the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set.After computing the vertices,the convex hull of these vertices is determined which equals the feasible set.The simulation results show that the proposed method is especially effcient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms.

    I.INTRODUCTION

    M ODEL predictive control(MPC)is a widely used method in process industries and fields such as automobile,energy,environment,aerospace and medical treatment,etc[1],[2]because of its ability to effectively handle the complex dynamics of systems with multiple inputs and outputs,system constraints,and conflicting control objectives.A key role played in a MPC framework is the so-called feasible set,i.e.the largest subset of the state space for which there exists a control action satisfying all the constraints[3].MPC-based controllers will finally result in solving a standard optimal control problems(OCPs)such as linear programming(LP),quadratic programming(QP),semidefinite programming(SDP),dynamic programming(DP),etc.If the corresponding OCP is designed to be stable or recursively feasible,once the initial state is in the feasible set,there always exists an optimal control action at each following sample time.

    As stated in[4],a larger feasible set usually means that the corresponding MPC algorithm is less conservative.Thus,when comparing conservativeness of different MPC algorithms,feasible sets are often compared,such as in[5],[6].Feasible sets can also be used to modify initial work states to ensure feasibility,and its shape description plays an important role in the effectiveness of many of the approaches for approximate explicit MPC[3].By restricting the state of the second step in the prediction horizon in the feasible set and computing each set iteratively,the algorithm proposed in[7]obtains the recursively feasible set and guarantees recursive feasibility.Even with the consideration of techniques used for stability,feasible sets are closely related with the prediction horizon and system constraints;generally longer horizons and looser system constraints result in larger feasible sets.

    Oval-shaped and polyhedral feasible sets are two commonly used convex sets in MPC algorithms.Ellipsoid can be described as a weighted 2-norm and its size is related with some measure of the weighted matrix.By performing a maximum volume optimization in terms of the weighted matrix,one can obtain the largest ellipsoid,i.e.,the oval-shaped feasible set,such as that shown in[8].A polyhedron is the intersection of finitely many halfspaces.Computation of a polyhedron is much more complicated than of a ellipsoid.The standard approach to compute polyhedral feasible set is orthogonal projection[9].However,the orthogonal projection needs the polyhedron to be described by its vertices(V-representation)or the intersection of halfspaces(H-representation),which cannot be applied when the polyhedron is written in linear matrix inequality(LMI)form.Moreover,orthogonalprojection often turns out to be computationally intractable in high spatial dimensions.This often happens when the feasible set is computed for MPC-based OCPs with long prediction horizons or with large number of slack variables such as that in some robust MPC[10]and stochastic MPC algorithms[7].Alternatives to compute feasible set involve parametric linear programming(PLP)methods[11]and set relation methods[3].However,PLP methods may lead to numerical difficulties due to the non-unicity of the optimizers[12],while set relation methods are only efficient for OCPs without slack variables.

    Based on the final OCP derived from MPC-based algorithms,this paper proposes a novel multi-parametric programming problem where the final OCP involves both spectrahedron(represented by LMI)and polyhedral(represented by a set of inequalities)constraints.According to the geometrical meaning of an inner product of vectors,the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution is proven to be one of the vertices of the feasible set.After computing all the vertices of the feasible set,the convex hull of these vertices is computed which is equivalent to the feasible set.The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers,as well as the memory consumption problem encountered by projection algorithms.

    Notations:The sets of reals is denoted by R.Given two integers a and b where a<b,N[a,b]=[a,a+1,a+2,...,b]and given two sets X?Rnand Y?Rn,the Minkowski set addition is defined by X⊕Y={x+y|x∈X,y∈Y}and the Pontryagin set difference is then defined by X?Y={x|x⊕Y?X}.Given set Z?Rn+m,its projection onto Rnis defined by Projx(Z)={x ∈ Rn|?y∈ Rmsuch that(x,y)∈Z}.Given matrix Qi,diag(Q1,...,Qn)denotes the block diagonal matrix with matrix Qion the main diagonal.E(·)denotes expectation.|→a|denotes the length of vector →a.[x]iis the i-th element of x.‖x‖ denotes the Euclidean norm.The semidefinite matrix A is denoted by A?0.Given two vectors →a,→b,the angle between →a and →b is expressed as∠(→a,→b).conv{v1,v2,...,vn}denotes the convex hull of points(v1,v2,...,vn).

