• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CROSSED PRODUCTS BY FINITE GROUP ACTIONS WITH CERTAIN TRACIAL ROKHLIN PROPERTY?

    2018-07-23 08:41:48QingzhaiFan范慶齋
    關(guān)鍵詞:小春

    Qingzhai Fan(范慶齋)

    Department of Mathematics,Shanghai Maritime University,Shanghai 201306,China E-mail:fanqingzhai@fudan.edu.cn;qzfan@shmtu.edu.cn

    Xiaochun Fang(方小春)

    Department of Mathematics,Tongji University,Shanghai 200092,China E-mail:xfang@mail.#edu.cn

    Abstract We introduce a special tracial Rokhlin property for unital C?-algebras.Let A be a unital tracial rank zero C?-algebra(or tracial rank no more than one C?-algebra).Suppose that α :G → Aut(A)is an action of a finite group G on A,which has this special tracial Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,the crossed product C?-algebra C?(G,A,α)has tracia rank zero(or has tracial rank no more than one).In fact,we get a more general results.

    Key words C?-algebras;Rokhlin property;crossed product C?-algebra

    1 Introduction

    The Elliott program for the classification of amenable C?-algebras might be said to have begun with the K-theoretical classification of AF-algebras in[1].Since then,many classes of C?-algebras have been classified by the Elliott invariant.Among them,one important class is the class of simple unital AH-algebras without dimension growth(the real rank zero case,cf[2],and general case cf[3]).To axiomatize Elliott-Gong’s decomposition theorem for real rank zero AH algebras(classified by Elliott-Gong in[2])and Gong’s decomposition theorem(cf[4])for simple AH algebras(classified by Elliott-Gong-Li in[3]),Huaxin Lin introduce the concept of TAF and TAI([5,6]).Instead of assuming inductive limit structure,he started with a certain abstract approximation property,and showed that C?-algebras with this abstract approximation property and certain additional properties are AH-algebras without dimension growth.More precisely,Lin introduced the class of tracially approximate interval algebras(also called C?-algebras of tracial topological rank one).

    Inspired by Lin’s tracial approximation by interval algebras in[6],Elliott and Niu in[7]considered tracial notion of approximation by other classes of C?-algebras.Let ? be a class of unital C?-algebras.Then,the class of C?-algebras which can be tracially approximated by C?-algebras in ?,denoted by TA?,is defined as follows.A simple unital C?-algebra A is said to belong to the class TA? if for any ε>0,any finite subset F ? A,and any element a≥ 0,there exist a projection p∈A and a C?-subalgebra B of A with 1B=p and B ∈ ?,such that

    (1)kxp?pxk<ε for all x∈F;

    (2)pxp∈εB for all x∈F;

    (3)1?p is Murray-von Neumann equivalent to a projection in

    Also inspired by Lin’s non-simple tracial approximation C?-algebras in[5,6],the present author and Fang considered non-simple C?-algebras tracially approximated by certain C?-algebras in[8].Let ? be a class of unital C?-algebras.Then,the class of C?-algebras which can be tracially approximated by C?-algebras in ?,denoted still by TA?,is defined as follows.A unital C?-algebra A is said to belong to the class TA? if for any positive numbers 0< σ3<σ4< σ1< σ2<1,any ε>0,any finite subset F ? A containing a positive element b,and any integer n>0,there exist a projection p∈A,and a C?-subalgebra B of A with B ∈ ? and 1B=p,such that

    (1)kxp?pxk<ε for all x∈F;

    (2)pxp∈εB for all x∈F;

    Recall that the definition given by Elliott and Niu and the definition given above and in[8]coincide in the simple case.

    The Rokhlin property in ergodic theory was adapted to the context of von Neumann algebras by Connes in[9].It was adapted by Hermann and Ocneanu for UHF-algebras in[10].Rordam[11]and Kishimoto[12]considered the Rokhlin property in a much more general C?-algebra context.More recently,Phillips and Osaka studied finite group actions which satisfy a certain type of Rokhlin property on some simple C?-algebras in[13–16].

    In this article,we introduce a special tracial Rokhlin property for unital C?-algebras,and this special Rokhlin property generalizes the Rokhlin property.This special Rokhlin property implies the weak tracial Rokhlin property defined by Wang in[17].The different between this special tracial Rokhlin property and weak tracial Rokhlin property is that we can study the properties of crossed product C?-algebra with a finite group G action on non-simple C?-algebra of tracial topological rank no more than k.

    When C?-algebra is simple,this special tracial Rokhlin property is equivalent to the tracial Rokhlin property defined by Phillips.We also get the following two theorems.

    (1)Let ? be a class of unital C?-subalgebras such that ? is closed under passing to unital hereditary C?-algebras,under passing to finite direct sums,and under passing to quotient C?-algebra.Let A ∈ TA? be an in finite dimensional unital C?-algebra.Suppose that α :G →Aut(A)is an action of a finite group G on A which has this special tracial Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,the crossed product C?-algebra C?(G,A,α)belongs to TA?.

    In particular,let A ∈ TA ? be an in finite dimensional unital C?-algebra.Suppose that α:G→Aut(A)is an action of a finite group G on A which has Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,the crossed product C?-algebra C?(G,A,α)belongs to TA?.

    As a consequence,let A be an in finite dimensional unital tracial rank zero C?-algebra(or tracial rank no more than one).Suppose that α :G → Aut(A)is an action of a finite group G on A which has the Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,C?(G,A,α)has tracial topological rank zero(or tracial rank no more than one).

