• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON ENTIRE SOLUTIONS OF SOME TYPE OF NONLINEAR DIFFERENCE EQUATIONS?

    2018-07-23 08:41:42HuifangLIU劉慧芳
    關(guān)鍵詞:志強(qiáng)

    Huifang LIU(劉慧芳)

    College of Mathematics and Information Science,Jiangxi Normal University,Nanchang 330022,China

    E-mail:liuhuifang73@sina.com

    Zhiqiang MAO(毛志強(qiáng))

    School of Mathematics and Computer,Jiangxi Science and Technology Normal University,Nanchang 330038,China

    E-mail:maozhiqiang1@sina.com

    Abstract In this article,the existence of finite order entire solutions of nonlinear difference equationsare studied,where n ≥ 2 is an integer,Pd(z,f)is a difference polynomial in f of degree d(≤ n?2),p1,p2are small meromorphic functions of ez,and α1,α2are nonzero constants.Some necessary conditions are given to guarantee that the above equation has an entire solution of finite order.As its applications,we also find some type of nonlinear difference equations having no finite order entire solutions.

    Key words Nevanlinna theory;difference polynomial;difference equation;entire solution

    1 Introduction and Main Results

    Let f be a meromorphic function in the complex plane C.It is assumed that the reader is familiar with the standard notations and basic results of Nevanlinna’s value distribution theory of meromorphic functions,such as m(r,f),N(r,f),T(r,f)etc.;see,for example,[1,2].The notation S(r,f)is defined to be any quantity satisfying S(r,f)=o(T(r,f))as r→∞,possibly outside a set E of r of finite logarithmic measure.A meromorphic function α is said to be a small function of f provided that T(r,α)=S(r,f).In general,a difference polynomial,or a differential-difference polynomial in f is defined to be a finite sum of difference products of f and its shifts f(z+cj),(cj∈C,j∈I),or of products of f,derivatives of f,and of their shifts,with small meromorphic coefficients,where I is a finite index set.

    It is an important and difficult problem for complex differential equations to prove the existence of their solutions.In[3],Yang and Li pointed out that the differential equation 4f3(z)+3f′′(z)= ? sin3z has exactly three nonconstant entire solutions f1(z)=sinz,f2(z)=Furthermore,the existence of entire solutions of the more general differential equation

    where Qd(z,f)is a differential polynomial in f of degree d,have attracted many interests(see[4–7]etc.).In[4],Li and Yang proved the following result.

    Theorem A([4]) Let n≥4 be an integer and d≤n?3.If p1,p2are nonzero polynomials,and α1,α2are nonzero constants such thatis not rational,then equation(1.1)does not have any transcendental entire solutions.

    When weakening the restriction on d,Li[5]proved the following result.

    Theorem B([5]) Let n≥2 be an integer,d≤n?2,p1,p2be nonzero small functions of ez,and let α1,α2be real numbers.If α1<0< α2and equation(1.1)has a transcendental entire solution f,then α1+ α2=0 andwhere c1,c2are constants and

    Recently,replacing the differential polynomial Qd(z,f)in equation(1.1)by a difference,or differential-difference polynomial Pd(z,f),many authors[8–10]investigated the existence of entire solutions of the difference,or differential-difference equations

    where Pd(z,f)is a difference,or differential-difference polynomial in f of degree d.In[9],Zhang and Liao obtained a counterpart of Theorem A for entire solutions of finite order of equation(1.2).

    Theorem C([9]) Let n≥4 be an integer,and Pd(z,f)denote an algebraic differential difference polynomial in f of degree d≤n?3.If p1,p2are two nonzero polynomials,and α1,α2are two nonzero constants with,then equation(1.2)does not have any transcendental entire solution of finite order.

    It is natural to ask whether equation(1.2)has any entire solution of finite order if we weaken the restriction d≤n?3 in Theorem C.To this end,we prove the following result.

    Theorem 1.1Let n≥2 be an integer,Pd(z,f)be a difference polynomial in f of degree d ≤ n ? 2 such thatbe nonzero small functions of ez,and let α1,α2be constants.Ifand equation(1.2)has an entire solution f of finite order,then α1+α2=0 andwhere γj(j=1,2)are small functions of f such that

    Remark 1.1The below proof of Theorem 1.1 shows that the result of Theorem 1.1 also holds for the case Pd(z,f)being a differential-difference polynomial in f of degree d≤n?2.