    II.PROBLEM SETUP

    Consider the controlled system to be described as

    where xkis system state and ukis system input,△f is model uncertainty,dkis deterministic noise and wkrepresents stochastic noise with proper dimensions.Constraints to the systems include expectation constraints which can be expressed as HE(x)+GE(u)≥0[13],probability constraints(or chance constraints)(Pro{Hx+Gu≥ 0}≥ 1-?)[14],and hard constraints(Hx+Gu≥0)[15].By using linear matrix inequalities(LMI)or constraints tightening methods,the optimal control problems of different algorithms can befinally converted to a uniform uncertainty-free form:

    where?denotes partial order[16](i.e.A?B if and only if A-B is positive semidefinite)and H(xk,θk)is a square matrix.The symbol“≥”represents the vector inequality or componentwise inequality[17]when G(xk,θk)is a vector or a matrix,i.e.,A ≥ B means that aij≥ bij,for?i,j.xkis the initial state and θkrepresents the inputs as well as the necessary slack variables depending on different systems and different MPC-based algorithms.

    The feasible set of OCP(2)is the largest subset of the state space for which there exists a θksatisfying all the constraints that can be defined as

    Def nition 1(Polytope[18]):A bounded convex polyhedron is a polytope or,equivalently,a set P is called a polytope if it can be expressed as the convex hull of finitely many points,i.e.,P=conv{x1,x2,...,xp}.A k-dimensional polytope is called a k-polytope.This means that some(k+1)-subfamily of(x1,x2,...,xp)is affinely independent,but no such(k+2)-subfamily is affinely independent.The convex hull of k+1 affinely independent points(i.e.,k-polytope)is a k-simplex.A simplex is a k-simplex if and only if it has k+1 vertices.

    From this definition we can see that a 1-simplex is a closed segment,a 2-simplex is a triangle and a 3-simplex is a tetrahedron.We adopt the convention that the empty set is a polytope of dimension-1.

    Assumption 1:The feasible set of OCP(2)is a(p-1)-simplex.

    Thus,F can be represented as[19]:

    where(v1,v2,...,vp)are the p vertices of F.Note that the description of a feasible set by a set of inequalities(H-representation)in(3)and the convex linear combinations(V-representation)in(4)are equivalent.The goal of this paper is to find all the vertices of F.

    III.FEASIBLE SET COMPUTATION

    As the value of inner product between two vectors →a,→b can be treated as the length of the projection vector from →b to →a if→a is a unit vector,the multi-parametric programming problem(mPPP)for computing the vertices of feasible set then can be expressed as:

    where ‖c‖ =1.In fact,the restriction to the length of vector→c is not necessary as long as the cost function is to compute the maximum length of the projection fromto a vector in some direction.However,if we chooseto be unit,the cost function of mPPP(5)would be more meaningful as cTx==where →p is the projection fromto

    We will start with the computation of a 2-dimensional feasible set.

    A.2-D Case

    When x∈R2,the feasible set can be shown in a plane.For convenience,we assume the p vertices(v1,v2,...,vp)of F are ordered.Here,“ordered”means viis adjacent to vi+1,vpis adjacent to v1,and the index increases anticlockwise.Let c=cα=(cosα,sinα),where c is the unit vector of the polar coordinator.Letdenote the boundary of F and let int(F)denote the interior of F,where F=⊕int(F).

    Lemma 1:Given a point x ∈ F and a vectorif the angle between-andis equal or less than 90°for?i∈ N[1,p],then x is on the boundary of polytope F.

    Proof:If p≤2,it is obvious that x∈as=F.When p≥3,assume x is a interior point of F and xqis a point on the boundary of F withand λ > 0.Assume xqis on the edge ofThen,there exists a i such that∠vjxvj+1+∠vj+1xvj+2+···+∠vj+i-1xvj+i≤ 180°and∠vjxvj+1+∠vj+1xvj+2+···+∠vj+ixvj+i+1> 180°where the subscript of v represents the remainder when dividing by p if it is larger than p.As[0°,90°],which means that∠vj+ixq,∠vj+i+1xq ∈ [0°,90°],∠vj+ixvj+i+1=360°-∠vj+ixq-∠vj+i+1xq≥ 180°.Since∠vj+ixvj+i+1is a interior angle of△vj+ixvj+i+1and less than 180°and conflicts with∠vj+ixvj+i+1≥ 180°,x cannot be a interior point of F.Thus,x∈ F.

    Lemma 2:The solution x?to problem(5)is on the boundary of F,i.e.,x?∈

    Proof:As x?is the solution to problem(5),we have cx?≥ cvi,?i ∈ N[1,p].That isThus,the angle betweenis equal to or less than 90°for?i∈ N[1,p].According to Lemma 1,x?would be on the boundary of F.

    Lemma 3:There exists a certain αi∈ [0°,360°]such that the solution x?to problem(5)would be the vertice viof F for?i∈ N[1,p].