    (2)Let ? be a class of unital C?-algebras such that ? is closed under passing to unital hereditary C?-subalgebra and tensoring matrix algebras.Let A ∈ TA? be an in finite dimensional simple unital C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has tracial Rokhlin property.Then,the crossed product C?-algebra C?(G,A,α)belongs to TA?.

    As a consequence,let A be a unital simple isometrically rich C?-algebra(that is,the set of one-sided invertible elements is dense in A)and let α :G → Aut(A)be an action of a finite group G on A which has the tracial Rokhlin property.Then,C?(G,A,α)is an isometrically rich C?-algebra.

    We also show that if A is a unital simple purely in finite C?-algebra(that is,A 6=C and if for any nonzero element a∈A,there are x,y∈A such that xay=1)and α:G→Aut(A)is an action of a finite group G on A which has the tracial Rokhlin property,then C?(G,A,α)is a unital simple purely in finite C?-algebra.

    2 Preliminaries and Definitions

    Recall that a C?-algebra A has the property SP,if every nonzero hereditary C?-subalgebra of A contains a nonzero projection.

    A unital C?-algebra A is called isometrically rich C?-algebra,if the set of one-sided invertible elements is dense in A(cf.[18,19]).

    A nonzero projection p is said to be in finite if p~q,where q≤p and

    A unital simple C?-algebra A is said to be purely in finite,ifand if for any nonzero element a∈A,there are x,y∈A such that xay=1.

    Let A be a C?-algebra and α ∈ Aut(A).We say A is α-simple if A does not have any non-trivial α-invariant closed two-sided ideals.

    Let a and b be two positive elements in a C?-algebra A.We write[a]≤ [b](cf Definition 3.5.2 in[20]),if there exists a partial isometry v∈ A??such that,for every c∈ Her(a),v?c,cv∈A,vv?=P[a],where P[a]is the range projection of a in A??,and v?cv ∈ Her(b)(where Her(b)is the hereditary C?-algebra generated by b).We write[a]=[b]if v?Her(a)v=Her(b).Let n be a positive integer.We write n[a]≤[b],if there are n mutually orthogonal positive elements b1,b2, ···,bn∈ Her(b)such that[a]≤ [bi],i=1,2, ···,n.

    Let 0< σ1< σ2≤ 1 be two positive numbers.Define

    Let ? be a class of unital C?-algebras.Then,the class of C?-algebras which can be tracially approximated by C?-algebras in ?,denoted by TA?,is defined as follows.

    Definition 2.1([6,7]) A unital simple C?-algebra A is said to belong to the class TA?if for any ε>0,any finite subset F ? A,and any nonzero element a ≥ 0,there exist a nonzero projection p∈A and a C?-subalgebra B of A with 1B=p and B ∈ ?,such that

    (1)kxp?pxk<ε for all x∈F;

    (2)pxp∈εB for all x∈F;

    (3)[1?p]≤[a].

    Definition 2.2([6,8]) A unital C?-algebra A is said to belong to the class TA? if for any positive numbers 0< σ3< σ4< σ1< σ2<1,any ε>0,any finite subset F ? A,any nonzero positive element a,and any integer n>0,there exist a nonzero projection p∈A and a C?-subalgebra B of A with B ∈ ? and 1B=p,such that

    (1)kxp?pxk<ε for all x∈F;

    (2)pxp∈εB for all x∈F;

    By[21],if A is a unital simple C?-algebra and A∈TA?,then Definition 2.1 and Definition 2.2 are equivalent.

    Let I1(I0)denote the class of all interval algebras(all finite dimensional C?-algebras).A is said to have tracial rank no more than one(tracial rank zero)if A∈TAI1(A∈TAI0),we will write TR(A)≤1(TR(A)=0).

    Lemma 2.3([7,21–23]) If the class ? is closed under passing to tensoring matrix algebras,or closed under passing to unital hereditary C?-subalgebras,or closed under passing to unital quotient algebras,then TA? is closed under passing to matrix algebras or passing to unital hereditary C?-subalgebras or closed under passing to unital quotient algebras.

    Theorem 2.4([22]) Let ? be a class of unital C?-algebras.Then,any simple unital C?-algebra A∈TA(TA?)belongs to TA?.

    Definition 2.5([16]) Let A be an in finite dimensional unital separable C?-algebra,and let α :G → Aut(A)be an action of a finite group G on A.We say α has Rokhlin property if for any finite set F ?A,any ε>0,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    Definition 2.6([16]) Let A be an in finite dimensional simple unital separable C?-algebra,and let α :G → Aut(A)be an action of a finite group G on A.We say α has tracial Rokhlin property if for any finite set F ? A,any ε>0,and any nonzero positive element b∈ A,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (4)kebek≥kbk?ε.

    Theorem 2.7([16]) Let A be an in finite dimensional unital simple C?-algebra,and let α:G→Aut(A)be an action of a finite group G on A which has the tracial Rokhlin property.Then,C?(G,A,α)is a simple C?-algebra.

    Theorem 2.8([16]) Let A be an in finite dimensional simple unital C?-algebra,and α:G→Aut(A)be an action of a finite group G on A which has the tracial Rokhlin property.Then,A has the SP property or has the Rokhlin property.

    Theorem 2.9([14]) Let A be a unital C?-algebra,and let α :G → Aut(A)be an action with the Rokhlin property.Then,for every finite subset S ? C?(G,A,α)and any ε >0,there are n,a projection f ∈ A,and a unital homomorphismsuch thatfor all a∈S.