    Remark 1.2There exist nonlinear difference(or differential-difference)equations satisfying Theorem 1.1.For example,the difference equation

    has an entire solution f(z)=eλz+e?λz.The differential-difference equation

    It follows from Theorem 1.1 that for the case α1+ α2=0,equation(1.2)may be have entire solutions of finite order.But in[8],Yang and Laine proved that the difference equation

    has no entire solutions of finite order,provided that q(z)is a nonconstant polynomial,where b,c are nonzero constants.In this article,we apply Theorem 1.1 to find some types of equation(1.2)having no entire solutions of finite order for the case α1+α2=0.We obtain the following results,which are supplements of Yang-Laine’s result.

    Theorem 1.2Let n≥3,M(z,f)be a linear differential-difference polynomial in f,p1,p2be nonzero small functions of ez,and let λ be a nonzero constant.If q(z)is a nonzero small function of f,then the nonlinear differential-difference equation

    has no entire solutions of finite order.

    Theorem 1.3Let a(z),b(z)be nonzero polynomials,p1,p2,λ,c be nonzero constants.If a(z)is a nonconstant polynomial,then the difference equation

    Remark 1.3For example,the difference equation

    has three distinct entire solutions

    2Lemmas

    Lemma 2.1([11]) Let T:(0,+∞)→(0,+∞)be a non-decreasing continuous function,s>0,α<1,and let F ? R+be the set of all r such that T(r)≤ αT(r+s).If the logarithmic measure of F is in finite,then

    Lemma 2.2([12]) Let f be a non-constant meromorphic function of finite order,η∈C,and δ<1.Then,

    Remark 2.1By Lemmas 2.1 and 2.2,we know that for a non-constant meromorphic function f of finite order,

    Remark 2.2Lemma 2.2 is a difference analogue of the logarithmic derivative lemma.The other version for finite-order meromorphic functions is due to Chiang and Feng[13].Recently,Halburd,Korhonen,and Tohge[14]proved that the difference analogue of the logarithmic derivative lemma also holds for meromorphic functions of hyper-order less than 1.

    Lemma 2.3Let p0,p1,p2be small meromorphic functions of ez,not vanishing identically,and α1,α2be two nonzero constants,then,

    ProofWithout loss of generality,we assume that p0≡1.Let

    and differentiating(2.1),we obtain

    If b1≡0,then by(2.3),we obtainwhich impliesthen differentiating(2.3),we obtain

    Eliminating eα1zfrom(2.3)and(2.5),we obtain

    Remark 2.3Using the argument similar to that of Lemma 2.3,we also obtain

    where p1,p0are small meromorphic functions of ez,not vanishing identically,α1is a constant.

    Lemma 2.4Let p0,p1,p2be small meromorphic functions of ez,not vanishing identically,and α1,α2be two nonzero constants,then,

    ProofWe only need to proof the case j=1.As

    then from the above equality and Lemma 2.3,we obtain the result of Lemma 2.4.

    Lemma 2.5(see[12]) Let f be a non-constant finite order meromorphic solution of fn(z)P(f)=Q(f),where P(f),Q(f)are difference polynomials in f with small meromorphic coefficients,and let δ<1.If the total degree of Q(f)as a polynomial in f and its shifts f(z+cj)(cj∈C,j∈I)is at most n,then,

    for all r outside of a possible exceptional set with finite logarithmic measure,where|c|=

    Remark 2.4The result of Lemma 2.5 also holds for the case P(f),Q(f)being differential difference polynomials in f with small meromorphic coefficients.

    (ii)For 1≤j

    (iii)For 1≤ j≤ n,1≤ t

    E?(1,∞)is a set with finite linear measure.Then,fj(z)≡ 0,(j=1,···,n).

    Lemma 2.7([3]) Suppose that c is a nonzero constant,and α is a nonconstant meromorphic function.Then,the equation

    has no transcendental meromorphic solution f satisfying T(r,α)=S(r,f).