    Proof:From Lemma 2 we know that x?∈Assume?xα∈such that xα/=viand cαxα≥cαvifor?α ∈[0°,360°].That is?xα(/=vi)∈such thatfor?α ∈ [0°,360°].Let α = α1such that90°andThen,let α2=180°+α1+? where ? is a extremely small angle such thatThus,we cannot find a xα2∈such thatas Fig.1 shows a contradiction.

    Fig.1. Feasible set in 2-D.

    From Lemma 3 we know that,if we can find all the αi,we will obtain all the vertices of F.Thus,if we traverse α in[0°,360°]with a proper interval,the feasible set can be computed.This procedure can be described as

    1)Let k=1.

    2)For α =0°to 360°with step length ε (i.e.,α = α+ε for the next step).

    3)Compute xαby solving J(x,cα)from OCP(5).

    4)Let xk=xαand k=k+1.

    5)Endfor.

    6)Compute the convex hull of points set P =(x1,x2,...,xend)and let S=conv{P}.

    Th eorem 1:There exists an appropriate ε such that S=F.

    Proof:From Lemma 3 we get that there exists αi∈[0°,360°]such that the solution x?to problem(5)would be the vertice viof F.ε is chosen such that αi=Niε,where Niis a proper integer for?i∈ N[1,p].Thus,vi,?i∈ N[1,p]would be in the points set P and S=conv{P}=F.

    From the proof of theorem 1,we know that the optimal ε would be the maximum to make αi/ε an integer so that the total computation time would be reduced to a minimum.

    B.3-D Case

    If x ∈ R3,let c=cα,β=(sinβ,cosβ sinα,cosβ cosα)which is a unit vector in spherical coordinates.For vertice vi,we assume its adjacent ni vertices can be expressed as(vi+1,...,vi+ni).A similar lemma for the existence of these vertices can be described as:

    Lemma 4:There exists a certain αi∈ [0°,360°]and βj∈[0°,360°]such that the solution x?to problem(5)would be vertice viof F for?i∈ N[1,p].

    Proof:Assume ?xα,β∈ F such that xα,β/= viand cα,βxα,β≥ cα,βvifor ?α ∈ [0°,360°]and ?β ∈ [0°,360°].That is ?xα,β(/=vi) ∈ F such thatfor?α ∈ [0°,360°]and ?β ∈ [0°,360°].Let α = α1,β = β1such thatand90°,j=2,3,...,ni.Then,let α2=180°+ α1+ ?1,β2=360°- β1+ ?2where ?1and ?2are extremely small angles such thatfor some j(such j always exists;otherwise,F will be concave or vicannot be a vertice).Thus,we cannot find a xα2,β2∈ F such thatas Fig.2 shows this contradiction.

    Fig.2.Feasible set in 3-D.

    Again,if we traverse α and β through 0°to 360°,we will find all the needed vertices.This procedure can be described as:

    1)Let k1=1,k2=1.

    2)For β =0°to 360°with step length ε1

    3) For α =0°to 360°with step length ε2

    4) Compute xα,βby solving J(x,cα,β)from OCP(5).

    5) Let xk1,k2=xα,βand k2=k2+1.

    6) Endfor.

    7) k1=k1+1.

    8)Endfor.

    9)Compute the convex hull of points set P=(x1,1,x1,2,...,xend,end)and let S=conv{P}.

    Theorem 2:There exists an appropriate ε =(ε1,ε2)such that S=F.

    Proof:Similar to Theroem 1,omitted here.

    Parameters ε1and ε2can be chosen individually according to prior knowledge of the structure of the feasible set.If the vertices of the feasible set are smooth in some axis,the according ε can be chosen a little larger.The best ε would still be the maximum(ε1,ε2)to make αi/ε1and βj/ε2integers so that the number of circulation can be reduced to minimum.

    C.High er Dimensional Case

    When x∈Rnwhere n≥4 and considering the n-dimensional spherical coordinates,we specify c=(c1,c2,...,cn)where:

    Theoretically,if we traverse (φ1,φ2,...,φn-1) from 0°to 360°with appropriate interval(ε1,ε2,...,εn-1),we will end up with a convex hull conv{P} =conv{x1,...,1,...,xend,...,end} with all the vertices vi∈conv{P},?i∈ N[1,p].Thus,S=conv{P}just like in the 2-D and 3-D cases.However,if the computation time for every loop is T0with the majority comes from solving the mPPP(5),the total computation time Tt=(360°/ε0)n-1T0where we treat ε0= ε1= ···= εn-1will increase so rapidly as the dimension of x increases that the proposed method may not be tractable.