    Theorem 2.10([16]) Let A be a unital C?-algebra with the property SP and let α :G →Aut(A)be an action of a finite group G on A which has the tracial Rokhlin property.Then,any non-zero hereditary C?-subalgebra of the crossed product algebra C?(G,A,α)has a nonzero projection which is equivalent to a projection in A.

    Definition 2.11Let A be an in finite dimensional unital separable C?-algebra,and let α :G → Aut(A)be an action of a finite group G on A.We say α has a special tracial Rokhlin property if for any finite set F ? A,for any positive numbers 0< σ3< σ4< σ1< σ2<1,any integer n,any ε>0,and any nonzero positive element b∈ A,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (4)kebek≥kbk?ε.

    NoteIn Definition 2.11(3)can be replace bywith

    Definition 2.12([17]) Let A be an in finite dimensional unital separable C?-algebra,and let α :G → Aut(A)be an action of a finite group G on A.We say α has weak tracial Rokhlin property if for any finite set F ? A,any ε>0,any every full positive element b,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (4)kebek≥kbk?ε.

    Theorem 2.13([16]) Let α :G → Aut(A)be an action of a finite group G on A with the tracial Rokhlin property,and let p be an invariant projection.Then,the induced action α on pAp has the tracial Rokhlin property.

    Theorem 2.14([16]) Let A be an in finite dimensional simple unital C?-algebra,and α:G→Aut(A)be an action of a finite group G on A.Then,α has the tracial Rokhlin property if and only if for any finite set F ?A,any ε >0,and any nonzero positive element b∈A,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (3)[1 ? e]≤ b,with e= Σg∈Geg,and e is α-invariant projection;

    (4)kebek≥kbk?ε.

    Theorem 2.15Let A be an in finite dimensional unital C?-algebra,and α :G → Aut(A)be an action of a finite group G on A which has the special tracial Rokhlin property.Then,α:G→Aut(A)is an action of a finite group G on A which has the weak tracial Rokhlin property.

    ProofSuppose that G={g1,g2,···gm},where g1is the unit of G.We need to show that for any finite set F ? A,any integer n,any ε>0,and any full positive element b∈ A,there are mutually orthogonal projections egi∈A for gi∈G and 1≤i≤m such that

    (4)kebek≥kbk?ε.

    As b is a full element,there are xi∈ A(i=1,2, ···,k)such thatTake 0

    Applying Definition 2.11 tothere are mutually orthogonal projections egi∈A for 1≤i≤m,such that

    (1′)for any 1≤ i,j≤ m;

    (2′)for any 1≤ i≤ m and any d∈ H;

    (

    3′)with

    (4′)kebek ≥ kbk? ε.

    By functional calculus,we have

    So,there are zi∈(1?e)A(1?e)such that

    We have

    Theorem 2.16([17]) Let A be an in finite dimensional unital C?-algebra with property SP,and α :G → Aut(A)be an action of a finite group G on A which has the weak tracial Rokhlin property.Then,every nonzero hereditary C?-algebra of C?(G,A,α)has a projection which is equivalent to some porjection in A in the sense of Murray-von Neumann.

    Corollary 2.17Let A be an in finite dimensional unital C?-algebra with property SP,and α :G → Aut(A)be an action of a finite group G on A which has the special tracial Rokhlin property.Then,every nonzero hereditary C?-algebra of C?(G,A,α)has a projection which is equivalent to some porjection in A in the sense of Murray-von Neumann.

    Theorem 2.18([17]) Let A be an in finite dimensional unital C?-algebra,and let α :G →Aut(A)be an action of a finite group G on A which has the weak tracial Rokhlin property.Suppose that A is α-simple,then C?(G,A,α)is a simple C?-algebra.

    Corollary 2.19Let A be an in finite dimensional unital C?-algebra,and let α :G →Aut(A)be an action of a finite group G on A which has the special tracial Rokhlin property.Suppose that A is α-simple,then C?(G,A,α)is a simple C?-algebra.

    Theorem 2.20Let A be an in finite dimensional unital simple separable C?-algebra,and let α :G → Aut(A)be an action of a finite group G on A.Then,Definition 2.6 and Definition 2.11 are equivalent.

    ProofFirst,we show that Definition 2.11 implies that Definition 2.6.We need to show that for any finite set F?A,any ε>0,and any a nonzero positive element b∈A,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (4)kebek≥kbk?ε.

    As Definition 2.11 holds,and as A is a simple unital C?-algebra,there are xi∈ A(i=1,2,···,k)such thatTakesuch that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈H;

    (4)kebek≥kbk?ε.

    By functional calculus,we have

    There are zi∈(1?e)A(1?e)such that

    therefore we have

    We have

    Second,we show that Definition 2.6 implies Definition 2.11.

    By Theorem 2.8,we may assume that A has the property SP.

    We need to show that for any finite set F ? A,for any positive numbers 0< σ3< σ4<σ1< σ2<1,any ε>0,and any nonzero positive element b∈ A,there are mutually orthogonal projections eg∈A for g∈G such that

    (1)kαg(eh)?eghk< ε for all g,h ∈ G;

    (2)kegd?degk<ε for all g∈G and all d∈F;

    (4)kebek≥kbk?ε.