    3 Proofs of Results

    Proof of Theorem 1.1Let Pd=Pd(z,f),and f be an entire solutions of finite order of(1.2).Differentiating(1.2)and eliminating eα1zor eα2z,we obtain

    and

    Let

    where I is a finite set of the index λ,tλ,lλj(λ ∈ I,j=1,···,tλ)are natural numbers,βλj(λ ∈I,j=1,···,tλ)are distinct complex numbers.Setand substituting this equality into(3.3),we obtain

    Differentiating(3.3)yields

    From Lemmas 2.1 and 2.2,and the lemma of the logarithmic derivative,we obtain m(r,cj)=S(r,f),(j=0,···,d).Hence,from(3.1),(3.4),and(3.5),we obtain

    On the other hand,from(1.2)and(3.4),we obtain

    From(3.6)and(3.7),we obtain

    Substituting(3.4)into(1.2),we obtain

    that is

    On the other hand,from(3.9),we obtain

    Then from(3.8),(3.10),(3.11)and Lemma 2.4,we obtain

    Setting z=reiθ,for fixed r>0,let E1={θ ∈ [0,2π):|eα2z|≥ 1},E2=[0,2π)? E1.Because for θ∈E1,

    we obtain

    While for θ∈E2,because

    we obtain

    Hence,from(3.10),(3.12),(3.13),and(3.14),we obtain

    Combining with(3.1)and(3.2),we obtain

    where

    and Q(z,f)is a differential-difference polynomial in f of degree n+d(≤ 2n?2)with small meromorphic coefficients.From(3.8),(3.10),(3.15),and(3.16),we obtain

    It follows from(3.17)that the poles of ? possibly come from the poles of p1,p2,and f.This implies that N(r,?)=S(r,f).Then,combining with(3.18),we obtain

    Now,we discuss the following two cases.

    Case 1? ≡ 0.Observe thatandcan not vanish identically simultaneously.Otherwise,from these equalitiesandwe getthat is,β ≡ 0.This is absurd.So,without loss of generality,we assume thatThis implies that

    where c is a nonzero constant.Substitutingand(3.20)into(3.1),we obtain

    Case 2Let

    then from(3.8),(3.17),(3.19)and(3.22),we obtain

    From(3.22),we obtain

    Differentiating the first equality of(3.24),we obtain

    Substituting(3.25)into the second equality of(3.24),we obtain

    where

    From(3.8),(3.22),(3.23),and(3.27),we obtain

    Then combining with(3.17),(3.19),(3.24),and(3.29),we obtain

    This is absurd.So,we have A1≡0.From this and(3.26),we obtain A2≡0.Then combining with(3.27),we obtain

    where c1,c2are nonzero constants.Hence,from(1.2),(3.24),and(3.30),we obtainwhere γj(j=1,2)are small meromorphic functions such thatOn the other hand,from(3.8),(3.17),(3.19),and(3.30),we obtain

    This implies that α1+ α2=0.Theorem 1.1 is thus proved. ?

    Proof of Theorem 1.2Suppose that f is an entire solution of finite order of equation(1.3),from Theorem 1.1,it follows that

    where γ1,γ2are small meromorphic function of f such thatSubstituting(3.31)into(1.3),we obtain

    Proof of Theorem 1.3Suppose that f is an entire solution of finite order of equation(1.4).Letand substituting this equality into(1.4),we obtain

    From Theorem 1.2 and(3.33),we obtainand

    and

    Then combining with(3.35)and(3.36),we obtain

    where c1,c2are constants.Substituting(3.40)into(3.34),we obtain

    From(3.41)and Lemma 2.6,we obtain

    Hence,

    If a(z)is a nonconstant polynomial,then(3.42)can not hold.So,equation(1.4)has no entire solution of finite order.

    If a(z)=a is a constant,then by(3.42),we obtainthat isand when k is even,we havewhen k is odd,we havehenceThen,combining withand(3.40),we obtain f which has the form defined as Theorem 1.3.Theorem 1.3 is thus proved. ?