    An alternative is to consider the orthogonal projection if the feasible set is well structured and the projection is computationally tractable.From the definition of orthogonal projection,we know that given P={x,θ|H(x,θ) ? 0,G(x,θ) ≥ 0},F=Projx(P).However,LMI H(x,θk)? 0 cannot be handled in projection algorithms in which only V-representation and H-representation are allowed.In fact,the region of LMI H={x,θk|H(x,θk) ? 0}is called a spectrahedron[20].A lot of work on the connections between polyhedrons and spectrahedrons has been done such as[20],[21].Recently,[22]proposed a method to convert the spectrahedron to an identical polyhedron.In particular,we have to find a transform matrix M such that MTH(x,θk)M=diag(Q(x, θk),D(x, θk))where D(x,θk))is a diagonal matrix map where[22]proved that H={x,θk|D(x,θk)? 0}.Thus,H can be expressed in H-representation H={x,θk|Dii(x,θk) ≥ 0}.Though[22]proposed an approach to compute M by seeking the joint invariant subspace and its orthonormal basis,this procedure is rather complicated.

    Remark 1:The proposed method is particularly efficient for low dimensional feasible set computation.When the total computation time Ttbecomes unacceptable,the transformed orthogonal projection then should be considered.

    IV.SIMULATION EXAMPLE

    Example 1:Consider the widely used system[10],[23],[24]:

    with system constraints x∈X={x|-10≤[x]1≤2,-10≤[x]2≤10},u∈U={u|-1≤u≤1}and w∈W={w|-0.01≤[w]1≤0.01,-0.01≤[w]2≤0.01}.Assume the applied algorithm is the min-max MPC proposed in[8]with open-loop control law.When the prediction horizon N=1,constraints to the mPPP would be

    where S={x|0.5[x]2≤0.99,-0.66[x]1-1.33[x]2≤0.96,0.66[x]1+1.32[x]2≤0.96,0.43[x]1+0.21[x]2≤0.95,-0.43[x]1-0.21[x]2≤0.95}is the maximum robust control invariant set which can be computed by methods introduced in[4]and θ=u.Thus,the feasible set computed by the proposed method with ε=5°is shown in Fig.3 in dark green and set in light green is the set P={x,u|Ax+Bu∈X?S,x∈X,u∈U}.The result is identical to that computed by projection which means ε=5°works well.

    Fig.3.Feasible set of Example 1 with N=1.

    Example 2:Consider the continuously stirred tank reactor(CSTR)system in[7]:

    where

    Constraints for this CSTR system are Pr{-10≤[x]1≤10}≥90%,Pr{-5≤[x]2≤5}≥90%,Pr{-2.8≤[x]3≤2.8}≥90%,-2.156×10-2≤u≤0.2.Deterministic disturbances range-1≤[p]2≤1,-2≤[p]3≤2.[p]1is a persistent deterministic disturbance and[p]1=-1×10-3when t≥30 mins,otherwise,[p]1=0.Stochastic disturbance q~N(0,10)and 10≤q≤10.

    Using the proposed algorithms in[7],the final OCP involves both spectrahedral and polyhedral constraints.Choose ε0= ε1= ε2=3°and the feasible set can be computed accurately when N=12 as Fig.4 shows.The dimension of θ increases when the prediction horizon N increases which in turn increases,the total time to compute the feasible set.We record the total time for the proposed method as well as the orthogonal projection approach based on Fourier method[25]to compute the feasible set.From Fig.5 we can see that the computation time for the proposed method increases slowly as it depends on the computation time of the basic mPPP once the dimension of the feasible set is decided.However,the computation time as well as memory consumption of orthogonal projection increases rapidly when the dimension of θ increases,which ultimately leads to the memory exhaustion when N=10.Thus,when the dimension of θ is large and dimension of x is small,the proposed method would be a good choice to compute the feasible set.

    The implementation was performed on laptop with Intel Core i7-4600U@2.10GHz 2.70GHz and 8 GB RAM.mPPP is solved by cvx tool box[26]in MATLAB and the polyhedron operation and orthogonal projection are realized by the multiparametric toolbox(MPT)[27].

    Fig.4. Feasible set for example 2 with N=12.

    Fig.5.Computation time.