    As α :G → Aut(A)has tracial Rokhlin property,for finite set F ? A,any ε>0,any every positive element b,there are mutually orthogonal projectionsfor g ∈ G such that

    (1′)for all g,h ∈ G;

    (2′)for all g ∈ G and all d ∈ F;

    (3′)

    (4′)

    By Theorem 2.14,we may assume that e′is a α-invariant projection.

    As A has the property SP,there exist projectionssuch that[f]≤ [g].By Theorem 2.13,the induced action α on(1 ? e′)A(1 ? e′)has the tracial Rokhlin property,so for any ε>0,and any positive element f,there are mutually orthogonal projectionsfor g∈G such that

    (1′′)for all g,h ∈ G;

    (2′′)for all g ∈ G and all d ∈ F ∪ ;

    (3′′)with

    (4′′)

    (4)kebek≥kbk?ε.

    Theorem 2.21Let A be an in finite dimensional unital C?-algebra,and α :G → Aut(A)be an action of a finite group G on A which has the special tracial Rokhlin property.Then,A has the SP property or has Rokhlin property.

    ProofIf A does not have property SP,by Theorem 2.15,then there is a nonzero positive element a∈A which generates a hereditary subalgebra,which contains no nonzero projection.?

    3 Crossed Products by Finite Group Actions With Special Tracial Rokhlin Property

    Lemma 3.1([16]) Let n ∈ N,andbe a system of matrix units for Mn.For every ε>0,there is δ>0 such that,whenever B is a unital C?-algebra,and wj,k,for 1≤j,k≤n,are elements of B such that

    (2)kwj1,k1wj2,k2?δj2,k1wj1,k2k<δ for 1≤ j1,j2,k1,k2≤ n;

    (3)wj,jare orthogonal projections with,there exists a unital homomorphism ?:Mn→B such that ?(ej,j)=wj,jfor 1≤ j≤n and k?(ej,k)?wj,kk<ε for 1≤ j,k≤n.

    Theorem 3.2Let ? be a class of unital C?-algebras such that ? is closed under passing to unital hereditary C?-algebra,closed under passing to finite direct sums,and closed passing to unital quotient C?-algebra.Let A ∈ TA? be an in finite dimensional unital C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the special tracial Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,the crossed product C?-algebra C?(G,A,α)belongs to TA?.

    ProofBy Theorem 2.21,we prove this theorem by two steps.

    First,we assume that A has Rokhlin property.

    By Theorem 2.4,we need to show that for any finite subset S of the form S=F∪{ugi:1≤i≤ m},where F is a finite subset of the unit ball of A and ugi∈ C?(G,A,α)is the canonical unitary implementing the automorphism αgi,any ε>0,and any a nonzero positive element b∈ C?(G,A,α),there exist C?-subalgebra D ? C?(G,A,α)and a projection e∈ C?(G,A,α)with 1D=e and D∈TA?,such that

    (1)kex?xek<ε for any x∈S;

    (2)exe∈εD for any x∈S;

    (3)[1A?e]≤[b].

    Second,we suppose that A has the property SP.

    By Corollary 2.19,C?(G,A,α)is a simple C?-algebra.Suppose that G={g1,g2,···gm},where g1is the unit of G.By Theorem 2.4,we need to show that for any finite subset S of the form S=F∪{ugi:1≤i≤m},where F is a finite subset of the unit ball of A and ugi∈ C?(G,A,α)is the canonical unitary implementing the automorphism αgi,any ε>0,and any a nonzero positive element b ∈ C?(G,A,α),there exist C?-subalgebra D ? C?(G,A,α)and a projection e∈ C?(G,A,α)with 1D=e and D ∈ TA?,such that

    (1)kex?xek<ε for any x∈S;

    (2)exe∈εD for any x∈S;

    (3)[1A?e]≤[b].

    By Corollary 2.17,there exist nonzero projection r∈A such that[r]≤[b].

    As C?(G,A,α)is a simple unital C?-algebra,there are xi∈ C?(G,A,α)(i=1,2, ···,k)such thatTakesuch thatPutthen we have

    Set δ= ε/(16m).Choose η >0 according to Lemma 3.1 for m given above and δ in place of ε.Moreover,we may require η < ε/[8m(m+1)].Applying Definition 2.11 to F ∪,η in place with ε,and p in place of r,there are gk∈ G and mutually orthogonal projections egi∈A for 1≤i≤m,such that

    (1′)for any 1 ≤ i,j≤ m;

    (2′)for any 1≤i≤ m and any d∈H;

    (3′)with

    By(1′)and(2′),we have

    By functional calculus,we have

    So,there are zi∈(1?e)A(1?e)such that

    We have

    Using the same methods as Theorem 2.2 in[16],we can provethat the(1≤i,j≤m)satisfy the conditions in Lemma 3.1.

    Let(fij)(1≤i,j≤m)be a system of matrix units for Mm.By Lemma 3.1,there exists a unital homomorphism ψ0:Mm→ eC?(G,A,α)e such thatfor all 1≤ i,j≤ m,andfor all 1≤ i≤ m.Now,we define a unital homomorphismby

    for all 1≤i,j≤m and a∈eg1Aeg1.Then,

    Let ki,jbe the integer such that gki,j=gigj.For 1≤i≤m,we have

    Now,let a∈F.Set

    Using the inequity above and the inequalities

    and

    we have

    (1)kae?eak≤mη<ε,for any a∈F.

    (2)exe ∈εD for any x ∈ S,by(?)and(??);

    Corollary 3.3Let A be an in finite dimensional unital tracial rank zero C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the special tracial Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,C?(G,A,α)has tracial topological rank zero.