    猜你喜歡
    志強(qiáng)
    NFT與絕對主義
    趙志強(qiáng)書法作品
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    袁志強(qiáng) 始終奮戰(zhàn)在防疫第一線
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    送別張公志強(qiáng)
    寶藏(2018年12期)2019-01-29 01:50:50
    Numerical prediction of effective wake field for a submarine based on a hybrid approach and an RBF interpolation*
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    志強(qiáng)的石
    中華奇石(2014年12期)2014-07-09 18:30:22
    中文字幕人妻熟人妻熟丝袜美| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 男人和女人高潮做爰伦理| 啦啦啦在线观看免费高清www| 日韩欧美 国产精品| 中文字幕久久专区| 高清毛片免费看| 99热6这里只有精品| 丰满少妇做爰视频| 日韩欧美精品免费久久| 久久久久精品性色| 久久青草综合色| 有码 亚洲区| 亚洲av中文av极速乱| 免费观看在线日韩| 三级经典国产精品| 在线观看免费视频网站a站| 欧美精品高潮呻吟av久久| 大香蕉97超碰在线| 男女边吃奶边做爰视频| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av涩爱| 久久久久久人妻| 国产黄色视频一区二区在线观看| 成人影院久久| 一区在线观看完整版| 亚洲经典国产精华液单| 亚洲不卡免费看| 老熟女久久久| 色婷婷久久久亚洲欧美| 一区二区三区四区激情视频| 成人国产av品久久久| 免费观看的影片在线观看| 亚洲av福利一区| 免费人妻精品一区二区三区视频| 三级经典国产精品| 熟女av电影| 午夜影院在线不卡| 久久精品久久久久久久性| 亚洲av免费高清在线观看| 成人漫画全彩无遮挡| 亚洲av男天堂| 国产精品福利在线免费观看| 大陆偷拍与自拍| 赤兔流量卡办理| 女的被弄到高潮叫床怎么办| 男人爽女人下面视频在线观看| 偷拍熟女少妇极品色| 亚洲国产精品专区欧美| 成人毛片60女人毛片免费| 蜜桃在线观看..| 久久精品国产a三级三级三级| 国产 精品1| 好男人视频免费观看在线| 免费观看性生交大片5| 国产男人的电影天堂91| 日本与韩国留学比较| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧洲国产日韩| 亚洲国产欧美日韩在线播放 | 国产av国产精品国产| 精品久久久久久电影网| av免费在线看不卡| 哪个播放器可以免费观看大片| 亚洲精品亚洲一区二区| 久久99一区二区三区| 欧美日韩综合久久久久久| 中文资源天堂在线| 国产欧美日韩综合在线一区二区 | 亚洲精品,欧美精品| 少妇人妻一区二区三区视频| 亚洲综合色惰| 我要看日韩黄色一级片| 一级a做视频免费观看| 国产精品国产三级国产av玫瑰| 日韩伦理黄色片| 免费不卡的大黄色大毛片视频在线观看| 一级毛片 在线播放| 少妇人妻久久综合中文| 国内揄拍国产精品人妻在线| 免费观看a级毛片全部| 国产精品秋霞免费鲁丝片| 国产欧美日韩综合在线一区二区 | 欧美国产精品一级二级三级 | 国产日韩欧美亚洲二区| 亚洲精品一区蜜桃| 精品亚洲乱码少妇综合久久| 如何舔出高潮| 特大巨黑吊av在线直播| 婷婷色av中文字幕| 久久人人爽人人片av| 在现免费观看毛片| 色婷婷久久久亚洲欧美| 亚洲欧美清纯卡通| 久久韩国三级中文字幕| 卡戴珊不雅视频在线播放| 午夜免费鲁丝| 色视频在线一区二区三区| 久久综合国产亚洲精品| 久久久精品94久久精品| 中国三级夫妇交换| 日本wwww免费看| 极品人妻少妇av视频| 免费播放大片免费观看视频在线观看| 亚洲欧洲国产日韩| 国产 一区精品| 欧美精品一区二区免费开放| 国产极品天堂在线| 汤姆久久久久久久影院中文字幕| 另类亚洲欧美激情| 午夜免费观看性视频| 内射极品少妇av片p| 国产色婷婷99| 欧美成人午夜免费资源| 免费观看性生交大片5| 免费大片18禁| 少妇裸体淫交视频免费看高清| 久久99热这里只频精品6学生| 日本av手机在线免费观看| 午夜免费鲁丝| av国产精品久久久久影院| 啦啦啦中文免费视频观看日本| 欧美日韩视频高清一区二区三区二| 美女xxoo啪啪120秒动态图| 欧美国产精品一级二级三级 | 亚洲精品国产av蜜桃| 蜜桃久久精品国产亚洲av| 99热这里只有精品一区| 高清毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲天堂av无毛| 日韩中字成人| 最黄视频免费看| 99久久精品热视频| 久久久久视频综合| 有码 亚洲区| 一级毛片电影观看| 