    V.CONCLUSION

    In this paper,a multi-parametric programming problem has been proposed to compute the feasible set of the final OCP derived from MPC-based algorithms and involving both spectrahedral(represented by LMI)and polyhedral(represented by a set of inequalities)constraints.In fact,the forms or even the convexity and linearity of constraints are not restricted as long as assumption 1 holds.The simulation results showed that the proposed method is especially efficient for low dimensional feasible set computation and avoided the non-unicity problem of optimizers.Because the computation procedure just involves solving the basic mPPP repeatedly,memory consumption is not large.Thus,the proposed algorithm avoids the memory depletion problem encountered by projection algorithms.If we choose a large ε,a glimpse of the feasible set is available as the computed S would be a subset of the feasible set.This can be used to find a rough initial state or check the existence of a nonempty feasible set.

    However,if the dimension of the feasible set is very large,the computational burden of the proposed method would be horrific.One may consider transforming the LMI-representation constraints to H-representation using transformation techniques from spectrahedron to polyhedron and then applying the orthogonal projection if the feasible set is well structured and the projection is computationally tractable.

    最近中文字幕高清免费大全6| 成人亚洲欧美一区二区av| 岛国毛片在线播放| 边亲边吃奶的免费视频| 国产不卡一卡二| 欧美性感艳星| 插阴视频在线观看视频| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 老司机影院毛片| 久久久久精品久久久久真实原创| 色播亚洲综合网| 欧美丝袜亚洲另类| 中文字幕av在线有码专区| 亚洲欧美精品自产自拍| 少妇的逼好多水| 好男人视频免费观看在线| 嘟嘟电影网在线观看| 国产探花在线观看一区二区| 久久精品人妻少妇| 狂野欧美激情性xxxx在线观看| 在线免费十八禁| 中文字幕人妻熟人妻熟丝袜美| 女人久久www免费人成看片 | 狠狠狠狠99中文字幕| 国产精品国产三级国产专区5o | 青春草亚洲视频在线观看| 简卡轻食公司| 免费人成在线观看视频色| 天堂中文最新版在线下载 | 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 亚洲国产最新在线播放| 成人美女网站在线观看视频| 99视频精品全部免费 在线| 成人国产麻豆网| 亚洲欧美日韩卡通动漫| av线在线观看网站| 免费观看在线日韩| 国产男人的电影天堂91| 毛片女人毛片| 久久久精品大字幕| 在线观看av片永久免费下载| 乱人视频在线观看| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 久久久久精品久久久久真实原创| 一本久久精品| 午夜久久久久精精品| av福利片在线观看| 欧美最新免费一区二区三区| 国产精品综合久久久久久久免费| 久久久亚洲精品成人影院| 久久久久久久久大av| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 国内精品宾馆在线| 久久99热6这里只有精品| 日本一本二区三区精品| www.av在线官网国产| 亚洲精品自拍成人| 91aial.com中文字幕在线观看| ponron亚洲| 男人舔奶头视频| 欧美三级亚洲精品| 国产午夜精品久久久久久一区二区三区| 日本wwww免费看| 一级毛片电影观看 | 老师上课跳d突然被开到最大视频| 赤兔流量卡办理| av天堂中文字幕网| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 