    Corollary 3.4Let A be an in finite dimensional unital tracial topological rank one C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the special tracial Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,C?(G,A,α)has tracial topological rank no more than one.

    Corollary 3.5Let ? be a class of unital C?-algebras such that ? is closed under passing to unital hereditary C?-algebra and closed passing to finite direct sums.Let A ∈ TA? be an in finite dimensional unital C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,the crossed product C?-algebra C?(G,A,α)belongs to TA?.

    Corollary 3.6Let A be an in finite dimensional unital tracial rank zero C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,C?(G,A,α)has tracial topological rank zero.

    Corollary 3.7Let A be an in finite dimensional unital tracial topological rank one C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the Rokhlin property,and suppose that A is a α-simple C?-algebra.Then,C?(G,A,α)has tracial topological rank no more than one.

    4 Crossed Products by Finite Group Actions with Tracial Rokhlin Property

    Theorem 4.1Let ? be a class of unital C?-algebras,which ? is closed under passing to unital hereditary C?-subalgebras and closed under passing to tensoring matrix algebras.Let A ∈ TA? be an in finite dimensional simple unital C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has tracial Rokhlin property.Then,the crossed product algebra C?(G,A,α)belongs to TA?.

    ProofBy Theorem 2.8,we prove this theorem by two steps.

    First,we suppose that α has Rokhlin property.We need to show that for any finite subset S,any ε>0,any nonzero positive element b ∈ C?(G,A,α),there exist a C?-subalgebra D ? C?(G,A,α)and a projection e∈ C?(G,A,α)with 1D=e and D ∈ TA?,such that

    (1)kex?xek<ε for any x∈S;

    (2)exe∈εD for any x∈S;

    (3)[1A?e]≤[b].

    By Theorem 2.9,for S and ε >0,there exist n and a projection f ∈ A,and a unital homomorphismsuch thatfor all a ∈ S.

    Second,we suppose that A has the property SP.

    By Theorem 2.7,C?(G,A,α)is a simple C?-algebra.Suppose that G={g1,g2,···gm},where g1is the unit of G.By Theorem 2.4,we need to show that for any finite subset S of the form S=F∪{ugi:1≤i≤m},where F is a finite subset of the unit ball of A and ugi∈ C?(G,A,α)is the canonical unitary implementing the automorphism αgi,any ε >0,any nonzero positive element b∈ C?(G,A,α),there exist a C?-subalgebra D ? C?(G,A,α)and a projection e∈ C?(G,A,α)with 1D=e and D ∈ TA?,such that

    (1)kex?xek<ε for any x∈S;

    (2)exe∈εD for any x∈S;

    Set δ= ε/(16m).Choose η >0 according to Lemma 3.1 for m given above and δ in place of ε.Moreover,we may require η < ε/[8m(m+1)].Applying Definition 2.6 to α with F given above,η in place with ε,and p in place of b,there are gk∈ G and mutually orthogonal projections egi∈A for 1≤i≤m,such that

    (1′)kαgi(egj)?egigjk< η for any 1 ≤ i,j≤ m;

    (2′)kegia?aegik< η for any 1≤ i≤m and any a∈F;

    (3′)[1?e]≤ [p],with

    By(1′)and(2′),we have

    Using the same methods as Theorem 2.2 in[16],we can prove that the wgi,gj∈ eC?(G,A,α)e(1≤i,j≤m)satisfy the conditions in Lemma 3.1.

    Let(fij)(1≤i,j≤m)be a system of matrix units for Mm.By Lemma 3.1,there exists a unital homomorphism ψ0:(G,A,α)e such thatfor all 1≤ i,j≤ m,and ψ0(fii)=egifor all 1≤ i≤ m.Now,we define a unital homomorphismby

    for all 1≤i,j≤m and a∈eg1Aeg1.Then,

    Let ki,jbe the integer such that gki,j=gigj.For 1≤i≤m,we have

    Now,let a∈F.Set

    Using the inequity above and the inequalities

    and

    we have

    (1)kae?eak≤mη<ε,for any a∈F,

    for any ugi∈ C?(G,A,α)the canonical unitary implementing the automorphism αgi;

    (2)exe ∈εD for any x ∈ S,by(?)and(??);

    (3)[1A?e]≤[p]≤[b].

    Theorem 4.2([24]) Let ? be a class of unital simple isometrically rich C?-algebras.Then,any simple unital C?-algebra in the class TA? is an isometrically rich C?-algebra.

    Corollary 4.3Let A be a unital simple isometrically rich C?-algebra.Suppose that α:G→Aut(A)is an action of a finite group G on A which has the tracial Rokhlin property.Then C?(G,A,α)is an isometrically rich C?-algebra.

    Theorem 4.4([24]) Let ? be a class of unital simple purely in finite C?-algebras.Then,any simple unital C?-algebra in the class of TA? is a simple purely in finite C?-algebra.

    Corollary 4.5([25,26]) Let A be a unital simple purely in finite C?-algebra.Suppose that α :G → Aut(A)is an action of a finite group G on A which has the tracial Rokhlin property.Then,C?(G,A,α)is a simple unital purely in finite C?-algebra.

    AcknowledgementsThe first author is grateful to George Elliott for helpful advice and suggestion.