亚洲精品国产色婷婷电影| 在线观看免费高清a一片| 亚洲va在线va天堂va国产| 中文乱码字字幕精品一区二区三区| 99久国产av精品国产电影| 熟女人妻精品中文字幕| 99热全是精品| 丝瓜视频免费看黄片| 新久久久久国产一级毛片| 国产高清三级在线| tube8黄色片| 日韩欧美一区视频在线观看 | 久久久国产一区二区| 97在线视频观看| 色哟哟·www| 中文精品一卡2卡3卡4更新| 97在线视频观看| 午夜免费鲁丝| 国产精品久久久久久av不卡| 久久午夜福利片| 99久久精品国产国产毛片| 国产精品99久久99久久久不卡 | 这个男人来自地球电影免费观看 | 日韩制服骚丝袜av| 一级毛片 在线播放| 黑人猛操日本美女一级片| 在线观看美女被高潮喷水网站| 美女福利国产在线| 亚洲综合精品二区| 亚洲精品国产av成人精品| 在线 av 中文字幕| 国产 精品1| 国产精品一二三区在线看| 精品99又大又爽又粗少妇毛片| 欧美97在线视频| 色5月婷婷丁香| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻丝袜制服| 一级,二级,三级黄色视频| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 最近中文字幕高清免费大全6| 日韩免费高清中文字幕av| 在线免费观看不下载黄p国产| 91精品国产九色| 日本91视频免费播放| 大又大粗又爽又黄少妇毛片口| 国产毛片在线视频| 美女脱内裤让男人舔精品视频| 日本黄大片高清| 国产真实伦视频高清在线观看| 日本vs欧美在线观看视频 | 国产乱人偷精品视频| 赤兔流量卡办理| 大香蕉久久网| 成人毛片60女人毛片免费| 国产精品偷伦视频观看了| 国产精品秋霞免费鲁丝片| 有码 亚洲区| 午夜福利视频精品| 亚洲精品第二区| 国产在线一区二区三区精| 亚洲第一av免费看| 国产精品99久久久久久久久| 日本免费在线观看一区| 亚洲真实伦在线观看| 国产成人免费观看mmmm| 一级毛片电影观看| 日日摸夜夜添夜夜爱| 亚洲av免费高清在线观看| 内地一区二区视频在线| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 在线天堂最新版资源| 亚洲精品视频女| 亚洲av男天堂| 成人漫画全彩无遮挡| 亚洲成人手机| 国产精品99久久99久久久不卡 | 亚洲精品亚洲一区二区| 免费观看a级毛片全部| 十分钟在线观看高清视频www | 美女福利国产在线| 一本大道久久a久久精品| 日韩一区二区三区影片| 亚洲精品乱码久久久v下载方式| 国产成人精品一,二区| 日韩成人伦理影院| 99精国产麻豆久久婷婷| 边亲边吃奶的免费视频| 国产 一区精品| www.色视频.com| av天堂久久9| 99久久综合免费| 在线免费观看不下载黄p国产| 亚洲精品国产av蜜桃| 欧美精品高潮呻吟av久久| 熟女av电影| 久久国产精品大桥未久av | 亚洲婷婷狠狠爱综合网| 亚洲欧美中文字幕日韩二区| 纯流量卡能插随身wifi吗| 欧美97在线视频| 少妇高潮的动态图| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄| 日韩中文字幕视频在线看片| 精品久久国产蜜桃| 久久99热这里只频精品6学生| 一级黄片播放器| 日韩在线高清观看一区二区三区| 亚洲av日韩在线播放| 免费不卡的大黄色大毛片视频在线观看| 精品少妇内射三级| 国产欧美日韩一区二区三区在线 | 97在线人人人人妻| h日本视频在线播放| 欧美日韩精品成人综合77777| 在线观看三级黄色| 久久久久久久精品精品| 国产成人aa在线观看| 青春草视频在线免费观看| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 午夜免费鲁丝| 99久久精品国产国产毛片| 成年人免费黄色播放视频 | 国产欧美日韩综合在线一区二区 | 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 亚洲国产精品一区三区| 亚洲欧美中文字幕日韩二区| tube8黄色片| 亚洲国产日韩一区二区| 国产真实伦视频高清在线观看| av一本久久久久| 丝袜脚勾引网站| 久久久久久久久久久丰满| 伦精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜久久久在线观看| 日本欧美国产在线视频| 精品人妻一区二区三区麻豆| 精品少妇黑人巨大在线播放| 国产成人精品无人区| 久久久国产一区二区| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 欧美最新免费一区二区三区| 最新中文字幕久久久久| 久久人人爽av亚洲精品天堂| 最近2019中文字幕mv第一页| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 男人爽女人下面视频在线观看| 男女无遮挡免费网站观看| 欧美xxⅹ黑人| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区乱码不卡18| videos熟女内射| 