免费大片18禁| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片| 秋霞伦理黄片| 成人亚洲欧美一区二区av| 日本午夜av视频| 一边亲一边摸免费视频| 久久韩国三级中文字幕| 99热全是精品| 熟妇人妻久久中文字幕3abv| 99热网站在线观看| 简卡轻食公司| 欧美人与善性xxx| 自拍偷自拍亚洲精品老妇| 偷拍熟女少妇极品色| 色视频www国产| 亚洲,欧美,日韩| eeuss影院久久| 性插视频无遮挡在线免费观看| 国产久久久一区二区三区| 黄色一级大片看看| 日韩精品有码人妻一区| 亚洲四区av| 欧美97在线视频| 中文字幕av成人在线电影| or卡值多少钱| 亚洲人成网站在线播| 免费av不卡在线播放| 国产成人免费观看mmmm| 久99久视频精品免费| 午夜免费男女啪啪视频观看| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 久久久久性生活片| 亚洲欧美日韩东京热| 免费观看a级毛片全部| 成人午夜高清在线视频| 国产极品精品免费视频能看的| 国产av在哪里看| 国产高清视频在线观看网站| 国产黄色小视频在线观看| 免费观看的影片在线观看| 国产91av在线免费观看| kizo精华| 午夜福利网站1000一区二区三区| 美女国产视频在线观看| 天美传媒精品一区二区| 能在线免费观看的黄片| 乱码一卡2卡4卡精品| 三级经典国产精品| 国产精品福利在线免费观看| 国国产精品蜜臀av免费| 男插女下体视频免费在线播放| 亚洲欧美精品综合久久99| 看黄色毛片网站| 成年女人看的毛片在线观看| 97超视频在线观看视频| 久久午夜福利片| 男女那种视频在线观看| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 在线播放国产精品三级| 神马国产精品三级电影在线观看| 美女内射精品一级片tv| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区免费毛片| 久久久久久伊人网av| 又粗又爽又猛毛片免费看| 日本猛色少妇xxxxx猛交久久| 综合色丁香网| 男插女下体视频免费在线播放| 欧美成人精品欧美一级黄| 伊人久久精品亚洲午夜| 麻豆久久精品国产亚洲av| 国产伦精品一区二区三区视频9| a级毛片免费高清观看在线播放| 国产成人aa在线观看| 高清毛片免费看| 中文字幕av在线有码专区| 全区人妻精品视频| 欧美一区二区国产精品久久精品| 亚洲图色成人| 汤姆久久久久久久影院中文字幕 | 深爱激情五月婷婷| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看| 国产亚洲精品av在线| 日本午夜av视频| 午夜免费激情av| 亚洲人成网站在线观看播放| 国产极品精品免费视频能看的| 村上凉子中文字幕在线| 久久久久久久久久黄片| videossex国产| 别揉我奶头 嗯啊视频| 国产成人一区二区在线| 日韩人妻高清精品专区| 爱豆传媒免费全集在线观看| 最后的刺客免费高清国语| 亚洲久久久久久中文字幕| 国产成人freesex在线| 亚洲精品久久久久久婷婷小说 | 99热6这里只有精品| 欧美潮喷喷水| 永久免费av网站大全| 黑人高潮一二区| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 色综合色国产| 免费播放大片免费观看视频在线观看 | 美女xxoo啪啪120秒动态图| 99久久人妻综合| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av涩爱| 亚洲av.av天堂| 99热6这里只有精品| 国产精品1区2区在线观看.| 床上黄色一级片| 亚洲欧美精品综合久久99| 国产免费福利视频在线观看| 免费观看性生交大片5| 国产日韩欧美在线精品| eeuss影院久久| 国产淫片久久久久久久久| 欧美+日韩+精品| 97超视频在线观看视频| 欧美高清性xxxxhd video| 日本免费一区二区三区高清不卡| 丰满少妇做爰视频| 国产伦一二天堂av在线观看| 精品久久久久久久久av| videos熟女内射| 国产亚洲5aaaaa淫片| 成人无遮挡网站| 午夜视频国产福利| 精品国产三级普通话版| 韩国高清视频一区二区三区| 国产精品一区二区性色av| 精品免费久久久久久久清纯| 看片在线看免费视频| 看非洲黑人一级黄片| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 狠狠狠狠99中文字幕| 亚洲丝袜综合中文字幕| 亚洲精品乱久久久久久| 亚洲精品456在线播放app| av在线蜜桃| 亚洲av熟女| 啦啦啦韩国在线观看视频| 看非洲黑人一级黄片| 亚洲成人久久爱视频| 国产黄片美女视频| 午夜亚洲福利在线播放| 精品久久久久久久人妻蜜臀av| av国产免费在线观看| 久久久久网色| 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 一级爰片在线观看| 久久精品国产自在天天线| 精品人妻熟女av久视频| 日本黄大片高清| 岛国在线免费视频观看| av在线亚洲专区| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 1024手机看黄色片| 少妇高潮的动态图| 久久精品91蜜桃| 亚洲国产精品专区欧美| 偷拍熟女少妇极品色| 久久久久性生活片| 国产午夜精品论理片| 99久久精品热视频| 