    猜你喜歡
    小春
    快樂的植樹節(jié)
    深深地愛著你
    張小春紙藝作品選
    小春
    INHERITANCE OF DIVISIBILITY FORMS A LARGE SUBALGEBRA?
    小春芽
    絲路陽光
    秋葉
    幸福,在我身邊
    大灰狼(2016年5期)2016-06-06 11:04:20
    喜鵲落窩
    国产成人精品久久久久久| 欧美最新免费一区二区三区| 欧美xxⅹ黑人| 一级毛片 在线播放| 国产精品女同一区二区软件| 性色av一级| av视频免费观看在线观看| 欧美区成人在线视频| 美女主播在线视频| 在线观看美女被高潮喷水网站| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| 国产成人精品福利久久| 亚洲精品日韩av片在线观看| 视频中文字幕在线观看| 极品教师在线视频| 国产探花极品一区二区| 黄片wwwwww| 深爱激情五月婷婷| 亚洲精品456在线播放app| 午夜免费观看性视频| 亚洲第一区二区三区不卡| 草草在线视频免费看| 国精品久久久久久国模美| 美女高潮的动态| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 国产亚洲一区二区精品| 欧美日本视频| 深夜a级毛片| 成人18禁高潮啪啪吃奶动态图 | 只有这里有精品99| 一级毛片久久久久久久久女| 成年免费大片在线观看| 亚洲久久久国产精品| 一级毛片黄色毛片免费观看视频| 国产精品一区二区三区四区免费观看| 亚洲色图av天堂| 国产精品麻豆人妻色哟哟久久| 少妇裸体淫交视频免费看高清| 国产精品久久久久成人av| 欧美成人精品欧美一级黄| 黄色欧美视频在线观看| 日本欧美视频一区| 免费人成在线观看视频色| 国产伦理片在线播放av一区| 成人免费观看视频高清| 永久免费av网站大全| 亚洲真实伦在线观看| 亚洲熟女精品中文字幕| 激情 狠狠 欧美| 偷拍熟女少妇极品色| 99九九线精品视频在线观看视频| 在线观看美女被高潮喷水网站| 大片免费播放器 马上看| 好男人视频免费观看在线| 一二三四中文在线观看免费高清| 亚洲va在线va天堂va国产| 国产精品久久久久久精品电影小说 | 午夜福利视频精品| 日本一二三区视频观看| 女性被躁到高潮视频| 天堂俺去俺来也www色官网| 欧美成人精品欧美一级黄| 直男gayav资源| 亚洲不卡免费看| 国产欧美日韩精品一区二区| 国产精品一区二区在线观看99| 国产 一区精品| 久久影院123| 在线免费观看不下载黄p国产| 国产成人a区在线观看| 亚洲久久久国产精品| 2022亚洲国产成人精品| 国产成人精品婷婷| 中文字幕精品免费在线观看视频 | 成人毛片a级毛片在线播放| 亚洲成人一二三区av| 国产毛片在线视频| 午夜福利网站1000一区二区三区| av在线观看视频网站免费| 国产成人精品久久久久久| 国产黄片美女视频| 亚洲精品亚洲一区二区| 在线观看av片永久免费下载| 91aial.com中文字幕在线观看| 街头女战士在线观看网站| 18禁裸乳无遮挡动漫免费视频| 高清不卡的av网站| 午夜激情福利司机影院| 国产毛片在线视频| 欧美日韩精品成人综合77777| 成人漫画全彩无遮挡| a级毛色黄片| 国产毛片在线视频| 亚洲av男天堂| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 韩国高清视频一区二区三区| h日本视频在线播放| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 亚洲美女搞黄在线观看| 身体一侧抽搐| 成人18禁高潮啪啪吃奶动态图 | 久久久久视频综合| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 亚洲天堂av无毛| 超碰av人人做人人爽久久| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 能在线免费看毛片的网站| 男人爽女人下面视频在线观看| 午夜精品国产一区二区电影| 亚洲丝袜综合中文字幕| 免费大片黄手机在线观看| 精品人妻偷拍中文字幕| 国产综合精华液| 在线亚洲精品国产二区图片欧美 | 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 亚洲色图综合在线观看| 亚洲欧美中文字幕日韩二区| 黄色欧美视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲精品,欧美精品| 九色成人免费人妻av| 91在线精品国自产拍蜜月| 在线免费观看不下载黄p国产| 人人妻人人看人人澡| 亚洲精品自拍成人| 美女主播在线视频| 亚洲国产精品一区三区| 久久99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 精品国产露脸久久av麻豆| 少妇被粗大猛烈的视频| 久久ye,这里只有精品| 日韩欧美精品免费久久| 国产精品久久久久久精品古装| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 免费高清在线观看视频在线观看| 十分钟在线观看高清视频www | 九九久久精品国产亚洲av麻豆| 久久久精品94久久精品| 亚洲精品日本国产第一区| av在线老鸭窝| 在线观看av片永久免费下载| 高清不卡的av网站| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 免费看av在线观看网站| 免费观看在线日韩| 久久人人爽人人爽人人片va| 国精品久久久久久国模美| 99热6这里只有精品| 精品久久久噜噜| 国产伦精品一区二区三区四那| 国产精品一区二区三区四区免费观看| 国产免费一级a男人的天堂| 亚洲国产精品专区欧美| 综合色丁香网| 日本一二三区视频观看| 国产在线一区二区三区精| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 中文乱码字字幕精品一区二区三区| 赤兔流量卡办理| 欧美精品一区二区免费开放| 在线 av 中文字幕| 国产精品.