老司机影院毛片| 免费播放大片免费观看视频在线观看| 狂野欧美激情性xxxx在线观看| 我要看黄色一级片免费的| 99久久人妻综合| 国产成人freesex在线| 午夜av观看不卡| 亚洲情色 制服丝袜| 免费看av在线观看网站| 99re6热这里在线精品视频| 亚洲av中文av极速乱| 成人特级av手机在线观看| 国产视频内射| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 亚洲av国产av综合av卡| 在线观看三级黄色| 春色校园在线视频观看| 自线自在国产av| 国产成人精品福利久久| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 水蜜桃什么品种好| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| 国产极品粉嫩免费观看在线 | 蜜臀久久99精品久久宅男| √禁漫天堂资源中文www| 少妇 在线观看| 久久精品熟女亚洲av麻豆精品| 欧美日韩综合久久久久久| 一区二区av电影网| 久久影院123| 久久精品国产亚洲网站| 赤兔流量卡办理| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 波野结衣二区三区在线| 亚洲美女视频黄频| 99九九在线精品视频 | 最新的欧美精品一区二区| √禁漫天堂资源中文www| 丝袜脚勾引网站| 日韩欧美一区视频在线观看 | 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 九草在线视频观看| av福利片在线| 美女福利国产在线| 午夜精品国产一区二区电影| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 在线观看国产h片| 在线免费观看不下载黄p国产| 久久婷婷青草| 国产精品偷伦视频观看了| 人人澡人人妻人| 成人二区视频| 久久亚洲国产成人精品v| 日韩人妻高清精品专区| 啦啦啦在线观看免费高清www| 五月天丁香电影| 免费少妇av软件| 永久网站在线| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 亚洲欧美成人精品一区二区| 亚洲精品日韩av片在线观看| 亚洲,一卡二卡三卡| 伊人久久国产一区二区| 肉色欧美久久久久久久蜜桃| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 国产色婷婷99| 久久久久久久久久久久大奶| 99九九线精品视频在线观看视频| 妹子高潮喷水视频| 免费观看av网站的网址| 少妇人妻一区二区三区视频| 黄色毛片三级朝国网站 | 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 黑丝袜美女国产一区| 国产亚洲欧美精品永久| 99热6这里只有精品| 亚洲欧美日韩东京热| 国产成人91sexporn| 亚洲国产精品成人久久小说| 亚洲精品一二三| 国产亚洲5aaaaa淫片| 日日爽夜夜爽网站| 91成人精品电影| 国产永久视频网站| 国产精品女同一区二区软件| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 久久久久久久久大av| 精品少妇内射三级| 国产成人精品一,二区| 男女啪啪激烈高潮av片| 国产免费一区二区三区四区乱码| 欧美精品亚洲一区二区| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 亚洲欧洲国产日韩| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 亚洲伊人久久精品综合| 狂野欧美激情性bbbbbb| 国产av码专区亚洲av| 国产高清有码在线观看视频| 久久久国产欧美日韩av| 亚洲真实伦在线观看| 精品卡一卡二卡四卡免费| 亚洲欧美成人精品一区二区| www.色视频.com| 极品教师在线视频| 两个人的视频大全免费| 一级二级三级毛片免费看| 久久精品国产a三级三级三级| 日韩欧美 国产精品| 青青草视频在线视频观看| 97在线人人人人妻| 天天躁夜夜躁狠狠久久av| 亚洲国产精品一区三区| 亚洲av不卡在线观看| 免费观看av网站的网址| 搡老乐熟女国产| 如何舔出高潮| 男女啪啪激烈高潮av片| 国产亚洲精品久久久com| 成人亚洲精品一区在线观看| 亚洲精品国产成人久久av| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 美女中出高潮动态图| 国产 一区精品| 99九九线精品视频在线观看视频| 久久精品久久久久久久性| 夫妻性生交免费视频一级片| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 国产精品无大码| 亚洲精品国产av成人精品| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 婷婷色综合大香蕉| 伦理电影免费视频| 蜜桃久久精品国产亚洲av| 久久热精品热| 能在线免费看毛片的网站| 蜜桃在线观看..