国产淫片久久久久久久久| 麻豆成人av视频| 99久久精品热视频| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 婷婷色综合大香蕉| 嫩草影院入口| 精品久久久噜噜| 欧美一区二区精品小视频在线| 国国产精品蜜臀av免费| 久久久国产成人精品二区| 国产精品久久久久久久电影| 少妇的逼好多水| 亚洲av不卡在线观看| 中文亚洲av片在线观看爽| 国产视频首页在线观看| 精品99又大又爽又粗少妇毛片| 免费av不卡在线播放| 国产一区二区在线av高清观看| 热99re8久久精品国产| 国产精品不卡视频一区二区| 亚洲精品乱码久久久久久按摩| 国产高清国产精品国产三级 | 成人二区视频| 岛国毛片在线播放| 美女黄网站色视频| 亚洲欧美一区二区三区国产| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| or卡值多少钱| 久久久久久久国产电影| 亚洲中文字幕日韩| 色哟哟·www| 韩国高清视频一区二区三区| 免费无遮挡裸体视频| 亚州av有码| 三级毛片av免费| 国产毛片a区久久久久| 爱豆传媒免费全集在线观看| 在线免费观看不下载黄p国产| 看免费成人av毛片| 亚洲av免费在线观看| 99热6这里只有精品| 国产白丝娇喘喷水9色精品| 国产欧美另类精品又又久久亚洲欧美| av线在线观看网站| 国产精品av视频在线免费观看| 成年免费大片在线观看| 2022亚洲国产成人精品| 免费黄色在线免费观看| 国产爱豆传媒在线观看| 毛片女人毛片| 午夜福利在线观看免费完整高清在| 久久韩国三级中文字幕| 免费无遮挡裸体视频| 日韩成人av中文字幕在线观看| 成人美女网站在线观看视频| 国产精品无大码| 日本一二三区视频观看| 久久久欧美国产精品| 精品久久久久久久久亚洲| 麻豆成人午夜福利视频| 国产毛片a区久久久久| 床上黄色一级片| 中文字幕亚洲精品专区| 国产黄片美女视频| av免费在线看不卡| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 亚洲av成人精品一二三区| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 七月丁香在线播放| 午夜激情欧美在线| 亚洲经典国产精华液单| 天堂√8在线中文| 欧美成人精品欧美一级黄| 身体一侧抽搐| 一夜夜www| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 欧美色视频一区免费| 日本一本二区三区精品| 伊人久久精品亚洲午夜| 久久久久精品久久久久真实原创| 69av精品久久久久久| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| kizo精华| 我的女老师完整版在线观看| 青春草国产在线视频| 在线天堂最新版资源| 舔av片在线| 日韩欧美国产在线观看| 日韩一本色道免费dvd| 好男人视频免费观看在线| 中文字幕av在线有码专区| 久久久久久伊人网av| 青春草国产在线视频| 国产午夜福利久久久久久| 偷拍熟女少妇极品色| 在线播放无遮挡| 国产高清国产精品国产三级 | 亚洲av免费在线观看| 亚洲天堂国产精品一区在线| av又黄又爽大尺度在线免费看 | 最新中文字幕久久久久| 亚洲国产精品久久男人天堂| 久久久久久久久大av| 国产大屁股一区二区在线视频| 久久婷婷人人爽人人干人人爱| 精品99又大又爽又粗少妇毛片| 黄片wwwwww| 国产91av在线免费观看| 亚洲国产精品专区欧美| 久久久久久久亚洲中文字幕| 国产av不卡久久| 国产免费又黄又爽又色| 国产精品日韩av在线免费观看| 欧美变态另类bdsm刘玥| 欧美一区二区亚洲| 岛国毛片在线播放| 亚洲国产最新在线播放| 大话2 男鬼变身卡| 51国产日韩欧美| 日韩av在线免费看完整版不卡| 久99久视频精品免费| 久久久亚洲精品成人影院| 精品人妻熟女av久视频| 久久99精品国语久久久| 国产精品久久久久久久久免| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 日韩精品有码人妻一区| 老女人水多毛片| 97超视频在线观看视频| 国产精品野战在线观看| av在线天堂中文字幕| 97超碰精品成人国产| 狂野欧美激情性xxxx在线观看| 97超碰精品成人国产| 深爱激情五月婷婷| 精品酒店卫生间| 一个人观看的视频www高清免费观看| 女人久久www免费人成看片 | 亚洲精品久久久久久婷婷小说 | 天天躁夜夜躁狠狠久久av| 国产中年淑女户外野战色| 国产三级中文精品| 91精品国产九色| 男女下面进入的视频免费午夜| 国产在线一区二区三区精 | 亚洲av不卡在线观看| 久久亚洲精品不卡| 亚洲人成网站高清观看| 久久久久久国产a免费观看| 国产午夜精品一二区理论片| 欧美性感艳星| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| av播播在线观看一区| 久久草成人影院| 成人国产麻豆网| 国产综合懂色| 一边亲一边摸免费视频| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 日韩亚洲欧美综合| 亚洲精品自拍成人| 又爽又黄无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄无遮挡网站| 亚洲精品亚洲一区二区| 久久精品综合一区二区三区| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国产69精品久久久久777片| 