久久久| 国产一区亚洲一区在线观看| 男人狂女人下面高潮的视频| 男的添女的下面高潮视频| 国产精品女同一区二区软件| 久久久a久久爽久久v久久| 国产黄色免费在线视频| 高清不卡的av网站| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| av在线老鸭窝| 亚洲美女黄色视频免费看| 国产精品久久久久久av不卡| kizo精华| 国产精品国产三级国产av玫瑰| 51国产日韩欧美| 亚洲最大成人中文| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 亚洲不卡免费看| 国产爱豆传媒在线观看| videossex国产| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 免费看日本二区| 一级毛片黄色毛片免费观看视频| 亚洲欧美日韩卡通动漫| 另类亚洲欧美激情| 久久久久视频综合| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 免费大片黄手机在线观看| 久久人人爽人人爽人人片va| 高清在线视频一区二区三区| av国产免费在线观看| 久久久久网色| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 多毛熟女@视频| 成年av动漫网址| 22中文网久久字幕| 免费观看的影片在线观看| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区二区三区欧美精品| 亚洲成人手机| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 久久久久网色| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级 | 国产精品三级大全| 久久久久久久国产电影| 日本与韩国留学比较| 一本久久精品| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| av线在线观看网站| 亚洲电影在线观看av| 黑人高潮一二区| 国产高清国产精品国产三级 | 精品熟女少妇av免费看| 亚洲天堂av无毛| 国产免费视频播放在线视频| 免费黄网站久久成人精品| 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 熟女电影av网| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91 | 网址你懂的国产日韩在线| 多毛熟女@视频| 久久久久久久久久久丰满| 午夜激情福利司机影院| 91久久精品电影网| 大香蕉97超碰在线| 欧美区成人在线视频| 嫩草影院新地址| 久久精品熟女亚洲av麻豆精品| 草草在线视频免费看| 亚洲欧美日韩另类电影网站 | 国产成人a∨麻豆精品| 尾随美女入室| 免费av中文字幕在线| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 人妻系列 视频| 人妻夜夜爽99麻豆av| 亚洲欧美日韩卡通动漫| kizo精华| 有码 亚洲区| 最近最新中文字幕大全电影3| 黄片wwwwww| 国产乱来视频区| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 夫妻性生交免费视频一级片| 午夜福利视频精品| 亚洲中文av在线| 偷拍熟女少妇极品色| 一个人免费看片子| 美女国产视频在线观看| av线在线观看网站| 日本wwww免费看| 一级av片app| 在线观看av片永久免费下载| 国产老妇伦熟女老妇高清| 91狼人影院| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 免费人妻精品一区二区三区视频| 国产精品一区www在线观看| 国产精品一区二区在线观看99| 免费大片18禁| 在线播放无遮挡| 一级片'在线观看视频| 欧美丝袜亚洲另类| 欧美精品一区二区大全| 在线免费十八禁| 免费观看在线日韩| 99久久精品国产国产毛片| 国产精品.久久久| 校园人妻丝袜中文字幕| 亚洲欧美成人精品一区二区| 国产精品免费大片| 日韩欧美一区视频在线观看 | 97超视频在线观看视频| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 高清在线视频一区二区三区| 久久久久久伊人网av| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 国产美女午夜福利| 国产爱豆传媒在线观看| 国产美女午夜福利| 男人舔奶头视频| 国产人妻一区二区三区在| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 女人久久www免费人成看片| 视频中文字幕在线观看| 不卡视频在线观看欧美| 国精品久久久久久国模美| 日日摸夜夜添夜夜添av毛片| 99九九线精品视频在线观看视频| 久久婷婷青草| 亚州av有码| 九九爱精品视频在线观看| 亚洲真实伦在线观看| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 欧美日韩一区二区视频在线观看视频在线| 99久久精品国产国产毛片| 国产av码专区亚洲av| 精品久久久久久久末码| av福利片在线观看| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 全区人妻精品视频| 久久久色成人| 我的老师免费观看完整版| 能在线免费看毛片的网站| 国产白丝娇喘喷水9色精品| 免费观看无遮挡的男女| 亚洲成色77777| av卡一久久| 国产精品.久久久| 91久久精品国产一区二区成人| 欧美激情极品国产一区二区三区 | 人体艺术视频欧美日本| 丰满少妇做爰视频| 成年美女黄网站色视频大全免费 | 男男h啪啪无遮挡| 免费大片黄手机在线观看| av国产精品久久久久影院| 久久久久久久久久成人| 久久99热这里只频精品6学生| 中文资源天堂在线| 国产综合精华液| 亚洲久久久国产精品| 色视频在线一区二区三区| 国产探花极品一区二区| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 久久韩国三级中文字幕| 免费av不卡在线播放| 丰满少妇做爰视频| 身体一侧抽搐| 久久精品夜色国产| 国产精品成人在线| 欧美 日韩 精品 国产| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 国产精品av视频在线免费观看| 成年av动漫网址| 亚洲怡红院男人天堂| 精品亚洲乱码少妇综合久久| 一级毛片 在线播放| 一个人免费看片子| 色哟哟·www| 日韩一区二区视频免费看| a级毛片免费高清观看在线播放| 精品一品国产午夜福利视频| 男女国产视频网站| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 