| 一本色道久久久久久精品综合| 如何舔出高潮| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 伊人久久精品亚洲午夜| 亚洲av福利一区| 欧美成人精品欧美一级黄| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 黄色一级大片看看| av一本久久久久| 精品亚洲成a人片在线观看| 深夜a级毛片| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区黑人 | 22中文网久久字幕| 六月丁香七月| 成年人免费黄色播放视频 | 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 如日韩欧美国产精品一区二区三区 | 高清毛片免费看| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩卡通动漫| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| av女优亚洲男人天堂| 欧美日韩一区二区视频在线观看视频在线| 99久久综合免费| 亚洲久久久国产精品| 日韩中文字幕视频在线看片| 亚洲国产成人一精品久久久| 国产成人精品无人区| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区蜜桃 | 国产片特级美女逼逼视频| 欧美人与善性xxx| 国产亚洲91精品色在线| 乱码一卡2卡4卡精品| av播播在线观看一区| 在现免费观看毛片| 黄色一级大片看看| 搡老乐熟女国产| 亚洲第一av免费看| 少妇丰满av| 国产精品国产三级国产专区5o| 午夜福利网站1000一区二区三区| 王馨瑶露胸无遮挡在线观看| 久久毛片免费看一区二区三区| 亚洲内射少妇av| 成人综合一区亚洲| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美 | 久久人妻熟女aⅴ| 男男h啪啪无遮挡| 十八禁网站网址无遮挡 | 国产精品麻豆人妻色哟哟久久| av福利片在线| 香蕉精品网在线| 欧美日韩在线观看h| 99热这里只有是精品在线观看| 久久热精品热| 亚洲四区av| 国产黄片美女视频| 久久久精品94久久精品| 国产成人精品一,二区| 人人妻人人澡人人看| 热re99久久精品国产66热6| 永久免费av网站大全| 99九九在线精品视频 | 中国国产av一级| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 日韩一区二区三区影片| 伊人亚洲综合成人网| 国产精品熟女久久久久浪| 女人久久www免费人成看片| 成人影院久久| 赤兔流量卡办理| 在线观看三级黄色| av在线app专区| 国产精品秋霞免费鲁丝片| 欧美丝袜亚洲另类| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| 成人亚洲欧美一区二区av| 高清不卡的av网站| 伦精品一区二区三区| av天堂久久9| a级一级毛片免费在线观看| 大码成人一级视频| 观看免费一级毛片| www.色视频.com| 精品99又大又爽又粗少妇毛片| 少妇人妻一区二区三区视频| 韩国av在线不卡| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 色网站视频免费| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 久久人人爽av亚洲精品天堂| 人人妻人人看人人澡| 国国产精品蜜臀av免费| av专区在线播放| 大片电影免费在线观看免费| 午夜影院在线不卡| 97超视频在线观看视频| 国产深夜福利视频在线观看| 视频区图区小说| 91成人精品电影| 国产男人的电影天堂91| 免费人成在线观看视频色| 高清av免费在线| 久久国产精品男人的天堂亚洲 | 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 曰老女人黄片| 22中文网久久字幕| 国产 精品1| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久精品电影小说| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 日本-黄色视频高清免费观看| 最后的刺客免费高清国语| 夫妻性生交免费视频一级片| 99久久综合免费| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 国产精品.久久久| av在线播放精品| 黄色一级大片看看| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 亚洲,一卡二卡三卡| 大香蕉久久网| 嫩草影院入口| 99视频精品全部免费 在线| 精品国产国语对白av| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 亚洲成人一二三区av|