大话2 男鬼变身卡| 色播亚洲综合网| 日日摸夜夜添夜夜添av毛片| 免费电影在线观看免费观看| 别揉我奶头 嗯啊视频| 日韩精品有码人妻一区| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 一级av片app| 人人妻人人澡欧美一区二区| 国产视频内射| 亚洲精品乱码久久久久久按摩| 免费观看的影片在线观看| 欧美人与善性xxx| 一级二级三级毛片免费看| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 成年av动漫网址| 1024手机看黄色片| 成人美女网站在线观看视频| 热99在线观看视频| 国产精品伦人一区二区| 久久99蜜桃精品久久| 国产91av在线免费观看| 亚洲av福利一区| 18+在线观看网站| 国产黄色小视频在线观看| 夫妻性生交免费视频一级片| 简卡轻食公司| 亚洲精品成人久久久久久| 久久精品国产鲁丝片午夜精品| 长腿黑丝高跟| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 91狼人影院| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 成人性生交大片免费视频hd| 1000部很黄的大片| 一本久久精品| 99久久九九国产精品国产免费| 一级毛片我不卡| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 国产成人91sexporn| 亚洲丝袜综合中文字幕| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 韩国av在线不卡| 热99在线观看视频| 欧美潮喷喷水| 久久6这里有精品| 免费看美女性在线毛片视频| 插逼视频在线观看| 99热全是精品| www.色视频.com| 日韩一区二区视频免费看| 国产黄片视频在线免费观看| 国产极品精品免费视频能看的| 免费在线观看成人毛片| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人freesex在线| 最近手机中文字幕大全| 2022亚洲国产成人精品| 在线播放国产精品三级| 91久久精品国产一区二区三区| 国产毛片a区久久久久| 国产精品嫩草影院av在线观看| 国产精品福利在线免费观看| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| av女优亚洲男人天堂| 黄片无遮挡物在线观看| 亚洲人成网站在线播| 变态另类丝袜制服| 亚洲,欧美,日韩| 国产在视频线精品| 国产精品福利在线免费观看| 久久人妻av系列| 激情 狠狠 欧美| av天堂中文字幕网| 韩国av在线不卡| 色综合亚洲欧美另类图片| 少妇的逼水好多| 精品久久久久久久末码| 久久久亚洲精品成人影院| 免费黄网站久久成人精品| 欧美一区二区国产精品久久精品| 亚洲色图av天堂| 日韩 亚洲 欧美在线| 哪个播放器可以免费观看大片| 久久人妻av系列| 久久综合国产亚洲精品| 国产av码专区亚洲av| 国产亚洲一区二区精品| av免费在线看不卡| 国产精品不卡视频一区二区| 亚洲精品国产av成人精品| av在线观看视频网站免费| 中文字幕人妻熟人妻熟丝袜美| 国产高清国产精品国产三级 | av女优亚洲男人天堂| www日本黄色视频网| 啦啦啦韩国在线观看视频| 日日摸夜夜添夜夜爱| 国产爱豆传媒在线观看| av线在线观看网站| 舔av片在线| 在线天堂最新版资源| 啦啦啦啦在线视频资源| 国产男人的电影天堂91| 国产精品一区二区三区四区免费观看| 精品人妻熟女av久视频| 日韩制服骚丝袜av| 看黄色毛片网站| 日韩欧美精品免费久久| 国产午夜精品久久久久久一区二区三区| 日本一本二区三区精品| 久久99热这里只频精品6学生 | 亚洲va在线va天堂va国产| 亚洲乱码一区二区免费版| 高清在线视频一区二区三区 | 久久这里有精品视频免费| 91精品伊人久久大香线蕉| 午夜日本视频在线| 在线播放国产精品三级| 欧美一区二区亚洲| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 丰满乱子伦码专区| 成人亚洲欧美一区二区av| 色视频www国产| 日韩三级伦理在线观看| 看免费成人av毛片| 亚洲人与动物交配视频| 亚洲伊人久久精品综合 | 高清av免费在线| h日本视频在线播放| 国产乱来视频区| 最近最新中文字幕免费大全7| 欧美激情国产日韩精品一区| 国产精品久久久久久精品电影小说 | 亚洲婷婷狠狠爱综合网| 日本五十路高清| 午夜精品一区二区三区免费看| av在线播放精品| 22中文网久久字幕| 国产在视频线在精品| 在线观看美女被高潮喷水网站| 大话2 男鬼变身卡| 亚洲不卡免费看| 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 色综合站精品国产| 欧美日韩一区二区视频在线观看视频在线 | 久久婷婷人人爽人人干人人爱| 尾随美女入室| 亚洲欧美日韩高清专用| 草草在线视频免费看| 亚洲性久久影院| 国产精品久久久久久精品电影小说 | 国产亚洲一区二区精品| 国产亚洲91精品色在线| 国产精品.久久久| 三级国产精品片| 天堂√8在线中文| 三级男女做爰猛烈吃奶摸视频| 干丝袜人妻中文字幕| 精品久久久久久久久av| 国产老妇女一区| 亚洲精品456在线播放app| 成人特级av手机在线观看| 国产午夜福利久久久久久|