成人免费观看视频高清| 最近手机中文字幕大全| 欧美精品人与动牲交sv欧美| 在线免费观看不下载黄p国产| 欧美亚洲 丝袜 人妻 在线| 人妻少妇偷人精品九色| h日本视频在线播放| 亚洲av电影在线观看一区二区三区| 成人美女网站在线观看视频| 草草在线视频免费看| 日韩一区二区三区影片| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 免费少妇av软件| 蜜臀久久99精品久久宅男| 五月天丁香电影| 成人免费观看视频高清| 一级毛片电影观看| 久久久a久久爽久久v久久| 这个男人来自地球电影免费观看 | 亚洲久久久国产精品| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 91午夜精品亚洲一区二区三区| 一区二区三区免费毛片| 91狼人影院| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 观看av在线不卡| 久久久久网色| 亚洲中文av在线| 国产精品免费大片| 亚洲精品第二区| 成人高潮视频无遮挡免费网站| 99热网站在线观看| 毛片女人毛片| 国产在线免费精品| 国产精品精品国产色婷婷| 中国国产av一级| 国产淫语在线视频| 亚洲欧洲国产日韩| 成人二区视频| 男女边摸边吃奶| 国产精品久久久久成人av| 亚洲中文av在线| 欧美性感艳星| h视频一区二区三区| 黑人高潮一二区| av线在线观看网站| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 亚洲美女视频黄频| 国产成人a区在线观看| 成人特级av手机在线观看| 久久久久久久久久成人| av国产久精品久网站免费入址| 国产免费福利视频在线观看| a级毛色黄片| 99热国产这里只有精品6| 高清在线视频一区二区三区| 亚洲国产欧美人成| 少妇精品久久久久久久| 十分钟在线观看高清视频www | 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡动漫免费视频| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 亚洲av中文字字幕乱码综合| 国产精品女同一区二区软件| 亚洲在久久综合| 97热精品久久久久久| 交换朋友夫妻互换小说| 国产一级毛片在线| 国产成人免费观看mmmm| av视频免费观看在线观看| 久久精品久久精品一区二区三区| av天堂中文字幕网| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 国产高清国产精品国产三级 | 久久久久网色| 深夜a级毛片| 涩涩av久久男人的天堂| 日韩强制内射视频| 少妇高潮的动态图| 亚洲国产精品成人久久小说| 国产午夜精品久久久久久一区二区三区| 嘟嘟电影网在线观看| 久久99热这里只有精品18| 精品视频人人做人人爽| 青青草视频在线视频观看| 国产在线免费精品| 亚洲av免费高清在线观看| 亚洲精品aⅴ在线观看| 亚洲成人一二三区av| av免费在线看不卡| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 纵有疾风起免费观看全集完整版| 欧美丝袜亚洲另类| 亚洲av男天堂| 亚洲欧美成人精品一区二区| 一区二区三区免费毛片| 午夜日本视频在线| 丝瓜视频免费看黄片| av免费在线看不卡| 中文资源天堂在线| 久久午夜福利片| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 日韩三级伦理在线观看| 日韩成人伦理影院| 能在线免费看毛片的网站| 国产黄色免费在线视频| 亚洲国产精品国产精品| 久久ye,这里只有精品| 欧美最新免费一区二区三区| 少妇 在线观看| 亚洲av成人精品一二三区| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| a级毛色黄片| 日日撸夜夜添| 人人妻人人看人人澡| 精品久久久久久久末码| 国产黄色免费在线视频| 97在线人人人人妻| 伦理电影免费视频| 大陆偷拍与自拍| 免费在线观看成人毛片| 九九久久精品国产亚洲av麻豆| 国产在线男女| 一区二区三区免费毛片| 免费高清在线观看视频在线观看| 老师上课跳d突然被开到最大视频| 97在线视频观看| 国产精品.久久久| 亚洲综合精品二区| 成年美女黄网站色视频大全免费 | 五月玫瑰六月丁香| 成年女人在线观看亚洲视频| 成人影院久久| 国产在线视频一区二区| 一区二区三区免费毛片| 全区人妻精品视频| 亚洲av免费高清在线观看| 男女免费视频国产| 国产老妇伦熟女老妇高清| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 精品国产三级普通话版| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 午夜免费观看性视频| 伦理电影免费视频| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 亚洲成人av在线免费| 一本一本综合久久| 91久久精品电影网| 青春草国产在线视频| 国产一区二区在线观看日韩| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 18+在线观看网站| 欧美性感艳星| 亚洲经典国产精华液单| 成年人午夜在线观看视频| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 一本久久精品| av免费观看日本| 99久久精品一区二区三区| 国模一区二区三区四区视频| 亚洲美女黄色视频免费看| 联通29元200g的流量卡| 国产av国产精品国产| 国产乱人视频| 色视频www国产| 黑人高潮一二区| 九草在线视频观看| 99热6这里只有精品| 爱豆传媒免费全集在线观看| 黄色配什么色好看| 丝袜脚勾引网站| 最新中文字幕久久久久| 亚洲精品一二三| 在现免费观看毛片| 国产精品av视频在线免费观看| 91精品一卡2卡3卡4卡| 亚洲av免费高清在线观看| 国内揄拍国产精品人妻在线| 欧美老熟妇乱子伦牲交| 色婷婷久久久亚洲欧美| 国产精品av视频在线免费观看| 中国美白少妇内射xxxbb| 中文乱码字字幕精品一区二区三区| 一区二区av电影网| 高清视频免费观看一区二区| 国内精品宾馆在线| 最黄视频免费看| 欧美高清成人免费视频www| 99久国产av精品国产电影| av国产免费在线观看| 18+在线观看网站| 在现免费观看毛片| 菩萨蛮人人尽说江南好唐韦庄|